


The horizons of optical networks are much more than high speed physical layer transport. An intelligent optical network design 

must include higher network layer considerations. This is the only book currently on the market that addresses optical networks 

from the physical layer to the network layer and should be valuable for those who try to understand the intricacies of what 

optical networks can be.  

—Vincent Chan, Professor, MIT Department of Electrical Engineering and Computer Science  

This book is not only essential reading for anyone in the optical networks industry, it is important. It provides the necessary 

foundation of learning for anyone hoping to contribute to this technology’s rapid evolution.  

—Scott Clavenna, President, PointEast Research  

The authors’ grasp of what is truly workable and worthwhile in optical networks is fundamental, and they have effectively 

packaged this knowledge in an easy-to-comprehend text that will be valued to both veterans and those new to optical 

networking.  

—Scott Grout, President and CEO, Chorum Technologies  

This is a comprehensive and authoritative work on optical networks, ranging in scope from components and systems to overall 

design principles. I find the book well organized and easy to use, and I particularly like the treatment of network design and 

operation. An essential book for anyone seriously interested in optical networks.  

—Goff Hill, Chief Network Architect, Altamar Networks, UK  

I really enjoy the bottoms-up approach taken by the authors to address fundamentals of optical components as the enablers, 

optical transmission system design and engineering as the building blocks, and network architecture and its management 

features that deliver applications to the network operators and services providers at the top of the food chain.  

—Shoa-Kai Liu, Director of Advanced Technology, Worldcom  

This book not only provides the fundamentals and details of photonics, but the pragmatic perspective presented enables 

the service provider, the equipment manufacturer, and the academician to view light from a real-life standpoint.  

—Mathew Oommen, Vice President, Network Architecture, Williams Communications Group  

This book functions as both an introduction to optical networking and as a text to reference again and again. Great for system 

designers as well as those marketing and selling those systems. Optical Networks provides theory and applications. While no 

text can be truly state-of-the-art in the fast moving area of optical networking, this one comes as close as possible.  

—Alan Repech, System Architect, Cisco Systems Optical Transport  

This book provides the most comprehensive coverage of both the theory and practice of optical networking. Its up-

to-date coverage makes it an invaluable reference for both practitioners and researchers.  

—Suresh Subramaniam, Assistant Professor, Department of Electrical and Computer Engineering, George Washington 

University  

This book provides an excellent overview of the complex field of optical networking. I especially like how it ties the optical 

hardware functionality into the overall networking picture. Everybody who wants to be a player in the optical networking space 

should have this book within easy reach.  

—Martin Zirngibl, Director, Photonics Network Research, Lucent Technologies, Bell Laboratories  



The Morgan Kaufmann Series in Networking 
Series Editor, David Clark, M.I.T. 
 
 
P2P Networking and Applications 
John Buford, Heather Yu, and Eng Lua 
 
The Illustrated Network 
Walter Goralski 
 
Broadband Cable Access Networks: The HFC Plant 
David Large and James Farmer 
 
Technical, Commercial and Regulatory Challenges of QoS: An Internet Service Model 
Perspective  
XiPeng Xiao 
 
MPLS: Next Steps 
Bruce S. Davie and Adrian Farrel 
 
Wireless Networking 
Anurag Kumar, D. Manjunath, and Joy Kuri 
 
Internet Multimedia Communications Using SIP 
Rogelio Martinez Perea 
 
Information Assurance: Dependability and Security in Networked Systems 
Yi Qian, James Joshi, David Tipper, and Prashant Krishnamurthy 
 
Network Analysis, Architecture, and Design, 3e 
James D. McCabe 
 
Wireless Communications & Networking: An Introduction 
Vijay K. Garg 
 
IPv6 Advanced Protocols Implementation 
Qing Li, Tatuya Jinmei, and Keiichi Shima 
 
Computer Networks: A Systems Approach, 4e 
Larry L. Peterson and Bruce S. Davie 
 
Network Routing: Algorithms, Protocols, and Architectures 
Deepankar Medhi and Karthikeyan Ramaswami 
 
Deploying IP and MPLS QoS for Multiservice Networks: Theory and Practice 
John Evans and Clarence Filsfils 
 



Traffic Engineering and QoS Optimization of Integrated Voice & Data Networks 
Gerald R. Ash 
 
IPv6 Core Protocols Implementation 
Qing Li, Tatuya Jinmei, and Keiichi Shima 
 
Smart Phone and Next-Generation Mobile Computing 
Pei Zheng and Lionel Ni 
 
GMPLS: Architecture and Applications 
Adrian Farrel and Igor Bryskin 
 
Content Networking: Architecture, Protocols, and Practice 
Markus Hofmann and Leland R. Beaumont 
 
Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices 
George Varghese 
 
Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS 
Jean Philippe Vasseur, Mario Pickavet, and Piet Demeester 
 
Routing, Flow, and Capacity Design in Communication and Computer Networks 
Michał Pióro and Deepankar Medhi 
 
Wireless Sensor Networks: An Information Processing Approach 
Feng Zhao and Leonidas Guibas 
 
Communication Networking: An Analytical Approach 
Anurag Kumar, D. Manjunath, and Joy Kuri 
 
The Internet and Its Protocols: A Comparative Approach 
Adrian Farrel 
 
Modern Cable Television Technology:  Video, Voice, and Data Communications, 2e 
Walter Ciciora, James Farmer, David Large, and Michael Adams 
 
Policy-Based Network Management: Solutions for the Next Generation 
John Strassner 
 
MPLS Network Management: MIBs, Tools, and Techniques 
Thomas D. Nadeau 
 
Developing IP-Based Services: Solutions for Service Providers and Vendors 
Monique Morrow and Kateel Vijayananda 
 
 
 



Telecommunications Law in the Internet Age 
Sharon K. Black 
 
Optical Networks:  A Practical Perspective, 3e 
Rajiv Ramaswami, Kumar N. Sivarajan, and Galen Sasaki 
 
Internet QoS: Architectures and Mechanisms 
Zheng Wang 
 
TCP/IP Sockets in Java: Practical Guide for Programmers 
Michael J. Donahoo and Kenneth L. Calvert 
 
TCP/IP Sockets in C: Practical Guide for Programmers 
Kenneth L. Calvert and Michael J. Donahoo 
 
Multicast Communication: Protocols, Programming, and Applications 
Ralph Wittmann and Martina Zitterbart 
 
High-Performance Communication Networks, 2e 
Jean Walrand and Pravin Varaiya 
 
Internetworking Multimedia 
Jon Crowcroft, Mark Handley, and Ian Wakeman 
 
Understanding Networked Applications: A First Course 
David G. Messerschmitt 
 
Integrated Management of Networked Systems: Concepts, Architectures, and their 
Operational Application 
Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair 
 
Virtual Private Networks: Making the Right Connection 
Dennis Fowler 
 
Networked Applications: A Guide to the New Computing Infrastructure  
David G. Messerschmitt 
 
Wide Area Network Design: Concepts and Tools for Optimization 
Robert S. Cahn 
 
 
 
For further information on these books and for a list of forthcoming titles,  
please visit our Web site at http://www.mkp.com. 

 



Morgan Kaufmann Publishers is an imprint of Elsevier. 
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 
 
This book is printed on acid-free paper. 
 

© 2010 ELSEVIER Inc. All rights reserved.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, recording, or any information storage and retrieval system, without 
permission in writing from the publisher. Details on how to seek permission, further information about the 
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance 
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.  
This book and the individual contributions contained in it are protected under copyright by the Publisher (other 
than as may be noted herein).  
 
Notices  
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our 
understanding, changes in research methods, professional practices, or medical treatment may become 
necessary.  
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using 
any information, methods, compounds, or experiments described herein. In using such information or methods 
they should be mindful of their own safety and the safety of others, including parties for whom they have a 
professional responsibility.  
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any 
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or 
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the 
material herein. 

 

Library of Congress Cataloging-in-Publication Data 
Application submitted 
 
British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library. 
 
ISBN: 978-0-12-374092-2 
 
For information on all Morgan Kaufmann publications, 
visit our Web site at www.mkp.com or www.elsevierdirect.com 
 

 

Printed in the United States of America 

09   10   11   12   13          5   4   3   2   1 

 



 

 
 
 
 
 
 

To Our Parents 

 
 
 
 
 
 
 



 
Optical Networks 

 

 

A Practical Perspective 
 

Third Edition 
 

 
Rajiv Ramaswami 

Kumar N. Sivarajan 
Galen H. Sasaki 

 

 

 
 

AMSTERDAM • BOSTON • HEIDELBERG • LONDON 

NEW YORK • OXFORD • PARIS • SAN DIEGO 

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO 

Morgan Kaufmann Publishers is an imprint of Elsevier 



This page intentionally left blank



Contents

Foreword xxi

Preface to the First Edition xxv

Preface to the Second Edition xxix

Preface to the Current Edition xxxiii

1 Introduction to Optical Networks 1
1.1 Telecommunications Network Architecture . . . . . . . . . . . . . . . . . . . . . 2
1.2 Services, Circuit Switching, and Packet Switching . . . . . . . . . . . . . . . . . 5

1.2.1 The Changing Services Landscape . . . . . . . . . . . . . . . . . . . . . 8
1.3 Optical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Multiplexing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Second-Generation Optical Networks . . . . . . . . . . . . . . . . . . . 13

1.4 The Optical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Transparency and All-Optical Networks . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Optical Packet Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 Transmission Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7.1 Wavelengths, Frequencies, and Channel Spacing . . . . . . . . . . . . . 26
1.7.2 Wavelength Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7.3 Optical Power and Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Network Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



x Contents

1.8.1 Early Days—Multimode Fiber . . . . . . . . . . . . . . . . . . . . . . . 30
1.8.2 Single-Mode Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.8.3 Optical Amplifiers and WDM . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.4 Beyond Transmission Links to Networks . . . . . . . . . . . . . . . . . 37

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I Technology 45

2 Propagation of Signals in Optical Fiber 47
2.1 Loss and Bandwidth Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.1 Bending Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Intermodal Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Geometrical Optics Approach . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.2 Bit Rate–Distance Limitation . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.3 Controlling Intermodal Dispersion: Graded-Index Multimode Fiber . . 55
2.2.4 Multimode Fiber in Practice . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Optical Fiber as a Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.1 Wave Theory Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.2 Fiber Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.3 Polarization Modes and Polarization-Mode Dispersion . . . . . . . . . 65
2.3.4 Other Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Chromatic Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.1 Chirped Gaussian Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4.2 Controlling the Dispersion: Dispersion-Shifted Fibers . . . . . . . . . . 75

2.5 Nonlinear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.1 Effective Length and Area . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.5.2 Stimulated Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . . 81
2.5.3 Stimulated Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . 82
2.5.4 Propagation in a Nonlinear Medium . . . . . . . . . . . . . . . . . . . 83
2.5.5 Self-Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5.6 SPM-Induced Chirp for Gaussian Pulses . . . . . . . . . . . . . . . . . . 88
2.5.7 Cross-Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.5.8 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.5.9 Fiber Types to Mitigate Nonlinear Effects . . . . . . . . . . . . . . . . . 95

2.6 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.6.1 Dispersion-Managed Solitons . . . . . . . . . . . . . . . . . . . . . . . 102

2.7 Other Fiber Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents xi

2.7.1 Photonic Crystal Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.7.2 Plastic Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3 Components 113
3.1 Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.1.1 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.1.2 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2 Isolators and Circulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.2.1 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.3 Multiplexers and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.1 Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.3.2 Diffraction Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.3.3 Bragg Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3.4 Fiber Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.5 Fabry-Perot Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.6 Multilayer Dielectric Thin-Film Filters . . . . . . . . . . . . . . . . . . . 139
3.3.7 Mach-Zehnder Interferometers . . . . . . . . . . . . . . . . . . . . . . . 141
3.3.8 Arrayed Waveguide Grating . . . . . . . . . . . . . . . . . . . . . . . . 145
3.3.9 Acousto-Optic Tunable Filter . . . . . . . . . . . . . . . . . . . . . . . 149
3.3.10 High Channel Count Multiplexer Architectures . . . . . . . . . . . . . 154

3.4 Optical Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.4.1 Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.4.2 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.4.3 Erbium-Doped Fiber Amplifiers . . . . . . . . . . . . . . . . . . . . . . 160
3.4.4 Raman Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.4.5 Semiconductor Optical Amplifiers . . . . . . . . . . . . . . . . . . . . . 167
3.4.6 Crosstalk in SOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.5 Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.5.1 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.5.2 Light-Emitting Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3.5.3 Tunable Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.5.4 Direct and External Modulation . . . . . . . . . . . . . . . . . . . . . . 192
3.5.5 Pump Sources for Raman Amplifiers . . . . . . . . . . . . . . . . . . . . 196

3.6 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.6.1 Photodetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.6.2 Front-End Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



xii Contents

3.7 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3.7.1 Large Optical Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.7.2 Optical Switch Technologies . . . . . . . . . . . . . . . . . . . . . . . . 213
3.7.3 Large Electronic Switches . . . . . . . . . . . . . . . . . . . . . . . . . . 220

3.8 Wavelength Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3.8.1 Optoelectronic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 222
3.8.2 Optical Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.8.3 Interferometric Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 225
3.8.4 Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4 Modulation and Demodulation 245
4.1 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

4.1.1 Signal Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.2 Subcarrier Modulation and Multiplexing . . . . . . . . . . . . . . . . . . . . . . 248

4.2.1 Clipping and Intermodulation Products . . . . . . . . . . . . . . . . . . 249
4.2.2 Applications of SCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

4.3 Spectral Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.3.1 Optical Duobinary Modulation . . . . . . . . . . . . . . . . . . . . . . 252
4.3.2 Optical Single Sideband Modulation . . . . . . . . . . . . . . . . . . . . 254
4.3.3 Multilevel Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
4.3.4 Capacity Limits of Optical Fiber . . . . . . . . . . . . . . . . . . . . . . 255

4.4 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
4.4.1 An Ideal Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.4.2 A Practical Direct Detection Receiver . . . . . . . . . . . . . . . . . . . 259
4.4.3 Front-End Amplifier Noise . . . . . . . . . . . . . . . . . . . . . . . . . 260
4.4.4 APD Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.4.5 Optical Preamplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.4.6 Bit Error Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
4.4.7 Coherent Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.4.8 Timing Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.4.9 Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

4.5 Error Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
4.5.1 Reed-Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
4.5.2 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



Contents xiii

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

5 Transmission System Engineering 289
5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
5.2 Power Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
5.3 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.4 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
5.5 Optical Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

5.5.1 Gain Saturation in EDFAs . . . . . . . . . . . . . . . . . . . . . . . . . 296
5.5.2 Gain Equalization in EDFAs . . . . . . . . . . . . . . . . . . . . . . . . 297
5.5.3 Amplifier Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
5.5.4 Amplifier Spacing Penalty . . . . . . . . . . . . . . . . . . . . . . . . . 300
5.5.5 Power Transients and Automatic Gain Control . . . . . . . . . . . . . . 302
5.5.6 Lasing Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

5.6 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
5.6.1 Intrachannel Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
5.6.2 Interchannel Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
5.6.3 Crosstalk in Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.6.4 Bidirectional Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.6.5 Crosstalk Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
5.6.6 Cascaded Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

5.7 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
5.7.1 Chromatic Dispersion Limits: NRZ Modulation . . . . . . . . . . . . . 315
5.7.2 Chromatic Dispersion Limits: RZ Modulation . . . . . . . . . . . . . . 317
5.7.3 Dispersion Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 320
5.7.4 Polarization-Mode Dispersion (PMD) . . . . . . . . . . . . . . . . . . . 325

5.8 Fiber Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
5.8.1 Effective Length in Amplified Systems . . . . . . . . . . . . . . . . . . . 329
5.8.2 Stimulated Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . . 331
5.8.3 Stimulated Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . 332
5.8.4 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.8.5 Self-/Cross-Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . 338
5.8.6 Role of Chromatic Dispersion Management . . . . . . . . . . . . . . . 340

5.9 Wavelength Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
5.10 Design of Soliton Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5.11 Design of Dispersion-Managed Soliton Systems . . . . . . . . . . . . . . . . . . 343
5.12 Overall Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

5.12.1 Fiber Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
5.12.2 Transmit Power and Amplifier Spacing . . . . . . . . . . . . . . . . . . 348



xiv Contents

5.12.3 Chromatic Dispersion Compensation . . . . . . . . . . . . . . . . . . . 348
5.12.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5.12.5 Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5.12.6 Interchannel Spacing and Number of Wavelengths . . . . . . . . . . . . 349
5.12.7 All-Optical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
5.12.8 Wavelength Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
5.12.9 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

II Networks 367

6 Client Layers of the Optical Layer 369
6.1 SONET/SDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

6.1.1 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
6.1.2 VCAT and LCAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
6.1.3 SONET/SDH Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
6.1.4 SONET Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 379
6.1.5 SONET/SDH Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . 384
6.1.6 Elements of a SONET/SDH Infrastructure . . . . . . . . . . . . . . . . 386

6.2 Optical Transport Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
6.2.1 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
6.2.2 Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
6.2.3 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

6.3 Generic Framing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
6.4 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

6.4.1 Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
6.4.2 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
6.4.3 Ethernet Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
6.4.4 Carrier Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

6.5 IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
6.5.1 Routing and Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . 413
6.5.2 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

6.6 Multiprotocol Label Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
6.6.1 Labels and Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
6.6.2 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
6.6.3 Signaling and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 420



Contents xv

6.6.4 Carrier Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
6.7 Resilient Packet Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

6.7.1 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
6.7.2 Node Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
6.7.3 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

6.8 Storage-Area Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
6.8.1 Fibre Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

7 WDM Network Elements 433
7.1 Optical Line Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
7.2 Optical Line Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
7.3 Optical Add/Drop Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

7.3.1 OADM Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
7.3.2 Reconfigurable OADMs . . . . . . . . . . . . . . . . . . . . . . . . . . 447

7.4 Optical Crossconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
7.4.1 All-Optical OXC Configurations . . . . . . . . . . . . . . . . . . . . . . 458

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

8 Control and Management 469
8.1 Network Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 469

8.1.1 Management Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 471
8.1.2 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
8.1.3 Management Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

8.2 Optical Layer Services and Interfacing . . . . . . . . . . . . . . . . . . . . . . . 476
8.3 Layers within the Optical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
8.4 Multivendor Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
8.5 Performance and Fault Management . . . . . . . . . . . . . . . . . . . . . . . . 481

8.5.1 The Impact of Transparency . . . . . . . . . . . . . . . . . . . . . . . . 481
8.5.2 BER Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
8.5.3 Optical Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
8.5.4 Alarm Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
8.5.5 Data Communication Network (DCN) and Signaling . . . . . . . . . . 485
8.5.6 Policing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487



xvi Contents

8.5.7 Optical Layer Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 487
8.5.8 Client Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

8.6 Configuration Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
8.6.1 Equipment Management . . . . . . . . . . . . . . . . . . . . . . . . . . 493
8.6.2 Connection Management . . . . . . . . . . . . . . . . . . . . . . . . . . 494
8.6.3 Adaptation Management . . . . . . . . . . . . . . . . . . . . . . . . . . 499

8.7 Optical Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.7.1 Open Fiber Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . 503

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

9 Network Survivability 511
9.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
9.2 Protection in SONET/SDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

9.2.1 Point-to-Point Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
9.2.2 Self-Healing Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
9.2.3 Unidirectional Path-Switched Rings . . . . . . . . . . . . . . . . . . . . 523
9.2.4 Bidirectional Line-Switched Rings . . . . . . . . . . . . . . . . . . . . . 525
9.2.5 Ring Interconnection and Dual Homing . . . . . . . . . . . . . . . . . . 530

9.3 Protection in the Client Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
9.3.1 Protection in Resilient Packet Rings . . . . . . . . . . . . . . . . . . . . 533
9.3.2 Protection in Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
9.3.3 Protection in IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
9.3.4 Protection in MPLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

9.4 Why Optical Layer Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
9.4.1 Service Classes Based on Protection . . . . . . . . . . . . . . . . . . . . 548

9.5 Optical Layer Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 549
9.5.1 1 + 1 OMS Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
9.5.2 1:1 OMS Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
9.5.3 OMS-DPRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
9.5.4 OMS-SPRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
9.5.5 1:N Transponder Protection . . . . . . . . . . . . . . . . . . . . . . . . 553
9.5.6 1 + 1 OCh Dedicated Protection . . . . . . . . . . . . . . . . . . . . . . 553
9.5.7 OCh-SPRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
9.5.8 OCh-Mesh Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
9.5.9 GMPLS Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

9.6 Interworking between Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565



Contents xvii

Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

10 WDM Network Design 573
10.1 Cost Trade-Offs: A Detailed Ring Network Example . . . . . . . . . . . . . . . 577
10.2 LTD and RWA Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

10.2.1 Lightpath Topology Design . . . . . . . . . . . . . . . . . . . . . . . . . 585
10.2.2 Routing and Wavelength Assignment . . . . . . . . . . . . . . . . . . . 590
10.2.3 Wavelength Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

10.3 Dimensioning Wavelength-Routing Networks . . . . . . . . . . . . . . . . . . . 596
10.4 Statistical Dimensioning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

10.4.1 First-Passage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
10.4.2 Blocking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

10.5 Maximum Load Dimensioning Models . . . . . . . . . . . . . . . . . . . . . . . 609
10.5.1 Offline Lightpath Requests . . . . . . . . . . . . . . . . . . . . . . . . . 610
10.5.2 Online RWA in Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

11 Access Networks 629
11.1 Network Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
11.2 Enhanced HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
11.3 Fiber to the Curb (FTTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

11.3.1 PON Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

12 Photonic Packet Switching 653
12.1 Optical Time Division Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . 658

12.1.1 Bit Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
12.1.2 Packet Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
12.1.3 Optical AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

12.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
12.2.1 Tunable Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
12.2.2 Optical Phase Lock Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 671



xviii Contents

12.3 Header Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
12.4 Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

12.4.1 Output Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
12.4.2 Input Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
12.4.3 Recirculation Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
12.4.4 Using Wavelengths for Contention Resolution . . . . . . . . . . . . . . 680
12.4.5 Deflection Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

12.5 Burst Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
12.6 Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

12.6.1 KEOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
12.6.2 NTT’s Optical Packet Switches . . . . . . . . . . . . . . . . . . . . . . . 691
12.6.3 BT Labs Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
12.6.4 Princeton University Testbed . . . . . . . . . . . . . . . . . . . . . . . . 693
12.6.5 AON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
12.6.6 CORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

13 Deployment Considerations 707
13.1 The Evolving Telecommunications Network . . . . . . . . . . . . . . . . . . . . 707

13.1.1 The SONET/SDH Core Network . . . . . . . . . . . . . . . . . . . . . 709
13.1.2 Architectural Choices for Next-Generation Transport Networks . . . . 712

13.2 Designing the Transmission Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 718
13.2.1 Using SDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
13.2.2 Using TDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
13.2.3 Using WDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
13.2.4 Unidirectional versus Bidirectional WDM Systems . . . . . . . . . . . . 722
13.2.5 Long-Haul Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
13.2.6 Long-Haul Network Case Study . . . . . . . . . . . . . . . . . . . . . . 725
13.2.7 Long-Haul Undersea Networks . . . . . . . . . . . . . . . . . . . . . . 732
13.2.8 Metro Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
13.2.9 Metro Ring Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
13.2.10 From Opaque Links to Agile All-Optical Networks . . . . . . . . . . . 738

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744



Contents xix

A Acronyms 747

B Symbols and Parameters 757

C Standards 761
C.1 International Telecommunications Union (ITU-T) . . . . . . . . . . . . . . . . . 761

C.1.1 Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
C.1.2 SDH (Synchronous Digital Hierarchy) . . . . . . . . . . . . . . . . . . . 761
C.1.3 Optical Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
C.1.4 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

C.2 Telcordia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
C.2.1 Physical and Environmental . . . . . . . . . . . . . . . . . . . . . . . . 763
C.2.2 SONET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
C.2.3 Optical Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

C.3 American National Standards Institute (ANSI) . . . . . . . . . . . . . . . . . . . 764
C.3.1 SONET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
C.3.2 Fibre Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

D Wave Equations 765

E Pulse Propagation in Optical Fiber 769
E.1 Propagation of Chirped Gaussian Pulses . . . . . . . . . . . . . . . . . . . . . . 772
E.2 Nonlinear Effects on Pulse Propagation . . . . . . . . . . . . . . . . . . . . . . . 773
E.3 Soliton Pulse Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

F Nonlinear Polarization 779

G Multilayer Thin-Film Filters 781
G.1 Wave Propagation at Dielectric Interfaces . . . . . . . . . . . . . . . . . . . . . . 781
G.2 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

H Random Variables and Processes 789
H.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

H.1.1 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
H.1.2 Maxwell Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
H.1.3 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

H.2 Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
H.2.1 Poisson Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . 793



xx Contents

H.2.2 Gaussian Random Process . . . . . . . . . . . . . . . . . . . . . . . . . 794
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

I Receiver Noise Statistics 795
I.1 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
I.2 Amplifier Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

J Asynchronous Transfer Mode 801
J.1 Functions of ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

J.1.1 Connections and Cell Forwarding . . . . . . . . . . . . . . . . . . . . . 803
J.1.2 Virtual Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

J.2 Adaptation Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
J.2.1 AAL-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
J.2.2 AAL-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806

J.3 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
J.4 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
J.5 Signaling and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

Bibliography 809

Index 845



Foreword
by Paul E. Green, Jr.

Director, Optical Network Technology

Tellabs, Inc.

Not too many years ago, whenever one wanted to send messages effectively, there
were really only two choices—send them by wire or send them by radio. This situation
lasted for decades until the mid-1960s, when the fiber optics revolution began, quietly
at first, and then with increasing force as people began to appreciate that sending
pulses of light through tiny strands of glass wasn’t so crazy after all. This revolution
is now in full cry, with 4000 strand miles of fiber being installed per day, just
in the United States alone. Fiber has been displacing wire in many applications,
and gradually it is emerging as one of the two dominant Cinderella transmission
technologies of today, wireless being the other. One of these (wireless) goes anywhere
but doesn’t do much when it gets there, whereas the other (fiber) will never go
everywhere but does a great deal indeed wherever it reaches. From the earliest days
of fiber communication, people realized that this simple glass medium has incredible
amounts of untapped bandwidth capacity waiting to be mined, should the day come
when we would actually need it, and should we be able to figure out how to tap it.
That day has now come. The demand is here and so are the solutions.

This book describes a revolution within a revolution, the opening up of the
capacity of the now-familiar optical fiber to carry more messages, handle a wider
variety of transmission types, and provide improved reliabilities and ease of use.
In many places where fiber has been installed simply as a better form of copper,
even the gigabit capacities that result have not proved adequate to keep up with
the demand. The inborn human voracity for more and more bandwidth, plus the
growing realization that there are other flexibilities to be had by imaginative use of
the fiber, have led people to explore all-optical networks, the subject of this book.
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Such networks are those in which either wavelength division or time division is used
in new ways to form entire network structures where the messages travel in purely
optical form all the way from one user location to another.

When I attempted the same kind of book in 1993, nobody was quite sure whether
optical networking would be a roaring success or disappear into the annals of “what-
ever happened to . . .” stories of technology that had once sounded great on paper,
but that had somehow never panned out in the real world. My book (Fiber Optic
Networks, Prentice Hall) spent most of its pages talking about technology building
blocks and lamenting their limitations since there was little to say about real net-
works, the architectural considerations underlying them, and what good they had
ever done anybody.

In the last four years, optical networking has indeed really happened, essentially
all of it based on wavelength division multiplexing, and with this book Ramaswami
and Sivarajan, two of the principal architects of this success, have redressed the
insufficiencies of earlier books such as mine. Today, hundreds of millions of dol-
lars of wavelength division networking systems are being sold annually, major new
businesses have been created that produce nothing but optical networks, and band-
width bottlenecks are being relieved and proliferating protocol zoos tamed by this
remarkably transparent new way of doing networking; what’s more, there is a rich
architectural understanding of where to go next. Network experts, fresh from the
novelties of such excitements as the Web, now have still another wonderful toy shop
to play in. The whole optical networking idea is endlessly fascinating in itself—based
on a medium with thousands of gigabits of capacity yet so small as to be almost in-
visible, transmitters no larger than a grain of salt, amplifiers that amplify vast chunks
of bandwidth purely as light, transmission designs that bypass 50 years of hard-won
but complex coding, modulation and equalization insights, network architectures
that subsume many functions usually done more clumsily in the lower layers of clas-
sical layered architectures—these are all fresh and interesting topics that await the
reader of this book.

To understand this new networking revolution within a revolution, it is neces-
sary to be led with a sure hand through territory that to many will be unfamiliar.
The present authors, with their rare mixture of physics and network architecture
expertise, are eminently qualified to serve as guides. After spending some time with
this book, you will be more thoroughly conversant with all the important issues that
today affect how optical networks are made, what their limitations and potentialities
are, and how they fit in with more classical forms of communication networks based
on electronic time division. Whether you are a computer network expert wondering
how to use fiber to break the bandwidth bottlenecks that are limiting your system ca-
pabilities, a planner or implementer trying to future-proof your telephone network,
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a teacher planning a truly up-to-date communication engineering curriculum, a stu-
dent looking for a fun lucrative career, or a midcareer person in need of a retread,
this volume will provide the help you need.

The authors have captured what is going on and what is going to be going on in
this field in a completely up-to-date treatment unavailable elsewhere. I learned a lot
from reading it and expect that you will too.
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Preface to the First
Edition

Fiber optics has become the core of our telecommunications and data networking
infrastructures. Optical fiber is the preferred means of transmission for any data over
a few tens of megabits per second and over anything from a kilometer and upwards.
The first generation of fiber optic networks used optical fiber predominantly as a re-
placement for copper cable for transmission at higher bit rates over longer distances.
The second generation of fiber optic networks is just emerging. These networks re-
ally exploit the capacity of fiber to achieve overall transmission capacities of several
tens of gigabits per second to terabits per second. Moreover, they exploit routing
and switching of signals in the optical domain. The rapid evolution of technology,
coupled with the insatiable demand for bandwidth, is resulting in a rapid transition
of these networks from research laboratories into the marketplace.

The fundamentals of optical fiber transmission are covered well in several
books. There is, however, a need for a book that covers the transmission aspects
of second-generation fiber optic networks, and focuses on the networking aspects
such as architectures, and control and management issues. Such a book would not
be complete without describing the components needed to build these networks, par-
ticularly since the network architectures strongly depend on these components, and
a person designing optical networks will need to be familiar with their capabilities.
Thus this book attempts to cover components, transmission, and networking issues
related to second-generation optical networks. It is targeted at professionals who are
network planners, designers or operators, graduate students in electrical engineering
and computer science, and engineers wanting to learn about optical networks.

xxv
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Teaching and Learning from This Book

This book can be used as a textbook for graduate courses in electrical engineer-
ing or computer science. Much of the material in this book has been covered in
courses taught by us. Part I covers components and transmission technology aspects
of optical networking, and Part II deals with the networking aspects. To understand
the networking issues in Part II, students will require a basic undergraduate-level
knowledge of communication networks and probability. We have tried to make the
transmission-related chapters in Part I of the book accessible to networking profes-
sionals. For example, components are treated first in a simple qualitative manner
from the viewpoint of a network designer, but their principle of operation is then
explained in detail. Some prior knowledge of electromagnetics will be useful in un-
derstanding the detailed quantitative treatment in some of the sections. Advanced
sections are marked by an asterisk; these sections can be omitted without loss of
continuity.

With this background, the book can be the basis for a graduate course in an elec-
trical engineering curriculum. Alternatively, a graduate course in a computer science
department might emphasize network architectures and control and management,
by focusing on Part II, and skim over the technology portions of the book in Part
I. Likewise, a course on optical transmission in an electrical engineering department
might instead focus on Part I and omit the remaining chapters. Each chapter is ac-
companied by a number of problems, and instructors may obtain a solution manual
by contacting the publisher at orders@mkp.com.

Second, we have attempted to provide an overview of much recent work in
this emerging field, so as to make the book useful to researchers in the field as an
up-to-date reference. Each chapter includes an extensive list of references for those
who might wish to explore further. The problems include some research topics for
further exploration as well. Finally, we hope that the book will also serve as an
introduction to people working in other areas who wish to become familiar with
fiber optics.

Overview of the Book

Chapter 1 offers an introduction to optical networks. Part I of the book is devoted
to the technology underlying optical networks. Chapter 2 describes how light prop-
agates in optical fiber, and deals with the phenomena of loss, dispersion, and fiber
nonlinearities, which play a major role in the design of transmission systems. Chap-
ter 3 provides an overview of the different components needed to build a network,
such as transmitters, receivers, multiplexers, and switches. Chapter 4 describes how
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electrical signals are converted to light signals (the modulation process) at the trans-
mitter and how they are recovered at the receiver (demodulation). Chapter 5 focuses
on the physical layer design of the latest generation of transmission systems and
networks, and the factors limiting the system performance.

Part II is devoted to a variety of networking aspects of optical networks. Chap-
ter 6 describes the different first-generation optical networks that are deployed widely
today. Chapter 7 covers broadcast and select WDM networks that are suitable for
LANs and MANs. Different topologies, media-access, and scheduling methods will
be described and compared in a uniform framework. Chapter 8 describes networks
using wavelength routing. These networks are emerging from the laboratories into
commercial deployment. The chapter covers the architectural aspects of these net-
works and focuses on the key design issues. Chapter 9 describes how to overlay virtual
networks, for example, IP or ATM networks over an underlying second-generation
optical network. Chapter 10 covers control and management, including connection
management, fault management, and safety management. Chapter 11 describes sev-
eral significant experimental wavelength routing demonstrations, field trials, and pro-
totypes. Chapter 12 describes passive optical network solutions for fiber-to-the-curb
and fiber-to-the-home access network applications. Chapter 13 covers the issues as-
sociated with deploying the new second-generation technology in different types of
telecommunications networks. Chapter 14 covers optical time division multiplexed
networks, which are today in the research labs but offer future potential for trans-
mission at very high rates on each WDM channel.

The appendices cover some of the basics of stochastic processes and graph theory
for readers as background material for the book. The large number of symbols and
parameters used in Part I (Technology) is also summarized in an appendix.
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and for her efforts to improve the quality of our book, and our production editor,
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Preface to the Second
Edition

Since the first edition of this book appeared in February 1998, we have witnessed a
dramatic explosion in optical networking. Optical networking used to be confined
to a fairly small community of researchers and engineers but is now of great interest
to a broad audience including students; engineers in optical component, equipment,
and service provider companies; network planners; investors; venture capitalists; and
industry and investment analysts.

With the rapid pace in technological advances and the widespread deployment of
optical networks over the past three years, the need for a second edition of this book
became apparent. In this edition we have attempted to include the latest advances in
optical networks and their underlying technologies. We have also tried to make the
book more accessible to a broader community of people interested in learning about
optical networking. With this in mind, we have rewritten several chapters, added a
large amount of new material, and removed some material that is not as relevant
to practical optical networks. We have also updated the references and added some
new problems.

The major changes we’ve made are as follows: We have mostly rewritten the
introduction to reflect the current understanding of optical networks, and we’ve
added a section called “Transmission Basics” to introduce several terms commonly
used in optical networking and wavelength division multiplexing (WDM) to the
layperson.

In Chapter 2, we’ve added significant sections on dispersion management and
solitons, along with a section describing the different fiber types now available.
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In Chapter 3, we now cover electro-absorption modulated lasers, tunable lasers,
Raman amplifiers, and L-band erbium-doped fiber amplifiers, and we have signifi-
cantly expanded the section on optical switching to include the new types of switches
using micro-electro-mechanical systems (MEMS) and other technologies.

In Chapter 4, we cover return-to-zero modulation and other newer modulation
formats such as duobinary, as well as forward error correction, now widely used in
high-bit-rate systems. Chapter 5 now includes expanded coverage of chromatic dis-
persion and polarization effects, which are important factors influencing the design
of high-bit-rate long-haul systems.

The networking chapters of the book have been completely rewritten and ex-
panded to reflect the signficant progress made in this area. We have organized these
chapters as follows: Chapter 6 now includes expanded coverage of SONET/SDH,
ATM, and IP networks. Chapter 7 is devoted to architectural considerations un-
derlying WDM network elements. Chapter 8 attempts to provide a unified view
of the problems associated with network design and routing in optical networks.
Chapter 9 provides significantly expanded coverage of network management and
control. We have devoted Chapter 10 to network survivability, with a detailed
discussion on optical layer protection. Chapter 11 covers access networks with
a focus on emerging passive optical networks (PONs). Chapter 12 provides up-
dated coverage of optical packet-switched networks. Finally, Chapter 13 focuses
on deployment considerations and is intended to provide the reader with a broad
understanding of how telecommunications networks are evolving. It includes a cou-
ple of detailed network planning case studies on a typical long-haul and metro
network.

There is currently a great deal of standards activity in this field. We’ve added an
appendix listing the relevant standards. We have also added another appendix listing
the acronyms used in the book and moved some of the more advanced material on
pulse propagation into an appendix.

While we have mostly added new material, we have also removed some chapters
present in the first edition. We have eliminated the chapter on broadcast-and-select
networks, as these networks are mostly of academic interest today. Likewise, we
also removed the chapter describing optical networking testbeds as they are mostly
of historical importance at this point. Interested readers can obtain a copy of these
chapters on the Internet at www.mkp.com/opticalnet2.

Teaching and Learning from This Book

This book can be used as a textbook for graduate courses in electrical engineering
or computer science. Much of the material in this book has been covered in courses
taught by us. Chapters 2–5 cover components and transmission technology aspects of
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optical networking, and Chapters 6–13 deal with the networking aspects. To under-
stand the networking issues, students will require a basic undergraduate-level knowl-
edge of communication networks. We have tried to make the transmission-related
chapters of the book accessible to networking professionals. For example, compo-
nents are treated first in a simple qualitative manner from the viewpoint of a net-
work designer, but their principle of operation is then explained in detail. Some prior
knowledge of semiconductors and electromagnetics will be helpful in appreciating
the detailed treatment in some of the sections.

Readers wishing to obtain a broad understanding of the major aspects of optical
networking can read Chapters 1, 6, 7, and 13. Those interested in getting a basic
appreciation of the underlying components and transmission technologies can read
through Chapters 1–5, skipping the quantitative sections.

The book can be the basis for a graduate course in an electrical engineering or
computer science curriculum. A networks-oriented course might emphasize network
architectures and control and management, by focusing on Chapters 6–13, and skim
over the technology portions of the book. Likewise, a course on optical transmission
in an electrical engineering department might instead focus on Chapters 2–5 and
omit the remaining chapters. Each chapter is accompanied by a number of prob-
lems, and instructors may obtain a solution manual by contacting the publisher at
mkp@mkp.com.
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Preface to the Current
Edition

Optical networking has matured considerably since the publication of the last edition
of this book in 2002. A host of new technologies including reconfigurable optical
add/drop multiplexers and sophisticated modulation formats are now mainstream,
and there has been a significant shift in telecommunications networks migrating to
a packet-over-optical infrastructure. We have incorporated many of these into this
revised edition.

In Chapter 2, we expanded the discussion on multimode fiber and added sections
on photonic crystal and plastic fibers. Chapter 6 has been rewritten with new sections
on Generic Framing Procedure, Optical Transport Network, and Resilient Packet
Ring (RPR). The coverage of Synchronous Optical Networks (SONET) now includes
Virtual Concatenation (VCAT) and the Link Capacity Adjustment Scheme (LCAS).
There is also expanded coverage of Ethernet and Multiprotocol Label Switching
(MPLS) that includes the development of these technologies to support carrier grade
service. Chapter 7 is devoted to architectural considerations underlying Wavelength
Division Multiplexing (WDM) network elements, and we have updated the section
on Reconfigurable Optical Add Drop Multiplexers (ROADMs). Chapter 8 reflects
the changes in network management and control, including more discussion on
packet transport considerations. Chapter 9 includes network survivability of client
layer protocols such as Ethernet, MPLS, and RPR, which is important to understand
the role of optical networks in survivability.

As with the previous editions, this book is intended to for use by a broad au-
dience including students, engineers in optical component, equipment, and service
provider companies, network planners, investors, venture capitalists, and indus-
try and investment analysts. It can be used as a textbook for graduate courses in
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electrical engineering or computer science. Please see the section “Teaching and
Learning from This Book" on page xxx for some guidance on this. Instructors can
obtain a solutions manual by contacting the publisher through the book’s web page,
www.elsevierdirect.com/9780123740922.

We would like to acknowledge the invaluable assistance provided by Karen Liu
in revising Chapter 2, especially the sections on multimode, photonic crystal and
plastic fibers. We would also like to thank Ori Gerstel for insightful discussions on
optical networks and Parthasarathi Palai for inputs on the DWDM network case
studies.



1
c h a p t e r

Introduction to Optical
Networks

A s we begin the new millennium, we are seeing dramatic changes in the
telecommunications industry that have far-reaching implications for our

lifestyles. There are many drivers for these changes. First and foremost is the con-
tinuing, relentless need for more capacity in the network. This demand is fueled by
many factors. The tremendous growth of the Internet and the World Wide Web, both
in terms of number of users and the amount of time, and thus bandwidth taken by
each user, is a major factor. Internet traffic has been growing rapidly for many years.
Estimates of growth have varied considerably over the years, with some early growth
estimates showing a doubling every four to six months. Despite the variations, these
growth estimates are always high, with more recent estimates at about 50% annu-
ally. Meanwhile, broadband access technologies such as digital subscriber line (DSL)
and cable modems, which provide bandwidths per user on the order of 1 Mb/s, has
been deployed widely. For example, in 2008 about 55% of the adults in the United
States had broadband access at home, while only 10% had access through dialup
lines of 28–56 kb/s. Fiber to the home has shown steady growth with Asian markets
showing the highest market penetration.

At the same time, businesses today rely on high-speed networks to conduct their
businesses. These networks are used to interconnect multiple locations within a
company as well as between companies for business-to-business transactions. Large
corporations that used to lease 155 Mb/s lines to interconnect their internal sites are
commonly leasing 1 Gb/s connections today.

There is also a strong correlation between the increase in demand and the cost
of bandwidth. Technological advances have succeeded in continously reducing the
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cost of bandwidth. This reduced cost of bandwidth in turn spurs the development of
a new set of applications that make use of more bandwidth and affects behavioral
patterns. A simple example is that as phone calls get cheaper, people spend more time
on the phone. This development in turn drives the need for more bandwidth in the
network. This positive feedback cycle shows no sign of abating in the near future.

Another factor causing major changes in the industry is the deregulation of the
telephone industry. It is a well-known fact that monopolies impede rapid progress.
Monopolistic companies can take their time adapting to changes and have no incen-
tive to reduce costs and provide new services. Deregulation of these monopolies has
stimulated competition in the marketplace, which in turn has resulted in lower costs
to end users and faster deployment of new technologies and services. Deregulation
has also resulted in creating a number of new start-up service providers as well as
start-up companies providing equipment to these service providers.

Also, traffic in a network is dominated by data as opposed to traditional voice
traffic. In the past, the reverse was true, and so legacy networks were designed to
efficiently support voice rather than data. Today, data transport services are perva-
sive and are capable of providing quality of service to carry performance sensitive
applications such as real-time voice and video.

These factors have driven the development of high-capacity optical networks and
their remarkably rapid transition from the research laboratories into commercial
deployment. This book aims to cover optical network technologies, systems, and
networking issues, as well as economic and other deployment considerations.

1.1 Telecommunications Network Architecture

Our focus in this book is primarily on the so-called public networks, which are
networks operated by service providers, or carriers, as they are often called. Carriers
use their network to provide a variety of services to their customers. Carriers used
to be essentially telephone companies, but today there are many different breeds
of carriers operating under different business models, many of whom do not even
provide telephone service. In addition to the traditional carriers providing telephone
and leased line services, today there are carriers who are dedicated to interconnecting
Internet service providers (ISPs), carriers that are in the business of providing bulk
bandwidth to other carriers, and even virtual carriers that provide services without
owning any infrastructure.

In many cases, the carrier owns the facilities (for example, fiber links) and equip-
ment deployed inside the network. Building fiber links requires right-of-way priv-
ileges. Not anybody can dig up streets! Fiber is deployed in many different ways



1.1 Telecommunications Network Architecture 3

today—buried underground, strung on overhead poles, and buried beside oil and
gas pipelines and railroad tracks. In other cases, carriers may lease facilities from
other carriers and in turn offer value-added services using these facilities. For exam-
ple, a long-distance phone service provider may not own a network at all but rather
simply buy bandwidth from another carrier and resell it to end users in smaller
portions.

A local-exchange carrier (LEC) offers local services in metropolitan areas, and an
interexchange carrier (IXC) offers long-distance services. This distinction is blurring
rapidly as LECs expand into long distance and IXCs expand into local services.
In order to understand this better, we need to step back and look at the history of
deregulation in the telecommunications services industry. In the United States, before
1984, there was one phone company—AT&T. AT&T, along with the local Bell
operating companies, which it owned, held a monopoly for both long-distance and
local services. In 1984, with the passing of the telecommunications deregulation act,
the overall entity was split into AT&T, which could offer only long-distance services,
and a number of “baby” Bells, or regional Bell operating companies (RBOCs),
which offered local services and were not allowed to offer long-distance services.
Long-distance services were deregulated, and many other companies, such as MCI
and Sprint, successfully entered the long-distance market. The baby Bells came to be
known as the incumbent LECs (ILECs) and were still monopolies within their local
regions. There has been considerable consolidation in the industry, where RBOCs
have even acquired long-distance companies. For example, RBOC Southwestern Bell
Communications acquired AT&T to form AT&T Inc., and Verizon Communications
(formerly the RBOC Bell Atlantic) acquired MCI. Today, the RBOCs are under three
companies: AT&T Inc., Verizon, and Qwest. In addition to the RBOCs, there are
other competitive LECs (CLECs) that are less regulated and compete with the RBOCs
to offer local services.

The terminology used above is prevalent mostly in North America. In Europe, we
had a similar situation where the government-owned postal, telephone, and telegraph
(PTT) companies held monopolies within their respective countries. Over the past
decade, deregulation has set in, and we now have a number of new carriers in Europe
offering both local and long-distance services.

In the rest of the book, we will take a more general approach and classify carriers
as metro carriers or long-haul carriers. Although the same carrier may offer metro
and long-haul services, the networks used to deliver long-haul services are somewhat
different from metro networks, and so it is useful to keep this distinction.

In contrast to public networks, private networks are networks owned and oper-
ated by corporations for their internal use. Many of these corporations in turn rely
on capacity provided by public networks to implement their private networks, par-
ticularly if these networks cross public land where right-of-way permits are required
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to construct networks. Networks within buildings spanning at most a few kilometers
are called local-area networks (LANs); those that span a campus or metropolitan
area, typically tens to a few hundred kilometers, are called metropolitan-area net-
works (MANs); and networks that span even longer distances, ranging from several
hundred to thousands of kilometers, are called wide-area networks (WANs). We will
also see a similar type of classification used in public networks, which we study next.

Figure 1.1 shows an overview of a typical public fiber network architecture. The
network is vast and complex, and different parts of the network may be owned and
operated by different carriers. The nodes in the network are central offices, sometimes
also called points of presence (POPs). (In some cases, POPs refer to “small” nodes
and hubs refer to “large” nodes.) The links between the nodes consist of fiber pairs
and, in many cases, multiple fiber pairs. Links in the long-haul network tend to be
very expensive to construct. For this reason, the topology of many North American
long-haul networks is fairly sparse. In Europe, the link lengths are shorter, and the
long-haul network topologies tend to be denser. At the same time, it is imperative
to provide alternate paths for traffic in case some of the links fail. These constraints
have resulted in the widespread deployment of ring topologies, particularly in North
America. Rings are sparse (only two links per node) but still provide an alternate
path to reroute traffic. In many cases, a meshed network is actually implemented in
the form of interconnected ring networks.

At a high level, the network can be broken up into a metropolitan (or metro)
network and a long-haul network. The metro network is the part of the network
that lies within a large city or a region. The long-haul network interconnects cities
or different regions. The metro network consists of a metro access network and a
metro interoffice network. The access network extends from a central office out to
individual businesses or homes (typically, groups of homes rather than individual
homes at this time). The access network’s reach is typically a few kilometers, and it
mostly collects traffic from customer locations into the carrier network. Thus most
of the traffic in the access network is hubbed into the carrier’s central office. The
interoffice network connects groups of central offices within a city or region. This
network usually spans a few kilometers to several tens of kilometers between offices.
The long-haul network interconnects different cities or regions and spans hundreds
to thousands of kilometers between central offices. In some cases, another part of
the network provides the handoff between the metro network and the long-haul
network, particularly if these networks are operated by different carriers. In contrast
to the access network, the traffic distribution in the metro interoffice and long-haul
networks is meshed (or distributed). The distances indicated here are illustrative and
vary widely based on the location of the network. For example, intercity distances
in Europe are often only a few hundred kilometers, whereas intercity distances in
North America can be as high as a few thousand kilometers.
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Figure 1.1 Different parts of a public network.

The network shown in Figure 1.1 is a terrestrial network. Optical fiber is also
extensively used in undersea networks. Undersea networks can range from a few
hundred kilometers in distance to several thousands of kilometers for routes that
cross the Atlantic and Pacific oceans.

1.2 Services, Circuit Switching, and Packet Switching

Many types of services are offered by carriers to their customers. In many cases,
these are connection-oriented services in that there is the notion of a connection
between two or more parties across an underlying network. The differences lie in
the bandwidth of the connection and the type of underlying network with which
the connection is supported, which has a significant impact on the quality-of-service
guarantees offered by the carriers to their customers. Networks can also provide
connectionless service; we will discuss this type of service later in this section.

There are two fundamental types of underlying network infrastructures based
on how traffic is multiplexed and switched inside the network: circuit-switched
and packet-switched. Figure 1.2 illustrates some of the differences in the type of
multiplexing used in these cases.

A circuit-switched network provides circuit-switched connections to its cus-
tomers. In circuit switching, a guaranteed amount of bandwidth is allocated to each
connection and is available to the connection all the time, once the connection is set
up. The sum of the bandwidth of all the circuits, or connections, on a link must be less



6 Introduction to Optical Networks

1 2 1 12 2

(a)

(b)

1

2

1

2

Mux

Mux

Figure 1.2 Different types of time division multiplexing: (a) fixed, (b) statistical.

than the link bandwidth. The most common example of a circuit-switched network
is the public-switched telephone network (PSTN), which provides a nailed-down
connection to end users with a fixed amount of bandwidth (typically around 4 kHz)
once the connection is established. This circuit is converted to a digital 64 kb/s circuit
at the carrier central office. This network was designed to support voice streams and
does a fine job for this application.

The circuit-switched services offered by carriers today include circuits at a variety
of bit rates, ranging from 64 kb/s voice circuits all the way up to several Gb/s. These
connections are typically leased by a carrier to its customers and remain nailed down
for fairly long periods, ranging from several days to months to years as the bandwidth
on the connection goes up. These services are also called private line services. The
PSTN fits into this category with one important difference—in the PSTN, users dial
up and establish connections between themselves, whereas with private line services,
the carrier usually sets up the connection using a management system. This situation
is changing, and we will no doubt see users dialing for higher-speed private lines in
the future, particularly as the connection durations come down.

The problem with circuit switching is that it is not efficient at handling bursty
data traffic. An example of a bursty traffic stream is traffic from a user typing on
a keyboard. When the user is actively typing, bits are transmitted at more or less
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a steady rate. When the user pauses, there is no traffic. Another example is Web
browsing. When a user is looking at a recently downloaded screen, there is almost
no traffic. When she clicks on a hyperlink, a new page needs to be downloaded as
soon as possible from the network. Thus a bursty stream requires a lot of bandwidth
from the network whenever it is active and very little bandwidth when it is not active.
It is usually characterized by an average bandwidth and a peak bandwidth, which
correspond to the long-term average and the short-term burst rates, respectively. In
a circuit-switched network, we would have to reserve sufficient bandwidth to deal
with the peak rate, and this bandwidth would be unused a lot of the time.

Packet switching was invented to deal with the problem of tranporting bursty
data traffic efficiently. In packet-switched networks, the data stream is broken up
into small packets of data. These packets are multiplexed together with packets
from other data streams inside the network. The packets are switched inside the
network based on their destination. To facilitate this switching, a packet header is
added to the payload in each packet. The header carries addressing information, for
example, the destination address or the address of the next node in the path. The
intermediate nodes read the header and determine where to switch the packet based
on the information contained in the header. At the destination, packets belonging
to a particular stream are received, and the data stream is put back together. The
predominant example of a packet-switched network is the Internet, which uses the
Internet Protocol (IP) to route packets from their source to their destination.

Packet switching uses a technique called statistical multiplexing when multiplex-
ing multiple bursty data streams together on a link. Since each data stream is bursty,
it is likely that at any given time only some streams are active and others are not. The
probability that all streams are active simultaneously is quite small. Therefore the
bandwidth required on the link can be made significantly smaller than the bandwidth
that would be required if all streams were to be active simultaneously.

Statistical multiplexing improves the bandwidth utilization but leads to some
other important effects. If more streams are active simultaneously than there is band-
width available on the link, some packets will have to be queued or buffered until
the link becomes free again. The delay experienced by a packet therefore depends on
how many packets are queued up ahead of it. This causes the delay to be a random
parameter. On occasion, the traffic may be so high that it causes the buffers to over-
flow. When this happens, some of the packets must be dropped from the network.
Usually, a higher-layer transport protocol, such as the transmission control protocol
(TCP) in the Internet, detects this development and ensures that these packets are
retransmitted. On top of this, a traditional packet-switched network does not even
support the notion of a connection. Packets belonging to a connection are treated
as independent entities, and different packets may take different routes through the
network. This is the case with networks using IP. This type of connectionless service
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is called a datagram service. This leads to even more variations in the delays expe-
rienced by different packets and also forces the higher-layer transport protocol to
resequence packets that arrive out of sequence at their destinations.

Thus, traditionally, such a packet-switched network provides what is called best-
effort service. The network tries its best to get data from its source to its destination
as quickly as possible but offers no guarantees. This is indeed the case with much of
the Internet today. Another example of this type of service is frame relay. Frame relay
is a popular packet-switched service provided by carriers to interconnect corporate
data networks. When a user signs up for frame relay service, she is promised a
certain average bandwidth over time but is allowed to have an instantaneous burst
rate above this rate, though without any guarantees. In order to ensure that the
network is not overloaded, the user data rate may be regulated at the input to the
network so that the user does not exceed her committed average bandwidth over
time. In other words, a user who is provided a committed rate of 64 kb/s may send
data at 128 kb/s on occasion, and 32 kb/s at other times, but will not be allowed to
exceed the average rate of 64 kb/s over a long period of time.

This best-effort service provided by packet-switched networks is fine for a number
of applications, such as Web browsing and file transfers, which are not highly delay-
sensitive applications. However, applications such as real-time video or voice calls
cannot tolerate random packet delays. Therefore, a great deal of effort is being made
today to design packet-switched networks that can provide some guarantees on the
quality of service that they offer. Examples of quality of service (QoS) may include
certain guarantees on the maximum packet delay as well as the variation in the delay,
and guarantees on providing a minimum average bandwidth for each connection.
The Internet Protocol has also been enhanced to provide similar services. Most
of these QoS efforts rely on the notion of having a connection-oriented layer. For
example, in an IP network, multiprotocol label switching (MPLS) provides virtual
circuits to support end-to-end traffic streams. A virtual circuit forces all packets
belonging to that circuit to follow the same path through the network, allowing better
allocation of resources in the network to meet certain quality-of-service guarantees,
such as bounded delay for each packet. Unlike a real circuit-switched network, a
virtual circuit does not provide a fixed guaranteed bandwidth along the path of the
circuit due to the fact that statistical multiplexing is used to multiplex virtual circuits
inside the network.

1.2.1 The Changing Services Landscape

The service model used by the carriers is changing rapidly as networks and tech-
nologies evolve and competition among carriers intensifies. The bandwidth delivered
per connection is increasing, and it is becoming common to lease lines ranging in
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capacity from 155 Mb/s to 2.5 Gb/s and even 10 Gb/s. Note that in many cases, a
carrier’s customer is another carrier. The so-called carrier’s carrier essentially delivers
bandwidth in large quantities to interconnect other carriers’ networks. Also, because
of increased competition and customer demands, carriers now need to be able to
deliver these connections rapidly in minutes to hours rather than days to months,
once the bandwidth is requested. Moreover, rather than signing up for contracts that
range from months to years, customers would like to sign up for much shorter dura-
tions. It is not unthinkable to have a situation where a user leases a large amount of
bandwidth for a relatively short period of time, for example, to perform large back-
ups at certain times of the day, to handle special events, or to deal with temporary
surges in demands.

Another aspect of change has to do with the availability of these circuits, which
is defined as the percentage of time the service is available to the user. Typically,
carriers provide 99.999% availability, which corresponds to a downtime of less than
5 minutes per year. This in turn requires the network to be designed to provide very
fast restoration of service in the event of failures such as fiber cuts, today in about
50 ms. Although this will remain true for a subset of connections, other connections
carrying data may be able to tolerate higher restoration times. Some connections
may not need to be restored at all by the carrier, with the user dealing with rerouting
traffic on these connections in the event of failures. Very fast restoration is usually
accomplished by providing full redundancy—half the bandwidth in the network is
reserved for this purpose. We will see in Chapter 9 that more sophisticated techniques
can be used to improve the bandwidth efficiency but usually at the cost of slower
restoration times.

Thus carriers in the new world need to deploy networks that provide them with
the flexibility to deliver bandwidth on demand when needed, where needed, with the
appropriate service attributes. The “where needed” is significant because carriers can
rarely predict the location of future traffic demands. As a result, it is difficult for them
to plan and build networks optimized around specific assumptions on bandwidth
demands.

At the same time, the mix of services offered by carriers is expanding. We talked
about different circuit-switched and packet-switched services earlier. What is not
commonly realized is that today these services are delivered over separate overlay
networks rather than a single network. Thus carriers need to operate and maintain
multiple networks—a very expensive proposition over time. For most networks, the
costs associated with operating the network over time (such as maintenance, pro-
visioning of new connections, upgrades) far outweigh the initial cost of putting in
the equipment to build the network. Carriers would thus like to migrate to main-
taining a single-network infrastructure that enables them to deliver multiple types of
services.
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1.3 Optical Networks

Optical networks offer the promise to solve many of the problems we have discussed.
In addition to providing enormous capacities in the network, an optical network
provides a common infrastructure over which a variety of services can be delivered.
These networks are also increasingly becoming capable of delivering bandwidth in
a flexible manner where and when needed.

Optical fiber offers much higher bandwidth than copper cables and is less suscep-
tible to various kinds of electromagnetic interferences and other undesirable effects.
As a result, it is the preferred medium for transmission of data at anything more
than a few tens of megabits per second over any distance more than a kilometer.
It is also the preferred means of realizing short-distance (a few meters to hundreds
of meters), high-speed (gigabits per second and above) interconnections inside large
systems.

Optical fibers are widely deployed today in all kinds of telecommunications net-
works. The amount of deployment of fiber is often measured in sheath miles. Sheath
miles is the total length of fiber cables, where each route in a network comprises
many fiber cables. For example, a 10-mile-long route using three fiber cables is said
to have 10 route miles and 30 sheath (cable) miles. Each cable contains many fibers.
If each cable has 20 fibers, the same route is said to have 600 fiber miles. A city
or telecommunications company may present its fiber deployment in sheath miles;
for example, a metropolitan region may have 10,000 fiber sheath miles. This is one
way to promote a location as suitable for businesses that develop or use information
technology.

When we talk about optical networks, we are really talking about two gener-
ations of optical networks. In the first generation, optics was essentially used for
transmission and simply to provide capacity. Optical fiber provided lower bit error
rates and higher capacities than copper cables. All the switching and other intelligent
network functions were handled by electronics. Examples of first-generation optical
networks are SONET (synchronous optical network) and the essentially similar SDH
(synchronous digital hierarchy) networks, which form the core of the telecommu-
nications infrastructure in North America and in Europe and Asia, respectively, as
well as a variety of enterprise networks such as Fibre Channel. We will study these
first-generation networks in Chapter 6.

Second-generation optical networks have routing, switching, and intelligence in
the optical layer. Before we discuss this generation of networks, we will first look
at the multiplexing techniques that provide the capacity needed to realize these
networks.
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Figure 1.3 Different multiplexing techniques for increasing the transmission capacity
on an optical fiber. (a) Electronic or optical time division multiplexing and (b) wavelength
division multiplexing. Both multiplexing techniques take in N data streams, each of B b/s,
and multiplex them into a single fiber with a total aggregate rate of NB b/s.

1.3.1 Multiplexing Techniques

The need for multiplexing is driven by the fact that in most applications it is much
more economical to transmit data at higher rates over a single fiber than it is to
transmit at lower rates over multiple fibers, in most applications. There are funda-
mentally two ways of increasing the transmission capacity on a fiber, as shown in
Figure 1.3. The first is to increase the bit rate. This requires higher-speed electronics.
Many lower-speed data streams are multiplexed into a higher-speed stream at the
transmission bit rate by means of electronic time division multiplexing (TDM). The
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multiplexer typically interleaves the lower-speed streams to obtain the higher-speed
stream. For example, it could pick 1 byte of data from the first stream, the next byte
from the second stream, and so on. As an example, sixty four 155 Mb/s streams
may be multiplexed into a single 10 Gb/s stream. Today, the highest transmission
rate in commercially available systems is 40 Gb/s TDM technology. To push TDM
technology beyond these rates, researchers are working on methods to perform the
multiplexing and demultiplexing functions optically. This approach is called optical
time division multiplexing (OTDM). Laboratory experiments have demonstrated
the multiplexing/demultiplexing of several 10 Gb/s streams into/from a 250 Gb/s
stream, although commercial implementation of OTDM is not yet viable. We will
study OTDM systems in Chapter 12. However, multiplexing and demultiplexing
high-speed streams by itself is not sufficient to realize practical networks. We need
to contend with the various impairments that arise as these very high-speed streams
are transmitted over a fiber. As we will see in Chapters 5 and 13, the higher the bit
rate, the more difficult it is to engineer around these impairments.

Another way to increase the capacity is by a technique called wavelength division
multiplexing (WDM). WDM is essentially the same as frequency division multiplex-
ing (FDM), which has been used in radio systems for more than a century. For some
reason, the term FDM is used widely in radio communication, but WDM is used in
the context of optical communication, perhaps because FDM was studied first by
communications engineers and WDM by physicists. The idea is to transmit data si-
multaneously at multiple carrier wavelengths (or, equivalently, frequencies or colors)
over a fiber. To first order, these wavelengths do not interfere with each other pro-
vided they are kept sufficiently far apart. (There are some undesirable second-order
effects where wavelengths do interfere with each other, and we will study these in
Chapters 2 and 5.) Thus WDM provides virtual fibers, in that it makes a single
fiber look like multiple “virtual” fibers, with each virtual fiber carrying a single
data stream. WDM systems are widely deployed today in long-haul and undersea
networks and are being deployed in metro networks as well.

WDM and TDM both provide ways to increase the transmission capacity and are
complementary to each other. Therefore networks today use a combination of TDM
and WDM. The question of what combination of TDM and WDM to use in systems
is an important one facing carriers today. For example, suppose a carrier wants to
install an 160 Gb/s link. Should we deploy 64 WDM channels at 2.5 Gb/s each, or
should we deploy 16 WDM channels at 10 Gb/s each? The answer depends on a
number of factors, including the type and parameters of the fiber used in the link and
the services that the carrier wishes to provide using that link. We will discuss this issue
in Chapter 13. Using a combination of WDM and TDM, systems with transmission
capacities of around 1 Tb/s over a single fiber are available, and no doubt systems
with higher capacities operating over longer distances will emerge in the future.



1.3 Optical Networks 13

1.3.2 Second-Generation Optical Networks

Optics is clearly the preferred means of transmission, and WDM transmission is
widely used in networks. Optical networks are capable of providing more func-
tions than just point-to-point transmission. Major advantages are to be gained by
incorporating some of the switching and routing functions that were performed by
electronics into the optical part of the network. For example, as data rates get higher
and higher, it becomes more difficult for electronics to process data. Suppose the elec-
tronics must process data in blocks of 70 bytes each (e.g., a small Ethernet packet).
In a 100 Mb/s data stream, we have 5.6 μs to process a block, whereas at 10 Gb/s,
the same block must be processed within 56 ns. In first-generation networks, the
electronics at a node must handle not only all the data intended for that node but
also all the data that is being passed through that node on to other nodes in the
network. If the latter data could be routed through in the optical domain, the burden
on the underlying electronics at the node would be significantly reduced. This is one
of the key drivers for second-generation optical networks.

Optical networks based on this paradigm are now being deployed. The architec-
ture of such a network is shown in Figure 1.4. We call this network a wavelength-
routing network. The network provides lightpaths to its users, such as SONET
terminals or IP routers. Lightpaths are optical connections carried end to end from
a source node to a destination node over a wavelength on each intermediate link.
At intermediate nodes in the network, the lightpaths are routed and switched from
one link to another link. In some cases, lightpaths may be converted from one wave-
length to another wavelength as well along their route. Different lightpaths in a
wavelength-routing network can use the same wavelength as long as they do not
share any common links. This allows the same wavelength to be reused spatially in
different parts of the network. For example, Figure 1.4 shows six lightpaths. The
lightpath between B and C, the lightpath between D and E, and one of the light-
paths between E and F do not share any links in the network and can therefore be
set up using the same wavelength λ1. At the same time, the lightpath between A
and F shares a link with the lightpath between B and C and must therefore use a
different wavelength. The two lightpaths between E and F must also be assigned dif-
ferent wavelengths. Note that these lightpaths all use the same wavelength on every
link in their path. We must deal with this constraint if we do not have wavelength
conversion capabilities within the network. Suppose we had only two wavelengths
available in the network and wanted to set up a new lightpath between nodes E and
F. Without wavelength conversion, we would not be able to set up this lightpath. On
the other hand, if the intermediate node X can perform wavelength conversion, then
we can set up this lightpath using wavelength λ2 on link EX and wavelength λ1 on
link XF.
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Figure 1.4 A WDM wavelength-routing network, showing optical line terminals
(OLTs), optical add/drop multiplexers (OADMs), and optical crossconnects (OXCs).
The network provides lightpaths to its users, which are typically IP routers or SONET
terminals.

The key network elements that enable optical networking are optical line ter-
minals (OLTs), optical add/drop multiplexers (OADMs), and optical crossconnects
(OXCs), as shown in Figure 1.4. An OLT multiplexes multiple wavelengths into a
single fiber and demultiplexes a set of wavelengths on a single fiber into separate
fibers. OLTs are used at the ends of a point-to-point WDM link. An OADM takes
in signals at multiple wavelengths and selectively drops some of these wavelengths
locally while letting others pass through. It also selectively adds wavelengths to the
composite outbound signal. An OADM has two line ports where the composite
WDM signals are present, and a number of local ports where individual wavelengths
are dropped and added. An OXC essentially performs a similar function but at
much larger sizes. OXCs have a large number of ports (ranging from a few tens
to thousands) and are able to switch wavelengths from one input port to another.
Both OADMs and OXCs may incorporate wavelength conversion capabilities. The
detailed architecture of these networks will be discussed in Chapter 7.



1.4 The Optical Layer 15

Optical networks based on the architecture described above are already being
deployed. OLTs have been widely deployed for point-to-point applications. OADMs
are now used in long-haul and metro networks. OXCs are beginning to be deployed
first in long-haul networks because of the higher capacities in those networks.

1.4 The Optical Layer

Before delving into the details of the optical layer, we first introduce the notion of
a layered network architecture. Networks are complicated entities with a variety of
different functions being performed by different components of the network, with
equipment from different vendors all interworking together. In order to simplify our
view of the network, it is desirable to break up the functions of the network into
different layers, as shown in Figure 1.5. This type of layered model was proposed
by the International Standards Organization (ISO) in the early 1980s. Imagine the
layers as being vertically stacked up. Each layer performs a certain set of functions
and provides a certain set of services to the next higher layer. In turn, each layer
expects the layer below it to deliver a certain set of services to it. The service interface

Layer 1 Layer 1

Layer i Layer i

Layer 1i+ Layer 1i+

..
.

..
.

NE NE NE NE

Service access point

Connection

Figure 1.5 Layered hierarchy of a network showing the layers at each network element
(NE).
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between two adjacent layers is called a service access point (SAP), and there can be
multiple SAPs between layers corresponding to different types of services offered.

In most cases, the network provides connections to the user. A connection is
established between a source and a destination node. Setting up, taking down, and
managing the state of a connection is the job of a separate network control and
management entity (not shown in Figure 1.5), which may control each individual
layer in the network. There are also examples where the network provides con-
nectionless services to the user. These services are suitable for transmitting short
messages across a network, without having to pay the overhead of setting up and
taking down a connection for this purpose. We will confine the following discussion
to the connection-oriented model.

Within a network element, data belonging to a connection flows between the
layers. Each layer multiplexes a number of higher-layer connections and may add
more overhead to data coming from the higher layer. Each intermediate network
element along the path of a connection embodies a set of layers starting from the
lowest layer up to a certain layer in the hierarchy.

It is important to define the functions of each layer and the interfaces between
layers. This is essential because it allows vendors to manufacture a variety of hard-
ware and software products performing the functions of some, but not all, of the
layers, and provide the appropriate interfaces to communicate with other products
performing the functions of other layers.

There are many possible implementations and standards for each layer. A given
layer may work together with a variety of lower or higher layers. Each of the different
types of optical networks that we will study constitutes a layer. Each layer itself can
in turn be broken up into several sublayers. As we study these networks, we will
explore this layered hierarchy further.

Figure 1.6 shows a classical breakdown of the different layers in a network that
was proposed by the ISO. The lowest layer in the hierarchy is the physical layer,
which provides a “pipe” with a certain amount of bandwidth to the layer above it.
The physical layer may be optical, wireless, or coaxial or twisted-pair cable. The next
layer above is the data link layer, which is responsible for framing, multiplexing, and
demultiplexing data sent over the physical layer. The framing protocol defines how
data is transported over a physical link. Typically, data is broken up into frames
before being transmitted over a physical link. This is necessary to ensure reliable
delivery of data across the link. The framing protocol provides clear delineation
between frames, permits sufficient transitions in the signal so that it can be recovered
at the other end, and usually includes additional overhead that enables link errors
to be detected. Examples of data link protocols suitable for operation over point-
to-point links include Ethernet, the point-to-point protocol (PPP), and the high-
level data link control (HDLC) protocol. Data link protocols such as Ethernet can
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Figure 1.6 The classical layered hierarchy.

also operate over links where multiple nodes share common bandwidth on a link.
These protocols have a media access control layer (MAC), which coordinates the
transmissions of different nodes on a link. The link becomes a local-area network
for the nodes.

Above the data link layer resides the network layer. The network layer usually
provides virtual circuits or datagram services to the higher layer. A virtual circuit
(VC) represents an end-to-end connection with a certain set of quality-of-service
parameters associated with it, such as bandwidth and error rate. Data transmitted
by the source over a VC is delivered in sequence at its destination. Datagrams, on
the other hand, are short messages transmitted end to end, with no notion of a
connection. The network layer performs the end-to-end routing function of taking a
message at its source and delivering it to its destination. The predominant network
layer today is IP, and the main network element in an IP network is an IP router. IP
provides a way to route packets (or datagrams) end to end in a packet-switched net-
work. IP includes statistical multiplexing of multiple packet streams and today also
provides some simple and relatively slow and inefficient service restoration mech-
anisms. It has also been enhanced with the multiprotocol label switching (MPLS)
protocol which provides VC service. The Internet Protocol has been adapted to op-
erate over a variety of data link and physical media, such as Ethernet, serial telephone
lines, coaxial cable lines, and optical fiber lines. More on this subject is presented in
Chapter 6.

The transport layer resides on top of the network layer and is responsible for
ensuring the end-to-end, in-sequence, and error-free delivery of the transmitted mes-
sages. For example, the transmission control protocol (TCP) used in the Internet
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Figure 1.7 An IP over SONET network. (a) The network has IP switches with SONET adaptors
that are connected to a SONET network. (b) The layered view of this network.

belongs to this layer. Above the transport layer reside other layers such as the ses-
sion, presentation, and application layers, but we will not be concerned with these
layers in this book.

This classical layered view of networks needs some embellishment to handle
the variety of networks and protocols that are proliferating today. A more realistic
layered model for today’s networks would employ multiple protocol stacks residing
one on top of the other. Each stack incorporates several sublayers, which may provide
functions resembling traditional physical, link, and network layers. To provide a
concrete example, consider an IP over SONET network shown in Figure 1.7. In
this case, the IP network treats the SONET network as providing it with point-to-
point links between IP routers. The SONET layer itself, however, internally routes
and switches connections, and in a sense, incorporates its own link, physical, and
network layers.

The introduction of second-generation optical networks adds yet another layer
to the protocol hierarchy—the so-called optical layer. The optical layer is a server
layer that provides services to other client layers. This optical layer provides light-
paths to a variety of client layers, as shown in Figure 1.8. Examples of client layers
residing above a second-generation optical network layer include IP, Ethernet, and
SONET/SDH, as well as other possible protocols such as Fibre Channel (a pro-
tocol used to interconnect computers to storage devices and other computers). As
second-generation optical networks evolve, they may provide other services besides
lightpaths, such as packet-switched virtual circuit or datagram services. These ser-
vices may directly interface with user applications, as shown in Figure 1.8. Several
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Figure 1.8 A layered view of a network consisting of a second-generation optical net-
work layer that supports a variety of client layers above it.

other layer combinations are possible and not shown in the figure, such as IP over
SONET over optical. Some of these are discussed in Chapter 6.

The client layers make use of the lightpaths provided by the optical layer. To a
SONET, Ethernet, or IP network operating over the optical layer, the lightpaths are
simply replacements for hardwired fiber connections between SONET terminals or
IP routers. As described earlier, a lightpath is a connection between two nodes in the
network, and it is set up by assigning a dedicated wavelength to it on each link in
its path. Note that individual wavelengths are likely to carry data at fairly high bit
rates (in the range of a few to 10 gigabits per second), and this entire bandwidth
is provided to the higher layer by a lightpath. Depending on the capabilities of the
network, this lightpath could be set up or taken down in response to a request from
the higher layer. This can be thought of as a circuit-switched service, akin to the
service provided by today’s telephone network: the network sets up or takes down
calls in response to a request from the user. Alternatively, the network may provide
only permanent lightpaths, which are set up at the time the network is deployed.
This lightpath service can be used to support high-speed connections for a variety of
overlying networks.

Optical networks today provide functions that might be thought of as falling
primarily within the physical layer from the perspective of its users. However, the
optical network itself incorporates several sublayers, which in turn correspond to
the link and network layer functions in the classical layered view.

Before the emergence of the optical layer, SONET/SDH was the predominant
transmission layer in the telecommunications network, and it is still the dominant
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layer in many parts of the network. We will study SONET/SDH in detail in Chap-
ter 6. For convenience, we will use SONET terminology in the rest of this section.
The SONET layer provides several key functions. It provides end-to-end, managed,
circuit-switched connections. It provides an efficient mechanism for multiplexing
lower-speed connections into higher-speed connections. For example, low-speed
voice connections at 64 kb/s or private-line 1.5 Mb/s connections can be multiplexed
all the way up into 10 Gb/s or 40 Gb/s line rates for transport over the network.
Moreover, at intermediate nodes, SONET provides an efficient way to extract indi-
vidual low-speed streams from a high-speed stream, using an elegant multiplexing
mechanism based on the use of pointers.

SONET also provides a high degree of network reliability and availability. Car-
riers expect their networks to provide 99.99% to 99.999% of availability. These
numbers translate into an allowable network downtime of less than 1 hour per year
and 5 minutes per year, respectively. SONET achieves this by incorporating sophisti-
cated mechanisms for rapid service restoration in the event of failures in the network.
We will look at this subject in Chapter 9.

Finally, SONET includes extensive overheads that allow operators to monitor
and manage the network. Examples of these overheads include parity check bytes
to determine whether or not frames are received in error, and connection identifiers
that allow connections to be traced and verified across a complex network.

SONET network elements include line terminals, add/drop multiplexers (ADMs),
regenerators, and digital crossconnects (DCSs). Line terminals multiplex and demul-
tiplex traffic streams. ADMs are deployed in linear and ring network configurations.
They provide an efficient way to drop part of the traffic at a node while allowing
the remaining traffic to pass through. The ring topology allows traffic to be rerouted
around failures in the network. Regenerators regenerate the SONET signal wher-
ever needed. DCSs are deployed in larger nodes to switch a large number of traffic
streams.

The functions performed by the optical layer are in many ways analogous to those
performed by the SONET layer. The optical layer multiplexes multiple lightpaths into
a single fiber and allows individual lightpaths to be extracted efficiently from the
composite multiplex signal at network nodes. It incorporates sophisticated service
restoration techniques and management techniques as well. We will look at these
techniques in Chapters 8 and 9.

Figure 1.9 shows a typical layered network hierarchy, highlighting the optical
layer. The optical layer provides lightpaths that are used by SONET and IP net-
work elements. The SONET layer multiplexes low-speed circuit-switched streams
into higher-speed streams, which are then carried over lightpaths. The IP layer per-
forms statistical multiplexing of packet-switched streams into higher-speed streams,
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Figure 1.9 Example of a typical multiplexing layered hierarchy.

which are also carried over lightpaths. Inside the optical layer itself is a multiplexing
hierarchy. Multiple wavelengths or lightpaths are combined into wavelength bands.
Bands are combined to produce a composite WDM signal on a fiber. The network
itself may include multiple fibers and multiple-fiber bundles, each of which carries a
number of fibers.

Hence, why have multiple layers in the network that perform similar functions?
The answer is that this form of layering significantly reduces network equipment
costs. Different layers are more efficient at performing functions at different bit
rates. For example, the SONET layer can efficiently (that is, cost-effectively) switch
and process traffic streams up to, say, 10 Gb/s today. However, it is very expensive
to have this layer process a hundred 10 Gb/s streams coming in on a WDM link.
The optical layer, on the other hand, is particularly efficient at processing traffic on
a wavelength-by-wavelength basis, but is not particularly good at processing traffic
streams at lower granularities, for example, 155 Mb/s. Therefore, it makes sense to
use the optical layer to process large amounts of bandwidth at a relatively coarse level
and the SONET layer to process smaller amounts of bandwidth at a relatively finer
level. This fundamental observation is the key driver to providing such functions in
multiple layers, and we will study this in detail in Chapter 7.

A similar observation also holds for the service restoration function of these
networks. Certain failures are better handled by the optical layer and certain others
by the SONET layer or the IP layer. We will study this aspect in Chapter 9.
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1.5 Transparency and All-Optical Networks

A major feature of the lightpath service provided by second-generation networks is
that this type of service can be transparent to the actual data being sent over the
lightpath once it is set up. For instance, a certain maximum and minimum bit rate
might be specified, and the service may accept data at any bit rate and any protocol
format within these limits. It may also be able to carry analog data.

Transparency in the network provides several advantages. An operator can pro-
vide a variety of different services using a single infrastructure. We can think of this
as service transparency. Second, the infrastructure is future-proof in that if protocols
or bit rates change, the equipment deployed in the network is still likely to be able to
support the new protocols and/or bit rates without requiring a complete overhaul of
the entire network. This allows new services to be deployed efficiently and rapidly,
while allowing legacy services to be carried as well.

An example of a transparent network of this sort is the telephone network. Once
a call is established in the telephone network, it provides 4 kHz of bandwidth over
which a user can send a variety of different types of traffic such as voice, data, or
fax. There is no question that transparency in the telephone network today has had
a far-reaching impact on our lifestyles. Transparency has become a useful feature of
second-generation optical networks as well.

Another term associated with transparent networks is the all-optical network.
In an all-optical network, data is carried from its source to its destination in optical
form, without undergoing any optical-to-electrical conversions along the way. In
an ideal world, such a network would be fully transparent. However, all-optical
networks are limited in their scope by several parameters of the physical layer, such
as bandwidth and signal-to-noise ratios. For example, analog signals require much
higher signal-to-noise ratios than digital signals. The actual requirements depend on
the modulation format used as well as the bit rate. We will study these aspects in
Chapter 5, where we will see that engineering the physical layer is a complex task
with a variety of parameters to be taken into consideration. For this reason, it is very
difficult to build and operate a network that can support analog as well as digital
signals at arbitrary bit rates.

The other extreme is to build a network that handles essentially a single bit rate
and protocol (say, 10 Gb/s SONET only). This would be a nontransparent network.
In between is a practical network that handles digital signals at a range of bit rates
up to a specified maximum. Most optical networks being deployed today fall into
this category.

Although we talk about optical networks, they almost always include a fair
amount of electronics. First, electronics plays a crucial role in performing the intelli-
gent control and management functions within a network. However, even in the data
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path, in most cases, electronics is needed at the periphery of the network to adapt
the signals entering the optical network. In many cases, the signal may not be able
to remain in optical form all the way to its destination due to limitations imposed by
the physical layer design and may have to be regenerated in between. In other cases,
the signal may have to be converted from one wavelength to another wavelength.
In all these situations, the signal is usually converted from optical form to electronic
form and back again to optical form.

Having these electronic regenerators in the path of the signal reduces the trans-
parency of that path. There are three types of electronic regeneration techniques for
digital data. The standard one is called regeneration with retiming and reshaping,
also known as 3R. Here the bit clock is extracted from the signal, and the signal is
reclocked. This technique essentially produces a “fresh” copy of the signal at each
regeneration step, allowing the signal to go through a very large number of regenera-
tors. However, it eliminates transparency to bit rates and the framing protocols, since
acquiring the clock usually requires knowledge of both of these. Some limited form
of bit rate transparency is possible by making use of programmable clock recovery
chips that can work at a set of bit rates that are multiples of one another.

An implementation using regeneration of the optical signal without retiming,
also called 2R, offers transparency to bit rates, without supporting analog data or
different modulation formats [GJR96]. However, this approach limits the number
of regeneration steps allowed, particularly at higher bit rates, over a few hundred
megabits per second. The limitation is due to the jitter, which accumulates at each
regeneration step.

The final form of electronic regeneration is 1R, where the signal is simply received
and retransmitted without retiming or reshaping. This form of regeneration can
handle analog data as well, but its performance is significantly poorer than the other
two forms of regeneration. For this reason, the networks being deployed today use
2R or 3R electronic regeneration. Note, however, that optical amplifiers are widely
used to amplify the signal in the optical domain, without converting the signal to the
electrical domain. These can be thought of as 1R optical regenerators.

Table 1.1 provides an overview of the different dimensions of transparency. At
one end of the spectrum is a network that operates at a fixed bit rate and framing

Table 1.1 Different types of transparency in an optical network.

Transparency type

Parameter Fully transparent Practical Nontransparent

Analog/digital Both Digital Digital
Bit rate Arbitrary Predetermined maximum Fixed
Framing protocol Arbitrary Selected few Single
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Figure 1.10 An optical network consisting of all-optical subnetworks interconnected
by optical-to-electrical-to-optical (OEO) converters. OEO converters are used in the
network for adapting external signals to the optical network, for regeneration, and for
wavelength conversion.

protocol, for example, SONET at 10 Gb/s. This would be truly an opaque network.
In contrast, a fully transparent network would support analog and digital signals
with arbitrary bit rates and framing protocols. As we argued earlier, however, such
a network is not practical to engineer and build. Today, a practical alternative is to
engineer the network to support a variety of digital signals up to a predetermined
maximum bit rate and a specific set of framing protocols, such as SONET and
10 Gigabit Ethernet (Ethernet at 10 Gb/s). The network supports a variety of framing
protocols either by making use of 2R regeneration inside the network or by providing
specific 3R adaptation devices for each of the framing protocols. Such a network
is shown in Figure 1.10. It can be viewed as consisting of islands of all-optical
subnetworks with optical-to-electrical-to-optical conversion at their boundaries for
the purposes of adaptation, regeneration, or wavelength conversion.

1.6 Optical Packet Switching

Thus far we have talked about optical networks that provide lightpaths. These
networks are essentially circuit-switched. Researchers are also working on optical
networks that can perform packet switching in the optical domain. Such a network
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would be able to offer virtual circuit services or datagram services, much like what is
provided by IP and MPLS networks. With a virtual circuit connection, the network
offers what looks like a circuit-switched connection between two nodes. However, the
bandwidth offered on the connection can be smaller than the full bandwidth available
on a link or wavelength. For instance, individual connections in a future high-
speed network may operate at 10 Gb/s, while transmission bit rates on a wavelength
could be 100 Gb/s. Thus the network must incorporate some form of time division
multiplexing to combine multiple connections onto the transmission bit rate. At these
rates, it may be easier to do the multiplexing in the optical domain rather than in
the electronic domain. This form of optical time division multiplexing (OTDM) may
be fixed or statistical. Those that perform statistical multiplexing are called optical
packet-switched networks. For simplicity we will talk mostly about optical packet
switching. Fixed OTDM can be thought of as a subset of optical packet switching
where the multiplexing is fixed instead of statistical.

An optical packet-switching node is shown in Figure 1.11. The idea is to create
packet-switching nodes with much higher capacities than can be envisioned with
electronic packet switching. Such a node takes a packet coming in, reads its header,
and switches it to the appropriate output port. The node may also impose a new
header on the packet. It must also handle contention for output ports. If two packets
coming in on different ports need to go out on the same output port, one of the
packets must be buffered or sent out on another port.

Ideally, all the functions inside the node would be performed in the optical do-
main, but in practice, certain functions, such as processing the header and controlling
the switch, get relegated to the electronic domain. This is because of the very limited
processing capabilities in the optical domain. The header itself can be sent at a lower
bit rate than the data so that it can be processed electronically.

Header
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Input
buffers

Output
buffers

Control
input
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Packets

Figure 1.11 An optical packet-switching node. The node buffers the incoming packets,
looks at the packet header, and routes the packets to an appropriate output port based
on the information contained in the header.
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The mission of optical packet switching is to enable packet-switching capabilities
at rates that cannot be contemplated using electronic packet switching. However,
designers are handicapped by several limitations with respect to processing signals
in the optical domain. One important factor is the lack of optical random access
memory for buffering. Optical buffers are realized by using a length of fiber and
are just simple delay lines, not fully functional memories. Packet switches include
a high amount of intelligent real-time software and dedicated hardware to control
the network and provide quality-of-service guarantees. These functions are difficult
to perform in the optical domain. Another factor is the relatively primitive state
of fast optical-switching technology, compared to electronics. For these reasons,
optical packet switching is not yet viable commercially, though many of their aspects
have been demonstrated in research laboratories. Chapter 12 covers all these aspects
in detail.

1.7 Transmission Basics

In this section, we introduce and define the units for common parameters associated
with optical communication systems.

1.7.1 Wavelengths, Frequencies, and Channel Spacing

When we talk about WDM signals, we will be talking about the wavelength, or
frequency, of these signals. The wavelength λ and frequency f are related by the
equation

c = f λ,

where c denotes the speed of light in free space, which is 3×108 m/s. We will reference
all parameters to free space. The speed of light in fiber is actually somewhat lower
(closer to 2× 108 m/s), and the wavelengths are also correspondingly different.

To characterize a WDM signal, we can use either its frequency or wavelength
interchangeably. Wavelength is measured in units of nanometers (nm) or microme-
ters (μm or microns). 1 nm = 10−9 m, 1 μm = 10−6 m. The wavelengths of interest
to optical fiber communication are centered around 0.8, 1.3, and 1.55 μm. These
wavelengths lie in the infrared band, which is not visible to the human eye. Frequen-
cies are measured in units of hertz (or cycles per second), more typically in megahertz
(1 MHz = 106 Hz), gigahertz (1 GHz = 109 Hz), or terahertz (1 THz = 1012 Hz).
Using c = 3 × 108 m/s, a wavelength of 1.55 μm would correspond to a frequency
of approximately 193 THz, which is 193× 1012 Hz.
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Another parameter of interest is channel spacing, which is the spacing between
two wavelengths or frequencies in a WDM system. Again the channel spacing can be
measured in units of wavelengths or frequencies. The relationship between the two
can be obtained starting from the equation

f = c

λ
.

Differentiating this equation around a center wavelength λ0, we obtain the relation-
ship between the frequency spacing �f and the wavelength spacing �λ as

�f = − c

λ2
0
�λ.

This relationship is accurate as long as the wavelength (or frequency) spacing is small
compared to the actual channel wavelength (or frequency), which is usually the case
in optical communication systems. At a wavelength λ0 = 1550 nm, a wavelength
spacing of 0.8 nm corresponds to a frequency spacing of 100 GHz, a typical spacing
in WDM systems.

Digital information signals in the time domain can be viewed as a periodic se-
quence of pulses, which are on or off, depending on whether the data is a 1 or a
0. The bit rate is simply the inverse of this period. These signals have an equivalent
representation in the frequency domain, where the energy of the signal is spread
across a set of frequencies. This representation is called the power spectrum, or
simply spectrum. The signal bandwidth is a measure of the width of the spectrum
of the signal. The bandwidth can also be measured either in the frequency domain
or in the wavelength domain, but is mostly measured in units of frequency. Note
that we have been using the term bandwidth rather loosely. The bandwidth and
bit rate of a digital signal are related but are not exactly the same. Bandwidth is
usually specified in kilohertz or megahertz or gigahertz, whereas bit rate is specified
in kilobits/second (kb/s), megabits/second (Mb/s), or gigabits/second (Gb/s). The re-
lationship between the two depends on the type of modulation used. For instance,
a phone line offers 4 kHz of bandwidth, but sophisticated modulation technology
allows us to realize a bit rate of 56 kb/s over this phone line. This ratio of bit
rate to available bandwidth is called spectral efficiency. Optical communication sys-
tems use rather simple modulation techniques that achieve a spectral efficiency of
about 0.4 bits/s/Hz, and it is reasonable to assume therefore that a signal at a bit
rate of 10 Gb/s uses up bandwidth of approximately 25 GHz. Note that the signal
bandwidth needs to be sufficiently smaller than the channel spacing; otherwise we
would have undesirable interference between adjacent channels and distortion of the
signal itself.
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Figure 1.12 The 100 GHz ITU frequency grid based on a reference frequency of
193.1 THz. A 50 GHz grid has also been defined around the same reference frequency.

1.7.2 Wavelength Standards

WDM systems today primarily use the 1.55 μm wavelength region for two reasons:
the inherent loss in optical fiber is the lowest in that region, and excellent optical
amplifiers are available in that region. We will discuss this in more detail in later
chapters. The wavelengths and frequencies used in WDM systems have been stan-
dardized on a frequency grid by the International Telecommunications Union (ITU).
It is an infinite grid centered at 193.1 THz, a segment of which is shown in Fig-
ure 1.12. The ITU decided to standardize the grid in the frequency domain based on
equal channel spacings of 50 GHz or 100 GHz. Observe that if multiple channels
are spaced apart equally in wavelength, they are not spaced apart exactly equally in
frequency, and vice versa. The figure also shows the power spectrum of two channels
400 GHz apart in the grid populated by traffic-bearing signals, as indicated by the
increased signal bandwidth on those channels.

The ITU grid only tells part of the story. Today, we are seeing systems using
25 GHz channel spacings. We are also seeing the use of several transmission bands.
The early WDM systems used the so-called C-band, or conventional band (approxi-
mately 1530–1565 nm). Use of the L-band, or long wavelength band (approximately
1565–1625 nm), has become feasible recently with the development of optical am-
plifiers in this band. We will look at this and other bands in Section 1.8.

It has proven difficult to obtain agreement from the different WDM vendors and
service providers on more concrete wavelength standards. As we will see in Chap-
ters 2 and 5, designing WDM transmission systems is a complex endeavor, requiring
trade-offs among many different parameters, including the specific wavelengths used
in the system. Different WDM vendors use different methods for optimizing their
system designs, and converging on a wavelength plan becomes difficult as a result.
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However, the ITU grid standard has helped accelerate the deployment of WDM sys-
tems because component vendors can build wavelength-selective parts to a specific
grid, which helps significantly in inventory management and manufacturing.

1.7.3 Optical Power and Loss

In optical communication, it is quite common to use decibel units (dB) to measure
power and signal levels, as opposed to conventional units. The reason for doing this
is that powers vary over several orders of magnitude in a system, making it easier to
deal with a logarithmic rather than a linear scale. Moreover, by using such a scale,
calculations that involve multiplication in the conventional domain become additive
operations in the decibel domain. Decibel units are used to represent relative as well
as absolute values.

To understand this system, let us consider an optical fiber link. Suppose we
transmit a light signal with power Pt watts (W). In terms of dB units, we have

(Pt )dBW = 10 log(Pt )W.

In many cases, it is more convenient to measure powers in milliwatts (mW), and we
have an equivalent dBm value given as

(Pt )dBm = 10 log(Pt )mW.

For example, a power of 1 mW corresponds to 0 dBm or −30 dBW. A power of
10 mW corresponds to 10 dBm or −20 dBW.

As the light signal propagates through the fiber, it is attenuated; that is, its power
is decreased. At the end of the link, suppose the received power is Pr . The link loss
γ is then defined as

γ = Pr

Pt

.

In dB units, we would have

(γ )dB = 10 log γ = (Pr)dBm − (Pt )dBm.

Note that dB is used to indicate relative values, whereas dBm and dBW are used to
indicate the absolute power value. As an example, if Pt = 1 mW and Pr = 1 μW,
implying that γ = 0.001, we would have, equivalently,

(Pt )dBm = 0 dBm or − 30 dBW,

(Pr)dBm = −30 dBm or − 60 dBW,
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and

(γ )dB = −30 dB.

In this context, a signal being attenuated by a factor of 1000 would equivalently
undergo a 30 dB loss. A signal being amplified by a factor of 1000 would equivalently
have a 30 dB gain.

We usually measure loss in optical fiber in units of dB/km. So, for example, a
light signal traveling through 120 km of fiber with a loss of 0.25 dB/km would be
attenuated by 30 dB.

1.8 Network Evolution

We conclude this chapter by outlining the trends and factors that have shaped the
evolution of optical fiber transmission systems and networks. Figure 1.13 gives an
overview. The history of optical fiber transmission has been all about how to transmit
data at the highest capacity over the longest possible distance and is remarkable for
its rapid progress. Equally remarkable is the fact that researchers have successfully
overcome numerous obstacles along this path, many of which when first discovered
appeared to impede further increases in capacity and transmission distance. The net
result of this is that capacity continues to grow in the network, while the cost per bit
transmitted per kilometer continues to get lower and lower, to a point where it has
become practical for carriers to price circuits independently of the distance.

We will introduce various types of fiber propagation impairments as well as
optical components in this section. These will be covered in depth in Chapters 2, 3,
and 5.

1.8.1 Early Days—Multimode Fiber

Early experiments in the mid-1960s demonstrated that information encoded in light
signals could be transmitted over a glass fiber waveguide. A waveguide provides a
medium that can guide the light signal, enabling it to stay focused for a reasonable
distance without being scattered. This allows the signal to be received at the other
end with sufficient strength so that the information can be decoded. These early
experiments proved that optical transmission over fiber was feasible.

An optical fiber is a very thin cylindrical glass waveguide consisting of two parts:
an inner core material and an outer cladding material. The core and cladding are
designed so as to keep the light signals guided inside the fiber, allowing the light
signal to be transmitted for reasonably long distances before the signal degrades in
quality.
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Figure 1.13 Evolution of optical fiber transmission systems. (a) An early system using LEDs over
multimode fiber. (b) A system using MLM lasers over single-mode fiber in the 1.3 μm band to
overcome intermodal dispersion in multimode fiber. (c) A later system using the 1.55 μm band for
lower loss, and using SLM lasers to overcome chromatic dispersion limits. (d) A current-generation
WDM system using multiple wavelengths at 1.55 μm and optical amplifiers instead of regenerators.
The P-λ curves to the left of the transmitters indicate the power spectrum of the signal transmitted.

It was not until the invention of low-loss optical fiber in the early 1970s that
optical fiber transmission systems really took off. This silica-based optical fiber has
three low-loss windows in the 0.8, 1.3, and 1.55 μm infrared wavelength bands.
The lowest loss is around 0.25 dB/km in the 1.55 μm band and about 0.5 dB/km in
the 1.3 μm band. These fibers enabled transmission of light signals over distances
of several tens of kilometers before they needed to be regenerated. A regenerator
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Figure 1.14 Geometrical optics model to illustrate the propagation of light in an optical
fiber. (a) Cross section of an optical fiber. The fiber has an inner core and an outer cladding,
with the core having a slightly higher refractive index than the cladding. (b) Longitudinal
view. Light rays within the core hitting the core-cladding boundary are reflected back
into the core by total internal reflection.

converts the light signal into an electrical signal and retransmits a fresh copy of the
data as a new light signal.

The early fibers were the so-called multimode fibers. Multimode fibers have core
diameters of about 50 to 85 μm. This diameter is large compared to the operating
wavelength of the light signal. A basic understanding of light propagation in these
fibers can be obtained using the so-called geometrical optics model, illustrated in
Figure 1.14. In this model, a light ray bounces back and forth in the core, being
reflected at the core-cladding interface. The signal consists of multiple light rays,
each of which potentially takes a different path through the fiber. Each of these
different paths corresponds to a propagation mode. The length of the different paths
is different, as seen in the figure. Each mode therefore travels with a slightly different
speed compared to the other modes.

The other key devices needed for optical fiber transmission are light sources
and receivers. Compact semiconductor lasers and light-emitting diodes (LEDs) pro-
vided practical light sources. These lasers and LEDs were simply turned on and off
rapidly to transmit digital (binary) data. Semiconductor photodetectors enabled the
conversion of the light signal back into the electrical domain.

The early telecommunication systems (late 1970s through the early 1980s) used
multimode fibers along with LEDs or laser transmitters in the 0.8 and 1.3 μm wave-
length bands. LEDs were relatively low-power devices that emitted light over a fairly
wide spectrum of several nanometers to tens of nanometers. A laser provided higher
output power than an LED and therefore allowed transmission over greater dis-
tances before regeneration. The early lasers were multilongitudinal mode (MLM)
Fabry-Perot lasers. These MLM lasers emit light over a fairly wide spectrum of
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several nanometers to tens of nanometers. The actual spectrum consists of multiple
spectral lines, which can be thought of as different longitudinal modes, hence the
term MLM. Note that these longitudinal laser modes are different from the propaga-
tion modes inside the optical fiber! Although both LEDs and MLM lasers emit light
over a broad spectrum, the spectrum of an LED is continuous, whereas the spectrum
of an MLM laser consists of many periodic lines.

These early systems had to have regenerators every few kilometers to regenerate
the signal. Regenerators were expensive devices and continue to be expensive today,
so it is highly desirable to maximize the distance between regenerators. In this case,
the distance limitation was primarily due to a phenomenon known as intermodal
dispersion. As we saw earlier, in a multimode fiber, the energy in a pulse travels in dif-
ferent modes, each with a different speed. At the end of the fiber, the different modes
arrive at slightly different times, resulting in a smearing of the pulse. This smearing
in general is called dispersion, and this specific form is called intermodal dispersion.
Typically, these early systems operated at bit rates ranging from 32 to 140 Mb/s
with regenerators every 10 km. Such systems are still used for low-cost computer
interconnection at a few hundred megabits per second over a few kilometers.

1.8.2 Single-Mode Fiber

The next generation of systems deployed starting around 1984 used single-mode
fiber as a means of eliminating intermodal dispersion, along with MLM Fabry-Perot
lasers in the 1.3 μm wavelength band. Single-mode fiber has a relatively small core
diameter of about 8 to 10 μm, which is a small multiple of the operating wavelength
range of the light signal. This forces all the energy in a light signal to travel in the
form of a single mode. Using single-mode fiber effectively eliminated intermodal
dispersion and enabled a dramatic increase in the bit rates and distances possible
between regenerators. These systems typically had regenerator spacings of about
40 km and operated at bit rates of a few hundred megabits per second. At this point,
the distance between regenerators was limited primarily by the fiber loss.

The next step in this evolution in the late 1980s was to deploy systems in the
1.55 μm wavelength window to take advantage of the lower loss in this window,
relative to the 1.3 μm window. This enabled longer spans between regenerators. At
this point, another impairment, namely, chromatic dispersion, started becoming a
limiting factor as far as increasing the bit rates was concerned. Chromatic dispersion
is another form of dispersion in optical fiber (we looked at intermodal dispersion
earlier). As we saw in Section 1.7, the energy in a light signal or pulse has a finite
bandwidth. Even in a single-mode fiber, the different frequency components of a pulse
propagate with different speeds. This is due to the fundamental physical properties
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of the glass. This effect again causes a smearing of the pulse at the output, just as with
intermodal dispersion. The wider the spectrum of the pulse, the more the smearing
due to chromatic dispersion. The chromatic dispersion in an optical fiber depends on
the wavelength of the signal. It turns out that without any special effort, the standard
silica-based optical fiber has essentially no chromatic dispersion in the 1.3 μm band,
but has significant dispersion in the 1.55 μm band. Thus chromatic dispersion was
not an issue in the earlier systems at 1.3 μm.

The high chromatic dispersion at 1.55 μm motivated the development of
dispersion-shifted fiber. Dispersion-shifted fiber is carefully designed to have zero
dispersion in the 1.55 μm wavelength window so that we need not worry about
chromatic dispersion in this window. However, by this time there was already a large
installed base of standard single-mode fiber deployed for which this solution could
not be applied. Some carriers, particularly NTT in Japan and MCI (now part of
Verizon Communications) in the United States, did deploy dispersion-shifted fiber.

At this time, researchers started looking for ways to overcome chromatic disper-
sion while still continuing to make use of standard fiber. The main technique that
came into play was to reduce the width of the spectrum of the transmitted pulse.
As we saw earlier, the wider the spectrum of the transmitted pulse, the greater the
smearing due to chromatic dispersion. The bandwidth of the transmitted pulse is at
least equal to its modulation bandwidth. On top of this, however, the bandwidth
may be determined entirely by the width of the spectrum of the transmitter used.
The MLM Fabry-Perot lasers, as we said earlier, emitted over a fairly wide spectrum
of several nanometers (or, equivalently, hundreds of gigahertz), which is much larger
than the modulation bandwidth of the signal itself. If we reduce the spectrum of the
transmitted pulse to something close to its modulation bandwidth, the penalty due
to chromatic dispersion is significantly reduced. This motivated the development of
a laser source with a narrow spectral width—the distributed-feedback (DFB) laser.
A DFB laser is an example of a single-longitudinal mode (SLM) laser. An SLM
laser emits a narrow single-wavelength signal in a single spectral line, in contrast
to MLM lasers whose spectrum consists of many spectral lines. This technological
breakthrough spurred further increases in the bit rate to more than 1 Gb/s.

1.8.3 Optical Amplifiers and WDM

The next major milestone in the evolution of optical fiber transmission systems was
the development of erbium-doped fiber amplifiers (EDFAs) in the late 1980s and early
1990s. The EDFA basically consists of a length of optical fiber, typically a few meters
to tens of meters, doped with the rare earth element erbium. The erbium atoms in the
fiber are pumped from their ground state to an excited state at a higher energy level
using a pump source. An incoming signal photon triggers these atoms to come down
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to their ground state. In the process, each atom emits a photon. Thus incoming signal
photons trigger the emission of additional photons, resulting in optical amplification.
As a result of a unique coincidence of nature, the difference in energy levels of the
atomic states of erbium line up with the 1.5 μm low-loss window in the optical fiber.
The pumping itself is done using a pump laser at a lower wavelength than the signal
because photons with a lower wavelength have higher energies and energy can be
transferred only from a photon of higher energy to that with a lower energy. The
EDFA concept was invented in the 1960s but did not become commercially viable
until reliable high-power semiconductor pump lasers became available in the late
1980s and early 1990s.

EDFAs spurred the deployment of a completely new generation of systems. A
major advantage of EDFAs is that they are capable of amplifying signals at many
wavelengths simultaneously. This provided another way of increasing the system
capacity: rather than increasing the bit rate, keep the bit rate the same and use more
than one wavelength; that is, use wavelength division multiplexing. EDFAs were
perhaps the single biggest catalyst aiding the deployment of WDM systems. The use
of WDM and EDFAs dramatically brought down the cost of long-haul transmission
systems and increased their capacity. At each regenerator location, a single optical
amplifier could replace an entire array of expensive regenerators, one per fiber.
This proved to be so compelling that almost every long-haul carrier has widely
deployed amplified WDM systems today. Moreover WDM provided the ability to
turn on capacity quickly, as opposed to the months to years it could take to deploy
new fiber. WDM systems with EDFAs were deployed starting in the mid-1990s and
are today achieving capacities over 1 Tb/s over a single fiber. At the same time,
transmission bit rates on a single channel have risen to 10 Gb/s. Among the earliest
WDM systems deployed were AT&T’s 4-wavelength long-haul system in 1995 and
IBM’s 20-wavelength MuxMaster metropolitan system in 1994.

With the advent of EDFAs, chromatic dispersion again reared its ugly head.
Instead of regenerating the signal every 40 to 80 km, signals were now transmitted
over much longer distances because of EDFAs, leading to significantly higher pulse
smearing due to chromatic dispersion. Again, researchers found several techniques to
deal with chromatic dispersion. The transmitted spectrum could be reduced further
by using an external device to turn the laser on and off (called external modulation),
instead of directly turning the laser on and off (called direct modulation). Using
external modulators along with DFB lasers and EDFAs allowed systems to achieve
distances of about 600 km at 2.5 Gb/s between regenerators over standard single-
mode fiber at 1.55 μm. This number is substantially less at 10 Gb/s.

The next logical invention was that of chromatic dispersion compensation tech-
niques. A variety of chromatic dispersion compensators were developed to compen-
sate for the dispersion introduced by the fiber, allowing the overall residual dispersion
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to be reduced to manageable limits. These techniques have enabled commercial sys-
tems to achieve distances of several thousand kilometers between regenerators at bit
rates as high as 10 Gb/s per channel.

At the same time, several other impairments that were second- or third-order
effects earlier began to emerge as first-order effects. Today, this list includes nonlinear
effects in fiber, the nonflat gain spectrum of EDFAs, and various polarization-related
effects. Several types of nonlinear effects occur in optical fiber. One of them is called
four-wave mixing (FWM). In FWM, three light signals at different wavelengths
interact in the fiber to create a fourth light signal at a wavelength that may overlap
with one of the light signals. As we can imagine, this signal interferes with the
actual data that is being transmitted on that wavelength. It turns out paradoxically
that the higher the chromatic dispersion, the lower the effect of fiber nonlinearities.
Chromatic dispersion causes the light signals at different wavelengths to propagate
at different speeds in the fiber. This in turn causes less overlap between these signals,
as the signals go in and out of phase with each other, reducing the effect of the FWM
nonlinearity.

The realization of this trade-off between chromatic dispersion and fiber nonlin-
earities stimulated the development of a variety of new types of single-mode fibers
to manage the interaction between these two effects. These fibers are tailored to pro-
vide less chromatic dispersion than conventional fiber but, at the same time, reduce
nonlinearities. We devote Chapter 5 to the study of these impairments and how they
can be overcome; we discuss the origin of many of these effects in Chapter 2.

Today we are seeing the development of high-capacity amplified terabits/second
WDM systems with hundreds of channels at 10 Gb/s, channel spacings as low as
50 GHz, and distances between electrical regenerators extending to a few thousand
kilometers. Systems operating at 40 Gb/s channel rates are in the research laborato-
ries, and no doubt we will see them become commercially available soon. Meanwhile,
recent experiments have achieved terabit/second capacities and stretched the distance
between regenerators to several thousand kilometers [Cai01, Bak01, VPM01], or
achieved total capacities of over 10 Tb/s [Fuk01, Big01] over shorter distances.

Table 1.2 shows the different bands available for transmission in single-mode
optical fiber. The early WDM systems used the C-band, primarily because that was
where EDFAs existed. Today we have EDFAs that work in the L-band, which allow
WDM systems to use both the C- and L-bands. We are also seeing the use of other
types of amplification (such as Raman amplification, a topic that we will cover in
Chapter 3) that complement EDFAs and hold the promise of opening up other fiber
bands such as the S-band and the U-band for WDM applications. Meanwhile, the
development of new fiber types is also opening up a new window in the so-called
E-band. This band was previously not feasible due to the high fiber loss in this
wavelength range. New fibers have now been developed that reduce the loss in this
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Table 1.2 Different wavelength bands in optical fiber. The
ranges are approximate and have not yet been standardized.

Band Descriptor Wavelength range (nm)

O-band Original 1260 to 1360
E-band Extended 1360 to 1460
S-band Short 1460 to 1530
C-band Conventional 1530 to 1565
L-band Long 1565 to 1625
U-band Ultra-long 1625 to 1675

range. However, there are still no good amplifiers in this band, so the E-band is useful
mostly for short-distance applications.

1.8.4 Beyond Transmission Links to Networks

The late 1980s also witnessed the emergence of a variety of first-generation op-
tical networks. In the data communications world, we saw the deployment of
metropolitan-area networks, such as the 100 Mb/s fiber distributed data interface
(FDDI), and networks to interconnect mainframe computers, such as the 200 Mb/s
enterprise serial connection (ESCON). Today we are seeing the proliferation of stor-
age networks using the Fibre Channel standard, which has data rates in the multiples
of gigabits per second, for similar applications. The telecommunications world saw
the beginning of the standardization and mass deployment of SONET in North
America and the similar SDH network in Europe and Japan. All these networks are
now widely deployed. Today it is common to have high-speed optical interfaces on
a variety of other devices such as IP routers and Ethernet switches.

As these first-generation networks were being deployed in the late 1980s and
early 1990s, people started thinking about innovative network architectures that
would use fiber for more than just transmission. Most of the early experimental
efforts were focused on optical networks for local-area network applications, but
the high cost of the technology for these applications has hindered the commercial
viability of such networks. Research activity on optical packet-switched networks
and local-area optical networks continues today. Meanwhile, wavelength-routing
networks became a major focus area for several researchers in the early 1990s as
people realized the benefits of having an optical layer. Optical add/drop multiplexers
and crossconnects are now available as commercial products and are beginning to be
introduced into telecommunications networks, stimulated by the fact that switching
and routing high-capacity connections is much more economical at the optical layer
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than in the electrical layer. At the same time, the optical layer is evolving to provide
additional functionality, including the ability to set up and take down lightpaths
across the network in a dynamic fashion, and the ability to reroute lightpaths rapidly
in case of a failure in the network. A combination of these factors is resulting in the
introduction of intelligent optical ring and mesh networks, which provide lightpaths
on demand and incorporate built-in restoration capabilities to deal with network
failures.

There was also a major effort to promote the concept of fiber to the home (FTTH)
and its many variants, such as fiber to the curb (FTTC), in the late 1980s and early
1990s. The problems with this concept were the high infrastructure cost and the
questionable return on investment resulting from customers’ reluctance to pay for
a bevy of new services such as video to the home. However, telecommunications
deregulation, coupled with the increasing demand for broadband services such as
Internet access and video on demand, is accelerating the deployment of such net-
works by the major operators today. Both telecommunications carriers and cable
operators are deploying fiber deeper into the access network and closer to the end
user. Large businesses requiring very high capacities are being served by fiber-based
SONET/SDH or Ethernet networks, while passive optical networks are emerging as
possible candidates to provide high-speed services to homes and small businesses.
This is the subject of Chapter 11.

Summary

We started this chapter by describing the changing face of the telecom industry—the
large increase in traffic demands, the increase in data traffic relative to voice traffic,
the deregulated telecom industry, the resulting emergence of a new set of carriers as
well as equipment suppliers to these carriers, the need for new and flexible types of
services, and an infrastructure to support all of these.

We described two generations of optical networks in this chapter: first-generation
networks and second-generation networks. First-generation networks use optical
fiber as a replacement for copper cable to get higher capacities. Second-generation
networks provide circuit-switched lightpaths by routing and switching wavelengths
inside the network. The key elements that enable this are optical line terminals
(OLTs), optical add/drop multiplexers (OADMs), and optical crossconnects (OXCs).
Optical packet switching may develop over time but faces several technological
hurdles.

We saw that there were two complementary approaches to increasing transmis-
sion capacity: using more wavelengths on the fiber (WDM) and increasing the bit
rate (TDM). We also traced the historical evolution of optical fiber transmission and
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networking. It is significant that we are still far away from hitting the fundamental
limits of capacity in optical fiber. Although there are several roadblocks along the
way, we will no doubt see the invention of new techniques that enable progressively
higher and higher capacities, and the deployment of optical networks with increasing
functionality.

Further Reading

The communications revolution is receiving a lot of coverage across the board
these days from the business press. A number of journal and magazine special
issues have been focused on optical networks and their enabling technologies
[ACHG+08, KLW06, GLM+00, CSH00, DYJ00, DL00, Alf99, HSS98, CHK+96,
FGO+96, HD97, Bar96, NO94, KLHN93, CNW90, Pru89, Bra89].

Several conferences cover optical networks. The main ones are the Optical Fiber
Communication Conference (OFC), Supercomm, and the National Fiber-Optic En-
gineers’ Conference. Other conferences such as Next-Generation Networks (NGN),
Networld-Interop, European Conference on Optical Communication (ECOC), IEEE
Infocom, and the IEEE’s International Conference on Communication (ICC) also
cover optical networks. Archival journals such as the IEEE’s Journal of Lightwave
Technology, Journal of Selected Areas in Communication, Journal of Quantum
Electronics, Journal of Selected Topics in Quantum Electronics, Transactions on
Networking, and Photonics Technology Letters, and magazines such as the IEEE
Communications Magazine provide good coverage of this subject.

There are several excellent books devoted to fiber optic transmission and compo-
nents, ranging from fairly basic [Hec98, ST91] to more advanced [KK97a, KK97b,
Agr97, Agr95, MK88, Lin89]. The 1993 book by Green [Gre93] provides specific
coverage of WDM components, transmission, and networking aspects.

The historical evolution of transmission systems described here is also covered in
a few other places in more detail. [Hec99] is an easily readable book devoted to the
early history of fiber optics. [Wil00] is a special issue consisting of papers by many
of the optical pioneers providing overviews and historical perspectives of various
aspects of lasers, fiber optics, and other component and transmission technologies.
[AKW00, Gla00, BKLW00] provide excellent, though Bell Labs-centric, overviews
of the historical evolution of optical fiber technology and systems leading up to the
current generation of WDM technology and systems. See also [MK88, Lin89].

Kao and Hockham [KH66] were the first to propose using low-loss glass fiber for
optical communication. The processes used to fabricate low-loss fiber today were first
reported in [KKM70] and refined in [Mac74]. [Sta83, CS83, MT83, Ish83] describe
some of the early terrestrial optical fiber transmission systems. [RT84] describes one
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of the early undersea optical fiber transmission systems. See also [KM98] for a more
recent overview.

Experiments reporting more than 1 Tb/s transmission over a single fiber were
first reported at the Optical Fiber Communication Conference in 1996, and the
numbers are being improved upon constantly. See, for example, [CT98, Ona96,
Gna96, Mor96, Yan96]. Related work has focused on (1) transmitting terabits-per-
second aggregate traffic across transoceanic distances with individual channel data
rates at 10 or 20 Gb/s [Cai01, Bak01, VPM01], or 40 Gb/s channel rates over shorter
distances [Zhu01], or (2) obtaining over 10 Tb/s transmission capacity using 40 Gb/s
channel rates over a few hundred kilometers [Fuk01, Big01].

The rate of network traffic growth has been reported by a number of sources
over the years. A Web site that has estimates as well as references to other
sources is the Minnesota Internet Traffic Studies (MINTS), which can be found
at www.dtc.umn.edu/mints/.

Finally, we did not cover standards in this chapter but we will do so in Chapters 6,
8, and 9. The various standards bodies working on optical networking include the In-
ternational Telecommunications Union (ITU), the American National Standards In-
stitute (ANSI), the Optical Internetworking Forum (OIF), Internet Engineering Task
Force (IETF), the Institute of Electrical and Electronic Engineers (IEEE) and Telcordia
Technologies. Appendix C provides a list of relevant standards documents.
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2
c h a p t e r

Propagation of Signals in
Optical Fiber

O ptical fiber is a remarkable communication medium compared to other
media such as copper or free space. An optical fiber provides low-loss trans-

mission over an enormous frequency range of at least 25 THz—even higher with
special fibers—which is orders of magnitude more than the bandwidth available
in copper cables or any other transmission medium. For example, this bandwidth is
sufficient to transmit hundreds of millions of phone calls simultaneously, carry about
a million high definition TV (HDTV) video streams, The low-loss property allows
signals to be transmitted over long distances at high speeds before they need to be
amplified or regenerated. It is because of these two properties of low loss and high
bandwidth that optical fiber communication systems are so widely used today.

Still, the fiber itself does impose physical limitations that must be taken into
account in network design. The goal of this chapter is to provide an understanding of
the three phenomena that determine fiber transmission limits: loss, nonlinear effects,
and dispersion. Dispersion is the phenomenon whereby different components of a
signal travel at different velocities. In most cases, dispersion limits the data rate of
a digital signal by spreading signal pulses over time. In Chapter 5 the interaction of
loss, nonlinearity, and dispersion in designing advanced systems will be discussed.

We start this chapter by discussing the basics of light propagation in optical fiber,
starting with attenuation. Then we study propagation using simple geometrical op-
tics model as well as the more general wave theory model based on solving Maxwell’s
equations. These models are used to understand dispersion, and in particular inter-
modal, polarization-mode, and chromatic dispersions, as well as nonlinearity. We
will look at the different types of fibers that have been developed to minimize the
effects of fiber impairments.

47
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Finally, the phemomena discussed in this chapter also apply to various compo-
nents. Some of these components are designed not to minimize effect on the prop-
agating signal but rather to produce some desired interaction. This will provide the
underpinnings for understanding the physical limitations of components described
in Chapter 3.

2.1 Loss and Bandwidth Windows

The loss incurred by propagating down a fiber can be modeled easily as follows: the
output power Pout at the end of a fiber of length L is related to the input power Pin
by

Pout = Pine
−αL.

Here the parameter α represents the fiber attenuation. It is customary to express the
loss in units of dB/km; thus a loss of αdB dB/km means that the ratio Pout/Pin for
L = 1 km satisfies

10 log10
Pout

Pin
= −αdB

or

αdB = (10 log10 e)α ≈ 4.343α.

The two main loss mechanisms in an optical fiber are material absorption and
Rayleigh scattering. Material absorption includes absorption by silica as well as the
impurities in the fiber. The material absorption of pure silica is negligible in the entire
0.8–1.6 μm band that is used for optical communication systems. The reduction of
the loss due to material absorption by the impurities in silica has been very important
in making optical fiber the remarkable communication medium that it is today. The
loss has now been reduced to negligible levels at the wavelengths of interest for
optical communication—so much so that the loss due to Rayleigh scattering is the
dominant component in today’s fibers in all three wavelength bands used for optical
communication: 0.8 μm, 1.3 μm, and 1.55 μm. Figure 2.1 shows the attenuation
loss in silica as a function of wavelength. We see that the loss has local minima at
these three wavelength bands with typical losses of 2.5, 0.4, and 0.25 dB/km. (In a
typical optical communication system, a signal can undergo a loss of about 20–30 dB
before it needs to be amplified or regenerated. At 0.25 dB/km, this corresponds to a
distance of 80–120 km.) The attenuation peaks separating these bands are primarily
due to absorption by the residual water vapor in the silica fiber.
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Figure 2.1 Attenuation loss in silica as a function of wavelength. (After [Agr97].)

The bandwidth can be measured in terms of either wavelength �λ or frequency
�f . These are related by the equation

�f ≈ c

λ2 �λ.

This equation can be derived by differentiating the relation f = c/λ with respect to λ.
Consider the long wavelength 1.3 and 1.5 μm bands, which are the primary bands
used today for optical communication. The usable bandwidth of optical fiber in
these bands, which we can take as the bandwidth over which the loss in decibels per
kilometer is within a factor of 2 of its minimum, is approximately 80 nm at 1.3 μm
and 180 nm at 1.55 μm. In terms of optical frequency, these bandwidths correspond
to about 35,000 GHz! This is an enormous amount of bandwidth indeed, considering
that the bit rate needed for most user applications today is no more than a few tens
of megabits per second.

The usable bandwidth of fiber in most of today’s long-distance networks is
limited by the bandwidth of the erbium-doped fiber amplifiers (see Section 3.4) that
are widely deployed, rather than by the bandwidth of the silica fiber. Based on the
availability of amplifiers, the low-loss band at 1.55 μm is divided into three regions,
as shown in Figure 2.2. The middle band from 1530 to 1565 nm is the conventional
or C-band where WDM systems have operated using conventional erbium-doped
fiber amplifiers. The band from 1565 to 1625 nm, which consists of wavelengths
longer than those in the C-band, is called the L-band and is today being used in
high-capacity WDM systems, with the development of gain-shifted erbium-doped
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Figure 2.2 The three bands, S-band, C-band, and L-band, based on amplifier availabil-
ity, within the low-loss region around 1.55 μm in silica fiber. (After [Kan99].)

amplifiers (see Section 3.4) that provide amplification in this band. The band below
1530 nm, consisting of wavelengths shorter than those in the C-band, is called the
S-band. Fiber Raman amplifiers (Section 3.4.4) provide amplification in this band.

Lucent introduced the AllWave single-mode optical fiber, which virtually elimi-
nates the absorption peaks due to water vapor. This fiber has an even larger band-
width, and is useful where there are no erbium-doped fiber amplifiers.

As we saw earlier in this section, the dominant loss mechanism in optical fiber
is Rayleigh scattering. This mechanism arises because of fluctuations in the density
of the medium (silica) at the microscopic level. We refer to [BW99] for a detailed
description of the scattering mechanism. The loss due to Rayleigh scattering is a
fundamental one and decreases with increasing wavelength. The loss coefficient αR

due to Rayleigh scattering at a wavelength λ can be written as αR = A/λ4, where
A is called the Rayleigh scattering coefficient. Note that the Rayleigh scattering loss
decreases rapidly with increasing wavelength due to the λ−4 dependence. Glasses with
substantially lower Rayleigh attenuation coefficients at 1.55 μm are not known. In
order to reduce the fiber loss below the current best value of about 0.2 dB/km, one
possibility is to operate at higher wavelengths, so as to reduce the loss due to Rayleigh
scattering. However, at such higher wavelengths, the material absorption of silica is
quite significant. It may be possible to use other materials such as fluorozirconate
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(ZiFr4) in order to realize the low loss that is potentially possible by operating at
these wavelengths [KK97, p. 69].

2.1.1 Bending Loss

Optical fibers need to be bent for various reasons both when deployed in the field
and particularly within equipment. Bending leads to “leakage” of power out of the
fiber core into the cladding, resulting in additional loss. A bend is characterized by
the bend radius—the radius of curvature of the bend (radius of the circle whose
arc approximates the bend). The “tighter” the bend, the smaller the bend radius
and the larger the loss. The bend radius must be of the order of a few centimeters
in order to keep the bending loss low. Also, the bending loss at 1550 nm is higher
than at 1310 nm. The ITU-T standards specify that the additional loss at 1550 nm
due to bending must be in the range 0.5–1 dB, depending on the fiber type, for 100
turns of fiber wound with a radius of 37.5 mm. Thus a bend with a radius of 4 cm
results in a bending loss of < 0.01 dB. However, the loss increases rapidly as the
bend radius is reduced, so that care must be taken to avoid sharp bends, especially
within equipment.

2.2 Intermodal Dispersion

An optical fiber consists of a cylindrical core surrounded by a cladding. The cross
section of an optical fiber is shown in Figure 2.3. Both the core and the cladding
are made primarily of silica (SiO2), which has a refractive index of approximately
1.45. The refractive index of a material is the ratio of the speed of light in a vacuum
to the speed of light in that material. During the manufacturing of the fiber, certain
impurities (or dopants) are introduced in the core and/or the cladding so that the
refractive index is slightly higher in the core than in the cladding. Materials such as
germanium and phosphorus increase the refractive index of silica and are used as
dopants for the core, whereas materials such as boron and fluorine that decrease the
refractive index of silica are used as dopants for the cladding. As we will see, the
resulting higher refractive index of the core enables light to be guided by the core,
and thus propagate through the fiber.

Multimode and Single-Mode Fiber

Just as there are different grades of copper cables, there are many grades of optical
fiber. The most fundamental divide is between single-mode and multimode fiber.
The difference between the two is so profound it is often better to think of them
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Figure 2.3 Cross section and longitudinal section of an optical fiber showing the core
and cladding regions. a denotes the radius of the fiber core.

as completely different media types, almost as different as copper and fiber. The
majority of this book is concerned with single-mode fiber because that is the medium
for networks of any length above a few hundred meters. However, multimode fiber
will be discussed in this section.

Typical multimode fiber has a core much larger than a wavelength of light. As
a result, a simple geometric optics view can be used to describe its overall behavior,
which we present in Section 2.2.1. Multimode fiber carries hundreds of modes, which
can be thought of as independently propagating paths of the optical signal. Signals
on different modes have different velocities. This creates intermodal dispersion. In
most situations, dispersion leads to broadening of signal pulses, which correspond
to data bits. In a communication system, this leads to the overlap of pulses repre-
senting adjacent bits, distorting the signal. This phenomenon is called Inter-Symbol
Interference (ISI).

Single-mode fiber has a core on the same scale as a wavelength that restricts itself
to a single “fundamental” spatial core. This eliminates intermodal dispersion. Hence,
single-mode fiber is used for the highest bandwidth and longest distance transmission.
However, since its core is on the same scale as a wavelength, a true electromagnetic
wave treatment as presented in Section 2.3.1 is necessary to understand its behavior.

2.2.1 Geometrical Optics Approach

We can obtain a simplified understanding of light propagation in optical fiber using
the so-called ray theory or geometrical optics approach. This approach is valid when
the fiber that is used has a core radius a that is much larger than the operating wave-
length λ. These are multimode fibers, and first-generation optical communication
links were built using such fibers with a in the range of 25–100 μm and λ around
0.85 μm.
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Figure 2.4 Reflection and refraction of light rays at the interface between two media.

In the geometrical optics approach, light can be thought of as consisting of a
number of “rays” propagating in straight lines within a material (or medium) and
getting reflected and/or refracted at the interfaces between two materials. Figure 2.4
shows the interface between two media of refractive index n1 and n2. A light ray
from medium 1 is incident on the interface of medium 1 with medium 2. The angle
of incidence is the angle between the incident ray and the normal to the interface
between the two media and is denoted by θ1. Part of the energy is reflected into
medium 1 as a reflected ray, and the remainder (neglecting absorption) passes into
medium 2 as a refracted ray. The angle of reflection θ1r is the angle between the
reflected ray and the normal to the interface; similarly, the angle of refraction θ2 is
the angle between the refracted ray and the normal.

The laws of geometrical optics state that

θ1r = θ1

and

n1 sin θ1 = n2 sin θ2. (2.1)

Equation (2.1) is known as Snell’s law.
As the angle of incidence θ1 increases, the angle of refraction θ2 also increases.

If n1 > n2, there comes a point when θ2 = π/2 radians. This happens when θ1 =
sin−1 n2/n1. For larger values of θ1, there is no refracted ray, and all the energy from
the incident ray is reflected. This phenomenon is called total internal reflection. The
smallest angle of incidence for which we get total internal reflection is called the
critical angle and equals sin−1 n2/n1.

Simply stated, from the geometrical optics viewpoint, light propagates in optical
fiber due to a series of total internal reflections that occur at the core-cladding
interface. This is depicted in Figure 2.5. In this figure, the coupling of light from the
medium outside (taken to be air with refractive index n0) into the fiber is also shown.
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Figure 2.5 Propagation of light rays in optical fiber by total internal reflection.

It can be shown using Snell’s law (see Problem 2.1) that only those light rays that are
incident at an angle

θ0 < θmax
0 = sin−1

√
n2

1 − n2
2

n0
(2.2)

at the air-core interface will undergo total internal reflection at the core-cladding
interface and will thus propagate. Such rays are called guided rays, and θmax

0 is called
the acceptance angle. The refractive index difference n1 − n2 is usually small, and
it is convenient to denote the fractional refractive index difference (n1 − n2)/n1 by

�. For small �, θmax
0 ≈ sin−1 n1

√
2�

n0
. As an example, if � = 0.01, which is a typical

value for (multimode) fiber, and n1 = 1.5, a typical value for silica, assuming we are
coupling from air, so that n0 = 1, we obtain θmax

0 ≈ 12◦.

2.2.2 Bit Rate–Distance Limitation

Owing to the different lengths of the paths taken by different guided rays, the energy
in a narrow (in time) pulse at the input of the fiber will be spread out over a larger
time interval at the output of the fiber. A measure of this time spread, which is called
intermodal dispersion, is obtained by taking the difference in time, δT , between the
fastest and the slowest guided rays. Later we will see that by suitably designing the
fiber, intermodal dispersion can be significantly reduced (graded-index fiber) and
even eliminated (single-mode fiber).

We now derive an approximate measure of the time spread due to intermodal
dispersion. Consider a fiber of length L. The fastest guided ray is the one that travels
along the center of the core and takes a time Tf = Ln1/c to traverse the fiber, c being
the speed of light in a vacuum. The slowest guided ray is incident at the critical angle
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on the core-cladding interface, and it can be shown that it takes a time Ts = Ln2
1/cn2

to propagate through the fiber. Thus

δT = Ts − Tf = L

c

n2
1

n2
�.

How large can δT be before it begins to matter? That depends on the bit rate
used. A rough measure of the delay variation δT that can be tolerated at a bit rate
of B b/s is half the bit period 1/2B s. Thus intermodal dispersion sets the following
limit:

δT = L

c

n2
1

n2
� <

1
2B

. (2.3)

The capacity of an optical communication system is frequently measured in terms
of the bit rate–distance product. If a system is capable of transmitting x Mb/s over
a distance of y km, it is said to have a bit rate–distance product of xy (Mb/s)-km.
The reason for doing this is that usually the same system is capable of transmitting
x ′ Mb/s over y ′ km providing x ′y ′ < xy; thus only the product of the bit rate and
the distance is constrained. (This is true for simple systems that are limited by loss
and/or intermodal dispersion, but is no longer true for systems that are limited by
chromatic dispersion and nonlinear effects in the fiber.) From (2.3), the intermodal
dispersion constrains the bit rate–distance product of an optical communication link
to

BL <
1
2

n2

n2
1

c

�
.

For example, if � = 0.01 and n1 = 1.5(≈ n2), we get BL < 10 (Mb/s)-km. This limit
is plotted in Figure 2.6.

Note that θmax
0 increases with increasing �, which causes the limit on the bit

rate–distance product to decrease with increasing �. The value of � is typically
chosen to be less than 1% so as to minimize the effects of intermodal dispersion,
and since θmax

0 is consequently small, lenses or other suitable mechanisms are used
to couple light into the fiber.

2.2.3 Controlling Intermodal Dispersion: Graded-Index
Multimode Fiber

Thus far, we have assumed that the fiber is a step-index fiber since the variation of the
refractive index along the fiber cross section can be represented as a function with a
step at the core-cladding interface. In practice, however, multimode fibers have more
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Figure 2.6 Limit on the bit rate–distance product due to intermodal dispersion in a
step-index and a graded-index fiber. In both cases, � = 0.01 and n1 = 1.5.

sophisticated graded-index profiles designed to reduce the intermodal dispersion.
The refractive index decreases gradually, or continuously, from its maximum value
at the center of the core to the value in the cladding at the core-cladding interface.

This has the effect of reducing δT because the rays traversing the shortest path
through the center of the core encounter the highest refractive index and travel
slowest, whereas rays traversing longer paths encounter regions of lower refractive
index and travel faster. For the optimum graded-index profile (which is very nearly
a quadratic decrease of the refractive index in the core from its maximum value at
the center to its value in the cladding), it can be shown that δT , the time difference
between the fastest and slowest rays to travel a length L of the fiber, is given by

δT = L

c

n1�
2

8
.

Assuming that the condition δT < 1/2B, where B is the bit rate, must be satisfied,
we get the following limit on the bit rate–distance product of a communication system
employing graded-index fiber:

BL <
4c

n1�2 .

For example, if � = 0.01 and n1 = 1.5, we get BL < 8 (Gb/s)-km. This limit is also
plotted in Figure 2.6 along with the limit for step-index fiber.
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Table 2.1 A comparison of multimode fiber. Effective modal bandwidth (EMB) and overfilled
launch bandwidth (OFLBW) correspond to laser and LED sources, respectively.

Fiber Also Known As Core EMB– OFLBW–
Type Diameter Distance Distance

(Microns) at 850 nm at 850/1300 nm
(MHz-km) (MHz-km)

OM1 FDDI Grade 62.5 NotApplicable 200/500
OM2 50.0 NotApplicable 500/500
OM3 Laser Optimized 50.0 2000 1500/500
OM4 Laser Optimized 50.0 4700 3500/500

2.2.4 Multimode Fiber in Practice

Since the bit rate-distance product is the limitation, each doubling of the bit rate
will result in a halving of the transmission reach. Multimode fiber continues to be
used heavily in data centers and corporate local-area networks (LANs). Much effort
has been put into engineering successively higher speed transmitters and receivers to
work over the installed base of older multimode fibers while maintaining the same
maximum distance.

The most commonly found versions of multimode fiber as designated by the
International Standards Organization (ISO) are shown in Table 2.1. They represent
successive generations of products. OM1 was widely installed in the mid-1990s,
and OM3 is the recommended installation today. (Note: other variations such as 50
micron OM1 are allowed by the standards.) Also shown is OM4 fiber, which at the
time of this writing is expected to be standardized in 2009.

The bandwidth–distances, similar to bit rate–distances, are shown in the table.
As the bandwidth is limited by differences in propagation between modes, the actual
effective bandwidth in practice depends on what modes are launched. This largely
depends on whether transmitters are light emitting diodes (LEDs) or lasers, as we
explain next.

The multimode fiber technology roadmap is intertwined with transmitter tech-
nology progress. In the mid-1990s, multimode fiber was primarily for use with LED
transmitters at 850 nm or 1300 nm. In order to specify the fiber, the bandwidth is
measured under a controlled overfilled launch (OFL), which is essentially a uniform
excitation of all modes in the fiber. This represents the emission characteristics of
LEDs.

LEDs were limited to bit rates of 622 Mb/s and below. The majority of links today
are 1 Gb/s to 10 Gb/s, using laser transmitters, with bit rates of 40 Gb/s and 100 Gb/s
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planned for the future. An important type of laser used for these applications is the
vertical cavity surface-emitting laser (VCSEL; see Subsection 3.5.1). These lasers
transmit at 850 nm and up to 10 Gb/s. VCSELs at 1300 nm have been demonstrated
but are not in wide use commercially. A different launch condition, called the effective
laser launch, in which only a small subset of modes are excited, better represents
what happens when laser transmitters are used. This launch condition is used to
specify OM3 and OM4 fibers, where the bandwidth is referred to as the effective
modal bandwidth (EMB). The uses of lasers instead of LEDs results in a higher
bandwidth–distance product, as can be seen from Table 2.1. In practice, variations
in alignment between laser and fiber, and variations in the lasers themselves, cause
different modes to be excited, complicating the assurance of effective bandwidth.
The solution has been to improve the quality of OM3 and OM4 fiber, particularly
near the center of core, such that the dispersion is kept sufficiently small regardless
of which subset of modes are excited.

Parallel Ribbon Fiber

Although most fiber links are serial high-speed (and unidirectional) connections,
there do exist parallel fiber connections as well. A typical parallel connection uses a
standard 12-wide ribbon of fibers for a distance up to tens or hundreds of meters. The
fibers are individually protected by a plastic jacket layer before being assembled side
by side, where the spacing is 250 microns. The most common usage is multimode,
where VCSEL arrays can be used as transmitters. Single-mode ribbon fiber exists
as well. Connection specifications for parallel ribbon fiber are developed through
multisource agreements (MSAs) among vendors. Example MSAs are SNAP12 and
QSFP (Quad Small Form Factor Pluggable).

2.3 Optical Fiber as a Waveguide

In order to completely overcome intermodal dispersion, you must use fibers whose
core radius is appreciably smaller and of the order of the operating wavelength. Such
fibers have only one mode, ray, or path in which light can propagate. These fibers
are called single-mode fibers.

A useful way to conceptualize propagation in a single-mode fiber is to treat the
light as a single beam. The following physical explanation for the propagation of light
in single-mode fiber is based on [Neu88]. In any medium with a constant refractive
index, a narrow light beam tends to spread due to a phenomenon called diffraction.
Thus, in such a medium, the beam width will increase as light propagates. Note that
this diffraction phenomenon is what makes the geometric optical approach invalid
for single-mode fibers, that is, an optical signal cannot be modeled as a ray.
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The diffraction effect can be counteracted by focusing the light with a lens. To
illustrate this concept, imagine a chain of convex lenses that bring the beam back to
size periodically. The beam center travels slightly slower than the beam periphery so
that the medium effectively provides continuous focusing of the light to offset the
spreading effect of diffraction. The first experimental optical waveguides were con-
structed in exactly such a manner. Now imagine spacing the lenses closer and closer
until the effect is continuous. In this limit, you would have a continuous inhomoge-
neous medium in which the refractive index near the beam center is appropriately
larger than the refractive index at the beam periphery.

This allows the beam to be guided in the medium and go long distances with
low loss, which would not be the case if the beam were allowed to spread out.
A step-index optical fiber is an example of such an inhomogeneous medium since
the refractive index in the core (beam center) is larger than that in the cladding.
Therefore, step-index optical fiber is an optical waveguide. Note that single-mode
fiber is a special case of this type of fiber.

In the following sections, we will provide a description of the propagation of
light in a single-mode fibers as a waveguide. This requires using the wave theory
approach. The wave theory is more general and is applicable for all values of the
fiber radius. It will be used to show that Maxwell’s equations solved for a fiber have
discrete solutions, which will be referred to as fiber modes. These fiber modes are
the source of intermodal dispersion. We will also describe how the equations lead
to two polarization modes, which in turn can lead to polarization-mode dispersion
(PMD).

The wave theory explains the physics of how optical signals propagate through
fiber. It will help us gain an understanding of two phenomena that are important
in the design of fiber optic communication systems, chromatic dispersion and fiber
nonlinearities, which are discussed in Sections 2.4 and 2.5, respectively.

2.3.1 Wave Theory Approach

Light is an electromagnetic wave, and its propagation in any medium is governed by
Maxwell’s equations. These equations are stated in Appendix D. The propagation
of light can be described by specifying the evolution of the associated electric and
magnetic field vectors in space and time, denoted by E(r, t) and H(r, t), respectively.
Here r denotes the position vector and t denotes time. Sometimes it will be more con-
venient to deal with the Fourier transforms of these vectors. The Fourier transform
of E is defined as

Ẽ(r, ω) =
∫ ∞

−∞
E(r, t) exp(iωt) dt. (2.4)
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The Fourier transform of H and other vectors that we will encounter later are defined
similarly. Note that even when E(r, t) is real, Ẽ(r, ω) can be complex. It turns out
to be quite convenient, in many cases, to allow E(r, t) to be complex valued as well.
However, it is understood that we should consider only the real part of the solutions
obtained.

The electrons in an atom are negatively charged, and the nucleus carries a positive
charge. Thus when an electric field is applied to a material such as silica, the forces
experienced by the nuclei and the electrons are in opposite directions. These forces
result in the atoms being polarized or distorted. The induced electric polarization of
the material, or dielectric polarization, can be described by a vector P, which depends
both on the material properties and the applied field. The dielectric polarization can
be viewed as the response of the medium to the applied electric field. We will shortly
discuss the relationship between P and E in detail. It is convenient to define another
vector D called the electric flux density, which is simply related to the electric field E
and dielectric polarization P by

D = ε0E+ P, (2.5)

where ε0 is a constant called the permittivity of vacuum. The flux density in a vacuum
is simply ε0E. The magnetic polarization M and the magnetic flux density B can be
defined in an analogous fashion as

B = μ0(H+M). (2.6)

However, since silica is a nonmagnetic material, B = μ0H, where μ0 is a constant
called the permeability of vacuum. Maxwell’s equations take into account the effect
of material properties on the propagation of electromagnetic waves, since they not
only involve E and H but also the flux densities D and the magnetic flux density B.

The relationship between P and E in optical fiber due to the nature of silica is the
origin of two important effects related to the propagation of light in fiber, namely,
dispersion and nonlinearities. These two effects set limits on the performance of
optical communication systems today. We will examine the origin of these effects in
this chapter. Methods of dealing with these effects in optical communication systems
will be discussed in Chapter 5.

The relationship between the vectors P and E depends on the nature of the
medium. Next, we discuss five characteristics of a medium and their effect on the
relationship between the dielectric polarization P in the medium and the applied
electric field E.

Locality of Response. In a medium whose response to the applied electric field is
local, P(r) at r = r1 depends only on E(r1). The values of E(r) for r �= r1
have no effect on P(r1). This property holds to a good degree of approximation
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for silica fibers in the 0.5–2 μm wavelength range that is of interest in optical
communication systems.

Isotropy. An isotropic medium is one whose electromagnetic properties such as the
refractive index are the same in all directions. In an isotropic medium, E and P are
vectors with the same orientation. Silica is an isotropic medium, and a perfectly
cylindrical optical fiber is isotropic in the transverse plane. However, this is not
exactly true if the cylindrical symmetry of fiber is destroyed. A medium whose re-
fractive indices along two different directions, for example, the x and y axes in an
appropriate coordinate system, are different is said to birefringent. Birefringence
can arise due to the geometry of the medium or due to the intrinsic property
of the material. An optical fiber that does not possess cylindrical symmetry is
therefore said to be geometrically birefringent. Birefringence of materials such as
lithium niobate is exploited in designing certain components such as modulators,
isolators, and tunable filters. We will discuss these components in Chapter 3. A
bent fiber is also not an isotropic medium. Bending leads to additional loss, and
we discuss this in Section 2.1.

Linearity. In a linear, isotropic medium,

P(r, t) = ε0

∫ t

−∞
χ(r, t − t ′)E(r, t ′) dt ′, (2.7)

where χ is called the susceptibility, or more accurately, linear susceptibility, of
the medium (silica). Thus the induced dielectric polarization is obtained by con-
volving the applied electric field with (ε0 times) the susceptibility of the medium.
If P̃ and χ̃ denote the Fourier transforms of P and χ , respectively, (2.7) can be
written in terms of Fourier transforms as

P̃(r, ω) = ε0χ̃(r, ω)Ẽ(r, ω). (2.8)

Electrical engineers will note that in this linear case, the dielectric polarization
can be viewed as the output of a linear system with impulse response ε0χ(r, t),
or transfer function ε0χ̃(r, ω), and input E(r, t) (or Ẽ(r, ω)). It is important to
note that the value of P at time t depends not only on the value of E at time
t but also on the values of E before time t. Thus the response of the medium
to the applied electric field is not instantaneous. (In other words, χ̃(r, ω) is not
independent of ω.) This is the origin of an important type of dispersion known
as chromatic dispersion, which sets a fundamental limit on the performance
of optical communication systems. If the medium response is instantaneous so
that the susceptibility (impulse response) is a Dirac delta function, its Fourier
transform would be a constant, independent of ω, and chromatic dispersion
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would vanish. Thus the origin of chromatic dispersion lies in the delayed response
of the dielectric polarization in the silica medium to the applied electric field.

This linear relationship between P and E does not hold exactly for silica but
is a good approximation at moderate signal powers and bit rates. The effects of
nonlinearities on the propagation of light will be discussed in Section 2.5.

Homogeneity. A homogeneous medium has the same electromagnetic properties at
all points within it. In such a medium, χ , and hence χ̃ , are independent of
the position vector r, and we can write χ(t) for χ(r, t). Whereas silica is a
homogeneous medium, optical fiber is not, since the refractive indices in the
core and cladding are different. However, individually, the core and cladding
regions in a step-index fiber are homogeneous. The core of a graded-index fiber
is inhomogeneous. A discussion of the propagation of light in graded-index fiber
is beyond the scope of this book.

Losslessness. Although silica fiber is certainly not lossless, the loss is negligible and
can be assumed to be zero in the discussion of propagation modes. These modes
would not change significantly if the nonzero loss of silica fiber were included in
their derivation.

In this section, we assume that the core and the cladding regions of the silica
fiber are locally responsive, isotropic, linear, homogeneous, and lossless. These as-
sumptions are equivalent to assuming the appropriate properties for P, E, and χ in
the fiber according to the preceding discussion.

Recall that the refractive index of a material n is the ratio of the speed of light in
a vacuum to the speed of light in that material. It is related to the susceptibility as

n2(ω) = 1+ χ̃(ω). (2.9)

Since the susceptibility χ̃ is a function of the angular frequency ω, so is the refractive
index. Hence we have written n(ω) for n in (2.9). This dependence of the refractive
index on frequency is the origin of chromatic dispersion in optical fibers as we noted.
For optical fibers, the value of χ̃ ≈ 1.25, and the refractive index n ≈ 1.5.

With these assumptions, starting from Maxwell’s equations, it can be shown
that the following wave equations hold for Ẽ and H̃. These equations are derived in
Appendix D.

∇2Ẽ+ ω2n2(ω)

c2 Ẽ = 0 (2.10)

∇2H̃+ ω2n2(ω)

c2 H̃ = 0. (2.11)
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Here ∇2 denotes the Laplacian operator, which is given in Cartesian coordinates by
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . Thus the wave equations are second-order, linear, partial differen-

tial equations for the Fourier transforms of the electric and magnetic field vectors.
Note that each wave equation actually represents three equations—one for each
component of the corresponding field vector.

2.3.2 Fiber Modes

The electric and magnetic field vectors in the core, Ẽcore and H̃core, and the electric
and magnetic field vectors in the cladding, Ẽcladding and H̃cladding, must satisfy the
wave equations, (2.10) and (2.11), respectively. However, the solutions in the core
and the cladding are not independent; they are related by boundary conditions on Ẽ
and H̃ at the core-cladding interface. Quite simply, every pair of solutions of these
wave equations that satisfies these boundary conditions is a fiber mode.

Assume the direction of propagation of the electromagnetic wave (light) is z. Also
assume that the fiber properties such as the core diameter and the core and cladding
refractive indices are independent of z. Then it turns out that the z-dependence of
the electric and magnetic fields of each fiber mode is of the form eiβz. The quantity
β is called the propagation constant of the mode. Each fiber mode has a different
propagation constant β associated with it. (This is true for nondegenerate modes.
We discuss degenerate modes in the context of polarization below.) The propagation
constant is measured in units of radians per unit length. It determines the speed at
which pulse energy in a mode propagates in the fiber. (Note that this concept of
different propagation speeds for different modes has an analog in the geometrical
optics approach. We can think of a “mode” as one possible path that a guided ray
can take. Since the path lengths are different, the propagation speeds of the modes are
different.) We will discuss this further in Section 2.4. The light energy propagating in
the fiber will be divided among the modes supported by the fiber, and since the modes
travel at different speeds in the fiber, the energy in a narrow pulse at the input of a
length of fiber will be spread out at the output. Thus it is desirable to design the fiber
such that it supports only a single mode. Such a fiber is called a single-mode fiber,
and the mode that it supports is termed the fundamental mode. We had already come
to a similar conclusion at the end of Section 2.2.1, but the wave theory approach
enables us to get a clearer understanding of the concept of modes.

To better understand the notion of a propagation constant of a mode, consider the
propagation of an electromagnetic wave in a homogeneous medium with refractive
index n. Further assume that the wave is monochromatic; that is, all its energy is
concentrated at a single angular frequency ω or free-space wavelength λ. In this
case, the propagation constant is ωn/c = 2πn/λ. The wave number, k, is defined by
k = 2π/λ and is simply the spatial frequency (in cycles per unit length). In terms
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of the wave number, the propagation constant is kn. Thus for a wave propagating
purely in the core, the propagation constant is kn1, and for a wave propagating only
in the cladding, the propagation constant is kn2. The fiber modes propagate partly
in the cladding and partly in the core, and thus their propagation constants β satisfy
kn2 < β < kn1. Instead of the propagation constant of a mode, we can consider
its effective index neff = β/k. The effective index of a mode thus lies between the
refractive indices of the cladding and the core. For a monochromatic wave in a
single-mode fiber, the effective index is analogous to the refractive index: the speed
at which the wave propagates is c/neff. We will discuss the propagation constant
further in Section 2.4.

The solution of (2.10) and (2.11) is discussed in [Agr97, Jeu90]. We only state
some important properties of the solution in the rest of this section.

The core radius a, the core refractive index n1, and the cladding refractive index
n2 must satisfy the cutoff condition

V
def= 2π

λ
a

√
n2

1 − n2
2 < 2.405 (2.12)

in order for a fiber to be single moded at wavelength λ. The smallest wavelength λ

for which a given fiber is single moded is called the cutoff wavelength and denoted by
λcutoff. Note that V decreases with a and � = (n1 − n2)/n1. Thus single-mode fibers
tend to have small radii and small core-cladding refractive index differences. Typical
values are a = 4 μm and � = 0.003, giving a V value close to 2 at 1.55 μm. The
calculation of the cutoff wavelength λcutoff for these parameters is left as an exercise
(Problem 2.4).

Since the value of � is typically small, the refractive indices of the core and
cladding are nearly equal, and the light energy is not strictly confined to the fiber core.
In fact, a significant portion of the light energy can propagate in the fiber cladding.
For this reason, the fiber modes are said to be weakly guided. For a given mode, for
example, the fundamental mode, the proportion of light energy that propagates in
the core depends on the wavelength. This gives rise to spreading of pulses through a
phenomenon called waveguide dispersion, which we will discuss in Section 2.4.

A fiber with a large value of the V parameter is called a multimode fiber and
supports several modes. For large V , the number of modes can be approximated by
V 2/2. For multimode fibers, typical values are a = 25 μm and � = 0.005, giving a V

value of about 28 at 0.8 μm. Thus a typical multimode fiber supports a few hundred
propagation modes.

The parameter V can be viewed as a normalized wave number since for a given
fiber (fixed a, n1, and n2) it is proportional to the wave number. It is useful to
know the propagation constant β of the fundamental mode supported by a fiber
as a function of wavelength. This is needed to design components such as filters
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whose operation depends on coupling energy from one mode to another, as will
become clear in Chapter 3. For example, such an expression can be used to calculate
the velocity with which pulses at different wavelengths propagate in the fiber. The
exact determination of β must be done numerically. But analogous to the normalized
wave number, we can define a normalized propagation constant (sometimes called a
normalized effective index), b, by

b
def= β2 − k2n2

2
k2n2

1 − k2n2
2
= n2

eff − n2
2

n2
1 − n2

2
.

This normalized propagation constant can be approximated with a relative error less
than 0.2% by the equation

b(V ) ≈ (1.1428− 0.9960/V)2

for V in the interval (1.5,2.5); see [Neu88, p. 71] or [Jeu90, p. 25], where the result
is attributed to [RN76]. This is the range of V that is of interest in the design of
single-mode optical fibers.

2.3.3 Polarization Modes and Polarization-Mode Dispersion

We defined a fiber mode as a solution of the wave equations that satisfies the boundary
conditions at the core-cladding interface. Two linearly independent solutions of the
wave equations exist for all λ, however large. Both of these solutions correspond to
the fundamental mode and have the same propagation constant. The other solutions
exist only for λ < λcutoff.

Assume that the electric field Ẽ(r, ω) is written as Ẽ(r, ω) = Ẽx êx + Ẽy êy + Ẽzêz,
where êx , êy , and êz are the unit vectors along the x, y, and z directions, respectively.
Note that each of Ex , Ey , and Ez can depend, in general, on x, y, and z. We take the
direction of propagation (fiber axis) as z and consider the two linearly independent
solutions to (2.10) and (2.11) that correspond to the fundamental mode. It can be
shown (see [Jeu90]) that one of these solutions has Ẽx = 0 but Ẽy , Ẽz �= 0, whereas
the other has Ẽy = 0 but Ẽx , Ẽz �= 0. Since z is also the direction of propagation, Ez

is called the longitudinal component. The other nonzero component, which is either
Ex or Ey , is called the transverse component.

Before we discuss the electric field distributions of the fundamental mode further,
we need to understand the concept of polarization of an electric field. Note that this
is different from the dielectric polarization P discussed above. Since the electric field
is a vector, for a time-varying electric field, both the magnitude and the direction
can vary with time. A time-varying electric field is said to be linearly polarized if
its direction is a constant, independent of time. If the electric field associated with
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an electromagnetic wave has no component along the direction of propagation of
the wave, the electric field is said to be transverse. For the fundamental mode of a
single-mode fiber, the magnitude of the longitudinal component (Ez) is much smaller
than the magnitude of the transverse component (Ex or Ey). Thus the electric field
associated with the fundamental mode can effectively be assumed to be a transverse
field.

With this assumption, the two linearly independent solutions of the wave equa-
tions for the electric field are linearly polarized along the x and y directions. Since
these two directions are perpendicular to each other, the two solutions are said to be
orthogonally polarized. Because the wave equations are linear, any linear combina-
tion of these two linearly polarized fields is also a solution and thus a fundamental
mode. The state of polarization (SOP) refers to the distribution of light energy among
the two polarization modes. The fiber is still termed single mode because these two
polarization modes are degenerate; that is, they have the same propagation constant,
at least in an ideal, perfectly circularly symmetric fiber. Thus, although the energy of
a pulse is divided between these two polarization modes, since they have the same
propagation constant, it does not give rise to pulse spreading by the phenomenon
of dispersion. However, this is actually the ideal case, and we shall see that practical
cases can lead to polarization-mode dispersion.

Polarization-Mode Dispersion

In practice, fibers are not perfectly circularly symmetric, and the two orthogonally
polarized modes have slightly different propagation constants; that is, practical fibers
are slightly birefringent. Since the light energy of a pulse propagating in a fiber
will usually be split between these two modes, this birefringence gives rise to pulse
spreading. This phenomenon is called polarization-mode dispersion (PMD). This is
similar, in principle, to pulse spreading in the case of multimode fibers, but the effect
is much weaker. We will study the effects of PMD on optical communication systems
in Section 5.7.4.

PMD is illustrated in Figure 2.7. The assumption here is that the propagation
constants of the two polarizations are constant throughout the length of the fiber. If
the difference in propagation constants is denoted by �β, then the time spread, or
differential group delay (DGD) due to PMD after the pulse has propagated through
a unit length of fiber is given by

�τ = �β/ω.

A typical value of the DGD is �τ = 0.5 ps/km, which suggests that after propagating
through 100 km of fiber, the accumulated time spread will be 50 ps—comparable
to the bit period of 100 ps for a 10 Gb/s system. This would effectively mean that
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Figure 2.7 Illustration of pulse spreading due to PMD. The energy of the pulse is
assumed to be split between the two orthogonally polarized modes, shown by horizontal
and vertical pulses, in (a). Due to the fiber birefringence, one of these components travels
slower than the other. Assuming the horizontal polarization component travels slower
than the vertical one, the resulting relative positions of the horizontal and vertical pulses
are shown in (b). The pulse has been broadened due to PMD since its energy is now
spread over a larger time period.

10 Gb/s transmission would not be feasible over any reasonable distances due to the
effects of PMD.

However, the assumption of fixed propagation constants for each polarization
mode is unrealistic for fibers of practical lengths since the fiber birefringence changes
over the length of the fiber. (It also changes over time due to temperature and other
environmental changes.) The net effect is that the PMD effects are not nearly as bad
as indicated by this model since the time delays in different segments of the fiber vary
randomly and tend to cancel each other. This results in an inverse dependence of the
DGD not on the link length, but on the square root of the link length. Typical values
lie in the range 0.1–1 ps/

√
km. We undertake a quantitative discussion of the effects

of PMD, and the system limitations imposed by it, in Section 5.7.4.

Polarization-Dependent Effects

Many optical materials and components constructed using them respond differ-
ently to the different polarization components in the input light. Some compo-
nents in which these polarization effects are used include isolators, circulators, and
acousto-optic tunable filters, which we will study in Chapter 3. The two polarization
modes also see slightly different losses in many of these components. This depen-
dence of the loss through a component on the state of polarization of the input light
is termed the polarization-dependent loss (PDL) and is an important characteristic
that has to be specified for most components.
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There are also fiber designs specifically intended to control polarization effects.
For example, they can be used to avoid PMD by carrying a signal with only one
polarization mode. However, neither is in use for networking in practice.

The first specialty fiber is polarizing fiber which is designed to be lossy for one
polarization. This can be made by removing the cladding material from one side of
the fiber so that the fiber cross section becomes a “D” shape instead of a circle. Then
a lossy material is applied to the flat side, for example, a metal, creating a very strong
polarization-dependent loss. However, the mechanically complex nature of this fiber
makes it unsuitable in terms of loss and cost to be the primary transmission medium.
It can be used to make devices such as polarizers.

The second type of specialty fiber is polarization-preserving or polarization-
maintaining fiber. To understand this fiber, let us first look at normal single-mode
fiber. Due to the degeneracy of the two polarization modes in normal fiber, an optical
signal will have its energy mixed between the two modes. Thus, if we wanted to avoid
PMD by transmitting an optical signal with only one polarization mode, a normal
fiber will have the energy of the signal mixed between the two modes and we will
have PMD anyway.

Polarization-preserving fiber is asymmetric so that the two polarization modes
are no longer degenerate. The asymmetry comes either from making the core shape
elliptical or placing stress members on two sides of the core. The modes are made
to have very different phase velocities that reduce the cross-coupling of the modes.
As a result, it is possible to send an optical signal with one polarization mode in this
fiber since the energy of the signal will stay in the mode.

This type of fiber also has not proved suitable in cost, reliability, and loss for the
kinds of lengths required in transmission. It has, however, been used extensively for
fiber optic gyroscopes and other sensor systems.

2.3.4 Other Waveguides

A dielectric is a material whose conductivity is very small; silica is a dielectric material.
Any dielectric region of higher refractive index placed in another dielectric of lower
refractive index for the purpose of guiding (optical) waves can be called a dielectric
waveguide. Thus an optical fiber is also a dielectric waveguide. However, the term
is more often used to refer to a device where the guiding occurs in some region of a
glass or dielectric slab. Examples of such devices include semiconductor amplifiers,
semiconductor lasers, dielectric switches, multiplexers, and other integrated optic
devices. In many applications, the guiding region has a rectangular cross section. In
contrast, the guiding region of an optical fiber is its core, which has a circular cross
section.
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The propagation of light in waveguides can be analyzed in a fashion similar to
that of propagation in optical fiber. In the ray theory approach, which is applicable
when the dimensions of the guiding region are much larger than the wavelength,
the guiding process is due to total internal reflection; light that is launched into the
waveguide at one end is confined to the guiding region. When we use the wave theory
approach, we again find that only certain distributions of the electromagnetic fields
are supported or guided by the waveguide, and these are called the modes of the
waveguide. Furthermore, the dimensions of the waveguide can be chosen so that
the waveguide supports only a single mode, the fundamental mode, above a certain
cutoff wavelength, just as in the case of optical fiber.

However, the modes of a rectangular waveguide are quite different from
the fiber modes. For most rectangular waveguides, their width is much larger
than their depth. For these waveguides, the modes can be classified into two
groups: one for which the electric field is approximately transverse, called the
TE modes, and the other for which the magnetic field is approximately trans-
verse, called the TM modes. (The transverse approximation holds exactly if the
waveguides have infinite width; such waveguides are called slab waveguides.)
If the width of the waveguide is along the x direction (and much larger than
the depth), the TE modes have an electric field that is approximately linearly
polarized along the x direction. The same is true for the magnetic fields of
TM modes.

The fundamental mode of a rectangular waveguide is a TE mode. But in some
applications, for example, in the design of isolators and circulators (Section 3.2.1),
the waveguide is designed to support two modes: the fundamental TE mode and the
lowest-order TM mode. For most waveguides, for instance, those made of silica, the
propagation constants of the fundamental TE mode and lowest-order TM mode are
very close to each other. The electric field vector of a light wave propagating in such
a waveguide can be expressed as a linear combination of the TE and TM modes. In
other words, the energy of the light wave is split between the TE and TM modes.
The proportion of light energy in the two modes depends on the input excitation.
This proportion also changes when gradual or abrupt discontinuities are present in
the waveguide.

In some applications, for example, in the design of acousto-optic tunable filters
(Section 3.3.9), it is desirable for the propagation constants of the fundamental
TE mode and lowest-order TM mode to have a significant difference. This can
be arranged by constructing the waveguide using a birefringent material, such as
lithium niobate. For such a material, the refractive indices along different axes are
quite different, resulting in the effective indices of the TE and TM modes being quite
different.



70 Propagation of Signals in Optical Fiber

2.4 Chromatic Dispersion

Dispersion is the name given to any effect wherein different components of the
transmitted signal travel at different velocities in the fiber, arriving at different times
at the receiver. We already discussed the phenomenon of intermodal dispersion in
Section 2.2 and polarization-mode dispersion in Section 2.3.3. Our main goal in
this section will be to understand the phenomenon of chromatic dispersion and the
system limitations imposed by it. Other forms of dispersion and their effect on the
design of the system are discussed in Section 5.7.

Chromatic dispersion is the term given to the phenomenon by which different
spectral components of a pulse travel at different velocities. To understand the effect
of chromatic dispersion, we must understand the significance of the propagation
constant. We will restrict our discussion to single-mode fiber since in the case of
multimode fiber, the effects of intermodal dispersion usually overshadow those of
chromatic dispersion. So the propagation constant in our discussions will be that
associated with the fundamental mode of the fiber.

Chromatic dispersion arises for two reasons. The first is that the refractive in-
dex of silica, the material used to make optical fiber, is frequency dependent. Thus
different frequency components travel at different speeds in silica. This component
of chromatic dispersion is termed material dispersion. Although this is the principal
component of chromatic dispersion for most fibers, there is a second component,
called waveguide dispersion. To understand the physical origin of waveguide disper-
sion, recall from Section 2.3.2 that the light energy of a mode propagates partly in
the core and partly in the cladding. Also recall that the effective index of a mode lies
between the refractive indices of the cladding and the core. The actual value of the
effective index between these two limits depends on the proportion of power that
is contained in the cladding and the core. If most of the power is contained in the
core, the effective index is closer to the core refractive index; if most of it propagates
in the cladding, the effective index is closer to the cladding refractive index. The
power distribution of a mode between the core and cladding of the fiber is itself a
function of the wavelength. More accurately, the longer the wavelength, the more
power in the cladding. Thus, even in the absence of material dispersion—so that the
refractive indices of the core and cladding are independent of wavelength—if the
wavelength changes, this power distribution changes, causing the effective index or
propagation constant of the mode to change. This is the physical explanation for
waveguide dispersion.

A mathematical description of the propagation of pulses in the presence of chro-
matic dispersion is given in Appendix E. Here we just note that the shape of pulses
propagating in optical fiber is not preserved, in general, due to the presence of
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Figure 2.8 A (negatively) chirped Gaussian pulse. Here, and in all such figures, we show
the shape of the pulse as a function of time.

chromatic dispersion. The key parameter governing the evolution of pulse shape is
the second derivative β2 = d2β/dω2 of the propagation constant β. β2 is called the
group velocity dispersion parameter, or simply the GVD parameter. The reason for
this terminology is as follows. If β1 = dβ/dω, 1/β1 is the velocity with which a pulse
propagates in optical fiber and is called the group velocity. The concept of group
velocity is discussed in greater detail in Appendix E. Since β2 is related to the rate of
change of group velocity with frequency, chromatic dispersion is also called group
velocity dispersion.

In the absence of chromatic dispersion, β2 = 0, and in this ideal situation, all
pulses would propagate without change in shape. In general, not only is β2 �= 0, it
is also a function of the optical frequency or, equivalently, the optical wavelength.
For most optical fibers, there is a so-called zero-dispersion wavelength, which is the
wavelength at which the GVD parameter β2 = 0. If β2 > 0, the chromatic dispersion
is said to be normal. When β2 < 0, the chromatic dispersion is said to be anomalous.

2.4.1 Chirped Gaussian Pulses

We next discuss how a specific family of pulses changes shape as they propagate
along a length of single-mode optical fiber. The pulses we consider are called chirped
Gaussian pulses. An example is shown in Figure 2.8. The term Gaussian refers to the
envelope of the launched pulse. Chirped means that the frequency of the launched
pulse changes with time. Both aspects are illustrated in Figure 2.8, where the center
frequency ω0 has been greatly diminished for the purposes of illustration.

We consider chirped pulses for three reasons. First, the pulses emitted by semicon-
ductor lasers when they are directly modulated are considerably chirped, and such
transmitters are widely used in practice. As we will see in Chapter 5, this chirp has a
significant effect on the design of optical communication systems. The second reason
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is that some nonlinear effects that we will study in Section 2.5 can cause otherwise
unchirped pulses to acquire a chirp. It then becomes important to study the effect of
chromatic dispersion on such pulses. The third reason is that the best transmission
performance is achieved today by the use of Gaussian pulses that are deliberately
chirped. (We will discuss these systems in Section 2.6.1 and in Chapter 5.)

Pulses with a Gaussian envelope are used in high-performance systems employing
RZ modulation (see Section 4.1). For most other systems, the pulses used tend to be
rectangular rather than Gaussian. However, the results we derive will be qualitatively
valid for most pulse envelopes. In Appendix E, we describe mathematically how
chirped Gaussian pulses propagate in optical fiber. The key result that we will use in
subsequent discussions here is that after a pulse with initial width T0 has propagated
a distance z, its width Tz is given by

Tz

T0
=

√√√√(
1+ κβ2z

T 2
0

)2

+
(

β2z

T 2
0

)2

. (2.13)

Here κ is called the chirp factor of the pulse and is proportional to the rate of change
of the pulse frequency with time. (A related parameter, which depends on both the
chirp and the pulse rise-time, is called the source frequency chirp factor, α, in the
Telcordia SONET standard GR.253.)

Broadening of Chirped Gaussian Pulses

Figure 2.9 shows the pulse-broadening effect of chromatic dispersion graphically. In
these figures, the center or carrier frequency of the pulse, ω0, has deliberately been
shown greatly diminished for the purposes of illustration. We assume β2 is negative;
this is true for standard single-mode fiber in the 1.55 μm band. Figure 2.9(a) shows
an unchirped (κ = 0) Gaussian pulse, and Figure 2.9(b) shows the same pulse after
it has propagated a distance 2T 2

0 /|β2| along the fiber. Figure 2.9(c) shows a chirped
Gaussian pulse with κ = −3, and Figure 2.9(d) shows the same pulse after it has
propagated a distance of only 0.4T 2

0 /|β2| along the fiber. The amount of broadening
can be seen to be about the same as that of the unchirped Gaussian pulse, but the
distance traveled is only a fifth. This shows that the presence of chirp significantly
exacerbates the pulse broadening due to chromatic dispersion (when the product κβ2
is positive).

The quantity T 2
0 /|β2| is called the dispersion length and is denoted by LD . It

serves as a convenient normalizing measure for the distance z in discussing the
effects of chromatic dispersion. For example, the effects of chromatic dispersion can
be neglected if z 	 LD since in that case, from (2.13), Tz/T0 ≈ 1. It also has the
interpretation that the width of an unchirped pulse at the 1/e-intensity point increases
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(c)

(a) (b)

(d)

After distance 2 LD

After distance 0.4 LD

Figure 2.9 Illustration of the pulse-broadening effect of chromatic dispersion on
unchirped and chirped Gaussian pulses (for β2 < 0). (a) An unchirped Gaussian pulse at
z = 0. (b) The pulse in (a) at z = 2LD . (c) A chirped Gaussian pulse with κ = −3 at z = 0.
(d) The pulse in (c) at z = 0.4LD . For systems operating over standard single-mode fiber
at 1.55 μm, LD ≈ 1800 km at 2.5 Gb/s, whereas LD ≈ 115 km at 10 Gb/s.

by a factor of
√

2 after it has propagated a distance equal to the dispersion length.
The dispersion length for a 2.5 Gb/s system operating over standard single-mode
fiber at 1.55 μm is approximately 1800 km, assuming T0 = 0.2 ns, which is half the
bit interval. If the bit rate of the system is increased to 10 Gb/s with T0 = 0.05 ns,
again half the bit interval, the dispersion length decreases to approximately 115 km.
This indicates that the limitations on systems due to chromatic dispersion are much
more severe at 10 Gb/s than at 2.5 Gb/s. We will discuss the system limitations of
chromatic dispersion in Section 5.7.2. (The chromatic dispersion limit at 2.5 Gb/s is
considerably shorter, about 600 km, than the dispersion length of 1800 km because
NRZ pulses are used.)

For κ = 0 and z = 2LD, (2.13) yields Tz/T0 =
√

5 ≈ 2.24. For κ = −3 and
z = 0.4LD, (2.13) yields Tz/T0 =

√
5 ≈ 2.24. Thus both pulses broaden to the same

extent, and these values are in agreement with Figure 2.9.
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(a) (b)

Figure 2.10 Illustration of the pulse compression effect of chromatic dispersion when
κβ2 < 0. (a) A chirped Gaussian pulse with κ = −3 at z = 0. (b) The pulse in (a) at
z = 0.4LD .

An interesting phenomenon occurs when the product κβ2 is negative. The pulse
initially undergoes compression up to a certain distance and then undergoes broaden-
ing. This is illustrated in Figure 2.10. The pulse in Figure 2.10(a) is the same chirped
Gaussian pulse shown in Figure 2.9(c) and has the chirp parameter κ = −3. But the
sign of β2 is now positive (which is the case, for example, in the lower portion of the
1.3 μm band), and the pulse, after it has propagated a distance z = 0.4LD, is shown
in Figure 2.10(b). The pulse has now undergone compression rather than broad-
ening. This can also be seen from (2.13) since we now get Tz/T0 = 1/

√
5 ≈ 0.45.

However, as z increases further, the pulse will start to broaden quite rapidly. This
can be seen from Figure 2.11, where we plot the pulse width evolution as a function
of distance for different chirp parameters. (Also see Problem 2.11.) We will discuss
this phenomenon further in Sections 2.5.5 and 2.5.6.

An intuitive explanation of pulse compression and broadening due to chromatic
dispersion is as follows. For a negatively chirped pulse, the instantaneous frequency
decreases with increasing time, as illustrated in Figures 2.9(c) and 2.10(a). When
β2 > 0, higher-frequency (components of) pulses travel faster than lower-frequency
(components of) pulses, and vice versa. Thus, when β2 > 0, the tail of the pulse,
which has higher-frequency components, travels faster than the head of the pulse,
which has lower-frequency components, resulting in pulse compression. This is the
situation illustrated in Figure 2.10. When β2 < 0, the situation is reversed: the tail
of the pulse travels slower than the head of the pulse, and the pulse broadens. This
is the situation illustrated in Figure 2.9(c) and (d).

The pulse compression phenomenon can be used to increase the transmission
distance before chromatic dispersion becomes significant, if the sign of κβ2 can
be made negative. Since the output of directly modulated semiconductor lasers is
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Figure 2.11 Evolution of pulse width as a function of distance (z/LD) for chirped and
unchirped pulses in the presence of chromatic dispersion. We assume β2 < 0, which is
the case for 1.55 μm systems operating over standard single-mode fiber. Note that for
positive chirp the pulse width initially decreases but subsequently broadens more rapidly.
For systems operating over standard single-mode fiber at 1.55 μm, LD ≈ 1800 km at
2.5 Gb/s, whereas LD ≈ 115 km at 10 Gb/s.

negatively chirped, the fiber must have a positive β2 for pulse compression to occur.
While standard single-mode fiber cannot be used because it has negative β2 in the
1.55 μm band, Corning’s Metrocor fiber has positive β2 in this band. This fiber has
been designed specifically to take advantage of this pulse compression effect in the
design of metropolitan systems.

A careful observation of Figure 2.9(b) shows that the unchirped Gaussian pulse
acquires chirp when it has propagated some distance along the fiber. Furthermore, the
acquired chirp is negative since the frequency of the pulse decreases with increasing
time, t. The derivation of an expression for the acquired chirp is left as an exercise
(Problem 2.9).

2.4.2 Controlling the Dispersion: Dispersion-Shifted Fibers

Just as graded-index fibers were developed to combat the effects of modal dispersion,
dispersion-shifted and even negative dispersion fibers have been developed to control
the dispersion in networks.

Group velocity dispersion is commonly expressed in terms of the chromatic
dispersion parameter D that is related to β2 as D = −(2πc/λ2)β2. The chromatic
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dispersion parameter is measured in units of ps/nm-km since it expresses the temporal
spread (ps) per unit propagation distance (km), per unit pulse spectral width (nm). D

can be written as D = DM +DW , where DM is the material dispersion and DW is the
waveguide dispersion, both of which we have discussed earlier. Figure 2.12 shows
DM , DW , and D for standard single-mode fiber. DM increases monotonically with
λ and equals 0 for λ = 1.276 μm. On the other hand, DW decreases monotonically
with λ and is always negative. The total chromatic dispersion D is zero around
λ = 1.31 μm; thus the waveguide dispersion shifts the zero-dispersion wavelength
by a few tens of nanometers. Around the zero-dispersion wavelength, D may be
approximated by a straight line whose slope is called the chromatic dispersion slope
of the fiber.

For standard single-mode fiber, the chromatic dispersion effects are small in the
1.3 μm band, and systems operating in this wavelength range are loss limited. On
the other hand, most optical communication systems operate in the 1.55 μm band
today because of the low loss in this region and the well-developed erbium-doped
fiber amplifier technology. But as we have already seen, optical communication
systems in this band are chromatic dispersion limited. This limitation can be reduced
if somehow the zero-dispersion wavelength were shifted to the 1.55 μm band.
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Figure 2.12 Material, waveguide, and total dispersion in standard single-mode optical
fiber. Recall that chromatic dispersion is measured in units of ps/nm-km since it expresses
the temporal spread (ps) per unit propagation distance (km), per unit pulse spectral width
(nm). (After [Agr97].)
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Figure 2.13 Typical refractive index profile of (a) step-index fiber, (b) dispersion-shifted
fiber, and (c) dispersion-compensating fiber. (After [KK97, Chapter 4].)

We do not have much control over the material dispersion DM , though it can
be varied slightly by doping the core and cladding regions of the fiber. How-
ever, we can vary the waveguide dispersion DW considerably so as to shift the
zero-dispersion wavelength into the 1.55 μm band. Fibers with this property are
called dispersion-shifted fibers (DSF). Such fibers have a chromatic dispersion of at
most 3.3 ps/nm-km in the 1.55 μm wavelength range and typically zero dispersion
at 1550 nm. A large fraction of the installed base in Japan is DSF.

Recall that when β2 > 0, the chromatic dispersion is said to be normal, and when
β2 < 0, the chromatic dispersion is said to be anomalous. Pulses in silica fiber expe-
rience normal chromatic dispersion below the zero-dispersion wavelength, which is
around 1.3 μm for standard single-mode fiber. Pulses experience anomalous disper-
sion in the entire 1.55 μm band in standard single-mode fiber. For dispersion-shifted
fiber, the dispersion zero lies in the 1.55 μm band. As a result, pulses in one part of
the 1.55 μm band experience normal chromatic dispersion, and pulses in the other
part of the band experience anomalous chromatic dispersion.

The waveguide dispersion can be varied by varying the refractive index profile
of the fiber, that is, the variation of refractive index in the fiber core and cladding. A
typical refractive index profile of a dispersion-shifted fiber is shown in Figure 2.13(b).
Comparing this with the refractive index profile of a step-index fiber shown in Fig-
ure 2.13(a), we see that, in addition to a trapezoidal variation of the refractive index
in the fiber core, there is step variation of the refractive index in the cladding. Such
a variation leads to a single-mode fiber with a dispersion zero in the 1.55 μm band.

As we will see in Section 5.7.3, fibers with very large chromatic dispersions
(but with the opposite sign) are used to compensate for the accumulated chromatic
dispersion on a lengthy link. The refractive index profile of such a fiber is shown in
Figure 2.13(c). The core radius of such a fiber is considerably smaller than that of
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standard single-mode fiber but has a higher refractive index. This leads to a large
negative chromatic dispersion. This core is surrounded by a ring of lower refractive
index, which is in turn surrounded by a ring of higher refractive index. Such a
variation leads to a negative chromatic dispersion slope, an important characteristic
for chromatic dispersion compensation, as we will see in Section 5.7.3.

2.5 Nonlinear Effects

Our description of optical communication systems under the linearity assumption
we made in Section 2.3.1 is adequate to understand the behavior of these systems
when they are operated at moderate power (a few milliwatts) and at bit rates up to
about 2.5 Gb/s. However, at higher bit rates such as 10 Gb/s and above and/or at
higher transmitted powers, it is important to consider the effect of nonlinearities. In
the case of WDM systems, nonlinear effects can become important even at moderate
powers and bit rates.

There are two categories of nonlinear effects. The first arises due to the interaction
of light waves with phonons (molecular vibrations) in the silica medium—one of
several types of scattering effects, of which we have already met one, namely, Rayleigh
scattering (Section 2.1). The two main effects in this category are stimulated Brillouin
scattering (SBS) and stimulated Raman scattering (SRS).

The second set of nonlinear effects arises due to the dependence of the refractive
index on the intensity of the applied electric field, which in turn is proportional to the
square of the field amplitude. The most important nonlinear effects in this category
are self-phase modulation (SPM) and four-wave mixing (FWM).

In scattering effects, energy gets transferred from one light wave to another
wave at a longer wavelength (or lower energy). The lost energy is absorbed by the
molecular vibrations, or phonons, in the medium. (The type of phonon involved is
different for SBS and SRS.) This second wave is called the Stokes wave. The first
wave can be thought of as being a “pump” wave that causes amplification of the
Stokes wave. As the pump propagates in the fiber, it loses power and the Stokes wave
gains power. In the case of SBS, the pump wave is the signal wave, and the Stokes
wave is the unwanted wave that is generated due to the scattering process. In the
case of SRS, the pump wave is a high-power wave, and the Stokes wave is the signal
wave that gets amplified at the expense of the pump wave.

In general, scattering effects are characterized by a gain coefficient g, measured
in meters per watt, and spectral width �f over which the gain is present. The gain
coefficient is a measure of the strength of the nonlinear effect.

In the case of self-phase modulation, the transmitted pulses undergo chirping.
This induced chirp factor becomes significant at high power levels. We have already
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seen in Section 2.4 that the pulse-broadening effects of chromatic dispersion can
be enhanced in the presence of chirp. Thus the SPM-induced chirp can significantly
increase the pulse spreading due to chromatic dispersion in these systems. For high-
bit-rate systems, the SPM-induced chirp can significantly increase the pulse spreading
due to chromatic dispersion even at moderate power levels. The precise effects of
SPM are critically dependent not only on the sign of the GVD parameter β2 but also
on the length of the system.

In a WDM system with multiple channels, the induced chirp in one channel
depends on the variation of the refractive index with the intensity on the other
channels. This effect is called cross-phase modulation (CPM). When we discuss the
induced chirp in a channel due to the variation of the refractive index with the
intensity on the same channel, we call the effect SPM.

In the case of WDM systems, another important nonlinear effect is that of
four-wave mixing. If the WDM system consists of frequencies f1, . . . , fn, four-wave
mixing gives rise to new signals at frequencies such as 2fi − fj and fi + fj − fk .
These signals appear as crosstalk to the existing signals in the system. These crosstalk
effects are particularly severe when the channel spacing is tight. Reduced chromatic
dispersion enhances the crosstalk induced by four-wave mixing. Thus systems using
dispersion-shifted fibers are much more affected by four-wave mixing effects than
systems using standard single-mode fiber.

We will devote the rest of this section to a detailed understanding of the various
types of fiber nonlinearities.

2.5.1 Effective Length and Area

The nonlinear interaction depends on the transmission length and the cross-sectional
area of the fiber. The longer the link length, the more the interaction and the worse
the effect of the nonlinearity. However, as the signal propagates along the link, its
power decreases because of fiber attenuation. Thus, most of the nonlinear effects
occur early in the fiber span and diminish as the signal propagates.

Modeling this effect can be quite complicated, but in practice, a simple model that
assumes that the power is constant over a certain effective length Le has proved to be
quite sufficient in understanding the effect of nonlinearities. Suppose Po denotes the
power transmitted into the fiber and P(z) = Poe

−αz denotes the power at distance
z along the link, with α being the fiber attenuation. Let L denote the actual link
length. Then the effective length (see Figure 2.14) is defined as the length Le such
that

PoLe =
∫ L

z=0
P(z)dz.
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Figure 2.14 Effective transmission length calculation. (a) A typical distribution of the
power along the length L of a link. The peak power is Po. (b) A hypothetical uniform
distribution of the power along a link up to the effective length Le. This length Le is
chosen such that the area under the curve in (a) is equal to the area of the rectangle in
(b).

This yields

Le =
1− e−αL

α
.

Typically, α = 0.22 dB/km at 1.55 μm wavelength, and for long links where L
 1/α,
we have Le ≈ 20 km.

In addition to the link length, the effect of a nonlinearity also grows with the
intensity in the fiber. For a given power, the intensity is inversely proportional to
the area of the core. Since the power is not uniformly distributed within the cross
section of the fiber, it is convenient to use an effective cross-sectional area Ae (see
Figure 2.15), related to the actual area A and the cross-sectional distribution of the
fundamental mode F(r, θ), as

Ae =
[
∫
r

∫
θ
|F(r, θ)|2 rdrdθ ]2∫

r

∫
θ
|F(r, θ)|4 rdrdθ

,

where r and θ denote the polar coordinates. The effective area, as defined above,
has the significance that the dependence of most nonlinear effects can be expressed
in terms of the effective area for the fundamental mode propagating in the given
type of fiber. For example, the effective intensity of the pulse can be taken to be
Ie = P/Ae, where P is the pulse power, in order to calculate the impact of certain
nonlinear effects such as SPM, as we will see below. The effective area of SMF is
around 85 μm2 and that of DSF around 50 μm2. The dispersion compensating fibers
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Figure 2.15 Effective cross-sectional area. (a) A typical distribution of the signal inten-
sity along the radius of optical fiber. (b) A hypothetical intensity distribution, equivalent
to that in (a) for many purposes, showing an intensity distribution that is nonzero only
for an area Ae around the center of the fiber.

that we will study in Section 5.7.3 have even smaller effective areas and hence exhibit
higher nonlinearities.

2.5.2 Stimulated Brillouin Scattering

In the case of SBS, the phonons involved in the scattering interaction are acoustic
phonons, and the interaction occurs over a very narrow line width, �fB , that varies
from 20 to 100 MHz at 1.55 μm, depending ob fiber geometry and composition.
Also the Stokes and pump waves propagate in opposite directions. Thus SBS does
not cause any interaction between different wavelengths, as long as the wavelength
spacing is much greater than 100 MHz, which is typically the case. SBS can, however,
create significant distortion within a single channel. SBS produces gain in the direction
opposite to the direction of propagation of the signal, in other words, back toward
the source. Thus it depletes the transmitted signal as well as generates a potentially
strong signal back toward the transmitter, which must be shielded by an isolator.
The SBS gain coefficient gB is approximately 4 × 10−11 m/W, independent of the
wavelength.

The intensities of the pump wave Ip and the Stokes wave Is are related by the
coupled-wave equations [Buc95]

dIs

dz
= −gBIpIs + αIs, (2.14)

and

dIp

dz
= −gBIpIs − αIp. (2.15)
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Fiberλ1 λ1λ2 λ2λ3 λ3λ4 λ4

Figure 2.16 The effect of SRS. Power from lower-wavelength channels is transferred
to the higher-wavelength channels.

The intensities are related to the powers as Ps = AeIs and Pp = AeIp. For the case
where the Stokes power is much smaller than the pump power, we can assume that
the pump wave is not depleted. This amounts to neglecting the −gBIpIs term on the
right-hand side of (2.15). With this assumption, (2.14) and (2.15) can be solved (see
Problem 5.24) for a link of length L to yield

Ps(0) = Ps(L)e−αLe
gBPp(0)Le

Ae (2.16)

and

Pp(L) = Pp(0)e−αL. (2.17)

Note that the output of the pump wave is at z = L, but the output of the Stokes
wave is at z = 0 since the two waves are counterpropagating.

2.5.3 Stimulated Raman Scattering

If two or more signals at different wavelengths are injected into a fiber, SRS causes
power to be transferred from the lower-wavelength channels to the higher-
wavelength channels (see Figure 2.16). This coupling of energy from a lower-
wavelength signal to a higher-wavelength signal is a fundamental effect that is also
the basis of optical amplification and lasers. The energy of a photon at a wavelength
λ is given by hc/λ, where h is Planck’s constant (6.63× 10−34 J s). Thus, a photon of
lower wavelength has a higher energy. The transfer of energy from a signal of lower
wavelength to a signal of higher wavelength corresponds to emission of photons of
lower energy caused by photons of higher energy.

Unlike SBS, SRS is a broadband effect. Figure 2.17 shows its gain coefficient
as a function of wavelength spacing. The peak gain coefficient gR is approximately
6× 10−14 m/W at 1.55 μm, which is much smaller than the gain coefficient for SBS.
However, channels up to 15 THz (125 nm) apart will be coupled with SRS. Also,
SRS causes coupling in both the direction of propagation and the reverse direction.
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Figure 2.17 SRS gain coefficient as a function of channel separation. (After [Agr97].)

We will study the system impact of SRS in Section 5.8.3. While SRS between
channels in a WDM system is harmful to the system, we can also use SRS to provide
amplification in the system, which benefits the overall system performance. We will
discuss such amplifiers in Section 3.4.4.

2.5.4 Propagation in a Nonlinear Medium

In order to discuss the origin of SPM, CPM, and FWM in the following sections, we
need to understand how the propagation of light waves is affected when we relax the
linearity assumption we made in Section 2.3.1. This is the subject of this section. We
will continue, however, to make the other assumptions of local responsivity, isotropy,
homogeneity, and losslessness on the silica medium. The losslessness assumption can
be removed by carrying out the remaining discussion using complex variables for the
following fields and susceptibilities, as is done, for example, in [Agr95]. However,
to keep the discussion simple, we use real variables for all the fields and neglect the
effect of fiber loss.

For a linear medium, as we saw in Section 2.3.1, we have the relation shown in
(2.8):

P̃(r, ω) = ε0χ̃ (r, ω)Ẽ(r, ω)

between the Fourier transforms P̃ and Ẽ of the induced dielectric polarization and
applied electric field, respectively. Since we are considering nonlinearities in this
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section, it is no longer as convenient to work in the Fourier transform domain. By
taking inverse Fourier transforms, this relation can be written in the time domain as
(2.7):

PL(r, t) = ε0

∫ t

−∞
χ(1)(t − t ′)E(r, t ′) dt ′, (2.18)

where we have dropped the dependence of the susceptibility on r due to the homo-
geneity assumption, written PL instead of P to emphasize the linearity assumption
used in obtaining this relation, and used χ(1)() instead of χ() for convenience in what
follows.

In discussing the effect of nonlinearities, we will assume that the electric field
of the fundamental mode is linearly polarized along the x direction. Recall from
Section 2.3.3 that the electric field in a single-mode fiber is a linear combination
of two modes, linearly polarized along the x and y directions. (Note that the term
polarization here refers to the energy distribution of a propagation mode and is
different from the dielectric polarization. The linearly polarized modes referred to
here have no relation to the linear component of the dielectric polarization.) The
following results can be generalized to this case, but the resulting expressions are
significantly more complex. Hence we make the assumption of linearly polarized
fields.

Because of the isotropy assumption, even in the presence of nonlinear-
ities, the dielectric polarization is along the same direction as the elec-
tric field, which is the x direction, by assumption. Thus the vector func-
tions E(r, t) and P(r, t) have only one component, which we will denote by
the scalar functions E(r, t) and P(r, t), respectively. With this assumption, in
the presence of nonlinearities, we show in Appendix F that we can write

P(r, t) = �L(r, t)+ �NL(r, t).

Here �L(r, t) is the linear dielectric polarization given by (2.18) with the vectors
PL(, ) and E(, ) replaced by the scalars �L(, ) and E(, ), respectively, due to the linear
dielectric polarization assumption. The nonlinear dielectric polarization �NL(r, t) is
given by

�NL(r, t) = ε0χ
(3)E3(r, t), (2.19)

where χ(3) is called the third-order nonlinear susceptibility and is assumed to be
a constant (independent of t). (With the assumption of linearly polarized modes,
the dielectric polarization can be expanded in a power series in E with coefficients
ε0χ

(i), and the superscript i in χ(i) refers to the power of the electric field in each
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term of such an expansion. Since χ(2) = 0 for silica, the dominant term in deter-
mining �NL(r, t) is not the E2 term but the E3 term.) Recall that the refractive
index is related to the susceptibility by (2.9). Thus the nonlinear dielectric polar-
ization causes the refractive index to become intensity dependent, which is the root
cause of these nonlinear effects. We will use this equation (2.19) as the starting
point in understanding three important nonlinear phenomena affecting the propa-
gation of signals in optical fiber: self-phase modulation (SPM), cross-phase modu-
lation (CPM), and four-wave mixing (FWM). For simplicity, we will assume that
the signals used are monochromatic plane waves; that is, the electric field is of the
form

E(r, t) = E(z, t) = E cos(ω0t − β0z),

where E is a constant. The term monochromatic implies the electric field has a
single frequency component, namely, ω0, and the term plane wave indicates that
the electric field is constant in the plane perpendicular to the direction of prop-
agation, z. Hence we have also written E(z, t) for E(r, t). In the case of wave-
length division multiplexed (WDM) signals, we assume that the signal in each
wavelength channel is a monochromatic plane wave. Thus if there are n wave-
length channels at the angular frequencies ω1, . . . , ωn, with the corresponding
propagation constants β1, . . . , βn, the electric field of the composite WDM signal
is

E(r, t) = E(z, t) =
n∑

i=1

Ei cos(ωi t − βiz).

(Since the signals on each WDM channel are not necessarily in phase, we should add
an arbitrary phase φi to each of the sinusoids, but we omit this in order to keep the
expressions simple.)

2.5.5 Self-Phase Modulation

SPM arises because the refractive index of the fiber has an intensity-dependent com-
ponent. This nonlinear refractive index causes an induced phase shift that is propor-
tional to the intensity of the pulse. Thus different parts of the pulse undergo different
phase shifts, which gives rise to chirping of the pulses. Pulse chirping in turn enhances
the pulse-broadening effects of chromatic dispersion. This chirping effect is propor-
tional to the transmitted signal power so that SPM effects are more pronounced in
systems using high transmitted powers. The SPM-induced chirp affects the pulse-
broadening effects of chromatic dispersion and thus is important to consider for
high-bit-rate systems that already have significant chromatic dispersion limitations.
For systems operating at 10 Gb/s and above, or for lower-bit-rate systems that use
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high transmitted powers, SPM can significantly increase the pulse-broadening effects
of chromatic dispersion.

In order to understand the effects of SPM, consider a single-channel system where
the electric field is of the form

E(z, t) = E cos(ω0t − β0z).

In the presence of fiber nonlinearities, we want to find how this field evolves along
the fiber. For the monochromatic plane wave we have assumed, this means finding
the propagation constant β0. Using (2.19), the nonlinear dielectric polarization is
given by

�NL(r, t) = ε0χ
(3)E3 cos3(ω0t − β0z)

= ε0χ
(3)E3

(
3
4

cos(ω0t − β0z)+ 1
4

cos(3ω0t − 3β0z)

)
. (2.20)

Thus the nonlinear dielectric polarization has a new frequency component

at 3ω0. The wave equation for the electric field (2.10) is derived assum-
ing only the linear component of the dielectric polarization is present. In
the presence of a nonlinear dielectric polarization component, it must be
modified. We omit the details of how it should be modified but just re-
mark that the solution of the modified equation will have, in general, elec-
tric fields at the new frequencies generated as a result of nonlinear dielectric
polarization. Thus, in this case, the electric field will have a component at
3ω0.

The fiber has a propagation constant at the angular frequency 3ω0 of the gener-
ated field, which we will denote by β(3ω0). From (2.20), the electric field generated
as a result of nonlinear dielectric polarization at 3ω0 has a propagation constant
3β0, where β0 = β(ω0) is the propagation constant at the angular frequency ω0. In
an ideal, dispersionless fiber, β = ωn/c, where the refractive index n is a constant
independent of ω so that β(3ω0) = 3β(ω0). But in real fibers that have dispersion,
n is not a constant, and β(3ω0) will be very different from 3β(ω0). Because of this
mismatch between the two propagation constants—which is usually described as a
lack of phase match— the electric field component at 3ω0 becomes negligible. This
phase-matching condition will be important in our discussion of four-wave mixing
in Section 2.5.8.

Neglecting the component at 3ω0, we can write the nonlinear dielectric polariza-
tion as

�NL(r, t) =
(

3
4
ε0χ

(3)E2
)

E cos(ω0t − β0z). (2.21)



2.5 Nonlinear Effects 87

When the wave equation (2.10) is modified to include the effect of nonlinear dielec-
tric polarization and solved for β0 with this expression for the nonlinear dielectric
polarization, we get

β0 = ω0

c

√
1+ χ̃ (1) + 3

4
χ(3)E2.

From (2.9), n2 = 1+ χ̃ (1). Hence

β0 =
ω0n

c

√
1+ 3

4n2 χ(3)E2.

Since χ(3) is very small for silica fibers (as we will see), we can approximate this by

β0 = ω0

c

(
n+ 3

8n
χ(3)E2

)
. (2.22)

Thus the electric field E(z, t) = E cos(ω0t−β0z) is a sinusoid whose phase changes as
E2z. This phenomenon is referred to as self-phase modulation. The intensity of the
electric field corresponding to a plane wave with amplitude E is I = 1

2ε0cnE2. Thus
the phase change due to SPM is proportional to the intensity of the electric field.
Note that this phase change increases as the propagation distance z increases. Since
the relation between β and the refractive index n in the linear regime is β = ωn/c,
we can also interpret (2.22) as specifying an intensity-dependent refractive index

n̂(E) = n+ n̄I (2.23)

for the fiber, in the presence of nonlinearities. Here, I = 1
2ε0cn|E|2 is the intensity

of the field and is measured in units of W/μm2. The quantity n̄ = 2
ε0cn

3
8n

χ(3) is

called the nonlinear index coefficient and varies in the range 2.2–3.4× 10−8 μm2/W
in silica fiber. We will assume the value 3.2×10−8 μm2/W in the numerical examples
we compute.

Pulses used in optical communication systems have finite temporal widths, and
hence are not monochromatic. They are also not plane waves—that is, they have
a transverse ((x, y)-plane) distribution of the electric field that is not constant but
dictated by the geometry of the fiber. Nevertheless, the same qualitative effect of
self-phase modulation holds for these pulses. In this section, we will give an intuitive
explanation of the effect of SPM on pulses. A more quantitative explanation can be
found in Sections 2.5.6 and E.2.

Because of SPM, the phase of the electric field contains a term that is proportional
to the intensity of the electric field. However, because of their finite temporal extent,
such pulses do not have a constant intensity for the electric field. Thus the phase
shift undergone by different parts of the pulse is different. Note that the sign of the
phase shift due to SPM is negative because of the minus sign in the expression for the
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phase, namely, ω0t − β0z. The peak of the pulse undergoes the maximum phase shift
in absolute value, and its leading and trailing edges undergo progressively smaller
phase shifts. Since the frequency is the derivative of the phase, the trailing edges of the
pulse undergo a negative frequency shift, and the leading edges a positive frequency
shift. Since the chirp is proportional to the derivative of the frequency, this implies
that the chirp factor κ is positive. Thus SPM causes positive chirping of pulses.

Because of the relatively small value of the nonlinear susceptibility χ(3) in optical
fiber, the effects of SPM become important only when high powers are used (since E2

then becomes large). Since the SPM-induced chirp changes the chromatic dispersion
effects, at the same power levels, it becomes important to consider SPM effects
for shorter pulses (higher bit rates) that are already severely affected by chromatic
dispersion. These two points must be kept in mind during the following discussion.
We quantify the required powers and pulse durations in Section E.2.

The effect of this positive chirping depends on the sign of the GVD parameter
β2. Recall that when β2 > 0, the chromatic dispersion is said to be normal, and
when β2 < 0, the chromatic dispersion is said to be anomalous (see Figure 2.12). We
have seen in Section 2.4 that if the product κβ2 > 0, the chirp significantly enhances
the pulse-broadening effects of chromatic dispersion. Since the SPM-induced chirp is
positive, SPM causes enhanced, monotone, pulse broadening in the normal chromatic
dispersion regime. In the anomalous chromatic dispersion regime even the qualita-
tive effect of SPM depends critically on the amount of chromatic dispersion present.
When the effects of SPM and chromatic dispersion are nearly equal, but chromatic
dispersion dominates, SPM can actually reduce the pulse-broadening effect of chro-
matic dispersion. This phenomenon can be understood from Figure 2.10, where we
saw that a positively chirped pulse undergoes initial compression in the anomalous
chromatic dispersion regime. The reason the pulse does not broaden considerably
after this initial compression as described in Problem 2.11 is that the chirp factor is
not constant for the entire pulse but dependent on the pulse amplitude (or intensity).
This intensity dependence of the chirp factor is what leads to qualitatively different
behaviors in the anomalous chromatic dispersion regime, depending on the amount
of chromatic dispersion present. When the effects of chromatic dispersion and SPM
are equal (we make this notion precise in Section E.2), the pulse remains stable,
that is, does not broaden further, after undergoing some initial broadening. When
the amount of chromatic dispersion is negligible, say, around the zero-dispersion
wavelength, SPM leads to amplitude modulation of the pulse.

2.5.6 SPM-Induced Chirp for Gaussian Pulses

Consider an initially unchirped Gaussian pulse with envelope U(0, τ ) = e−τ 2/2. We
have assumed a normalized envelope so that the pulse has unit peak amplitude and
1/e-width T0 = 1. For such a pulse, the parameter
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LNL = λAe

2πn̄P0

is called the nonlinear length. Here P0 is the peak power of the pulse, assumed to be
unity in this case. If the link length is comparable to, or greater than, the nonlinear
length, the effect of the nonlinearity can be quite severe.

In the presence of SPM alone (neglecting chromatic dispersion), this pulse ac-
quires a distance-dependent chirp. The initially unchirped pulse and the same pulse
with an SPM-induced chirp after the pulse has propagated a distance L = 5LNL

are shown in Figure 2.18. In this figure, the center frequency of the pulse is greatly
diminished for the purposes of illustration.

Using (E.18) from Appendix E, the SPM-induced phase change can be calculated
to be −(L/LNL)e−τ 2

. Using the definition of the instantaneous frequency and chirp
factor from Section 2.4, we can calculate the instantaneous frequency of this pulse
to be

ω(τ) = ω0 +
2L

LNL

τe−τ 2

and the chirp factor of this pulse to be

κSPM(τ ) = 2L

LNL

e−τ 2
(1− 2τ 2). (2.24)

Here ω0 is the center frequency of the pulse. The SPM-induced phase change, the
change, ω − ω0, in the instantaneous frequency from the center frequency, and the
chirp factor are plotted in Figure 2.19, for L = LNL. Note that the SPM-induced
chirp depends on τ . Near the center of the pulse when τ ≈ 0, κSPM ≈ 2L/LNL. The

(a) (b)

Figure 2.18 Illustration of the SPM-induced chirp. (a) An unchirped Gaussian pulse.
(b) The pulse in (a) after it has propagated a distance L = 5LNL under the effect of SPM.
(Dispersion has been neglected.)
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Figure 2.19 The phase (a), instantaneous frequency (b), and chirp (c) of an initially unchirped
Gaussian pulse after it has propagated a distance L = LNL.

SPM-induced chirp is thus positive around the center of the pulse and is significant
if L is comparable to LNL. For example, if L = LNL, the chirp factor at the pulse
center is equal to 2.

The SPM-induced chirp appears to increase linearly with distance from (2.24).
However, this is true only when losses are neglected. To take into account the effect
of fiber loss, the expression (2.24) for the SPM-induced chirp should be modified by
replacing L by the effective length Le, given by

Le
def= 1− e−αL

α
(2.25)

and discussed in Section 2.5.1. Here α is the fiber loss discussed in Section 2.1. Note
that Le < 1/α and Le → 1/α for large L. Thus the SPM-induced chirp at the pulse
center is bounded above by 2/LNLα. At 1.55 μm, α ≈ 0.22 dB/km and 1/α ≈ 20 km.
Thus, regardless of the propagated distance L, the SPM-induced chirp is significant
only if LNL is comparable to 20 km. Since we calculated that the nonlinear length
LNL = 384 km for a transmitted power of 1 mW, the SPM-induced effects can be
neglected at these power levels. At a transmitted power level of 10 mW, LNL = 38 km
so that SPM effects cannot be neglected.

2.5.7 Cross-Phase Modulation

In WDM systems, the intensity-dependent nonlinear effects are enhanced since the
combined signal from all the channels can be quite intense, even when individual
channels are operated at moderate powers. Thus the intensity-dependent phase shift,
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and consequent chirping, induced by SPM alone is enhanced because of the inten-
sities of the signals in the other channels. This effect is referred to as cross-phase
modulation (CPM).

To understand the effects of CPM, it is sufficient to consider a WDM system with
two channels. For such a system,

E(r, t) = E1 cos(ω1t − β1z)+ E2 cos(ω2t − β2z).

Using (2.19), the nonlinear dielectric polarization is given by

�NL(r, t) = ε0χ
(3) (E1 cos(ω1t − β1z)+ E2 cos(ω2t − β2z))

3

= ε0χ
(3)

[(
3E3

1
4
+ 3E2

2E1

2

)
cos(ω1t − β1z)+

(
3E3

2
4
+ 3E2

1E2

2

)
cos(ω2t − β2z)

+ 3E2
1E2

4
cos((2ω1 − ω2)t − (2β1 − β2)z)

+ 3E2
2E1

4
cos((2ω2 − ω1)t − (2β2 − β1)z)

+ 3E2
1E2

4
cos((2ω1 + ω2)t − (2β1 + β2)z)

+ 3E2
2E1

4
cos((2ω2 + ω1)t − (2β2 + β1)z)

+ E3
1

4
cos(3ω1t − 3β1z)+

E3
2

4
cos(3ω2t − 3β2z)

]
. (2.26)

The terms at 2ω1 + ω2, 2ω2 + ω1, 3ω1, and 3ω2 can be neglected since the phase-
matching condition will not be satisfied for these terms owing to the presence of
fiber chromatic dispersion. We will discuss the terms at 2ω1 − ω2 and 2ω2 − ω1 in
Section 2.5.8 when we consider four-wave mixing. The component of the nonlinear
dielectric polarization at the frequency ω1 is

3
4
ε0χ

(3)
(
E2

1 + 2E2
2

)
E1 cos(ω1t − β1z). (2.27)

When the wave equations (2.10) and (2.11) are modified to include the effect of
nonlinear dielectric polarization and solved for the resulting electric field, this field
has a sinusoidal component at ω1 whose phase changes in proportion to (E2

1 +
2E2

2)z. The first term is due to SPM, whereas the effect of the second term is called
cross-phase modulation. Note that if E1 = E2 so that the two fields have the same
intensity, the effect of CPM appears to be twice as bad as that of SPM. Since the
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effect of CPM is qualitatively similar to that of SPM, we expect CPM to exacerbate
the chirping and consequent pulse-spreading effects of SPM in WDM systems, which
we discussed in Section 2.5.5.

In practice, the effect of CPM in WDM systems operating over standard
single-mode fiber can be significantly reduced by increasing the wavelength spacing
between the individual channels. Because of fiber chromatic dispersion, the propa-
gation constants βi of these channels then become sufficiently different so that the
pulses corresponding to individual channels walk away from each other, rapidly. This
happens as long as there is a small amount of chromatic dispersion (1–2 ps/nm-km)
in the fiber, which is generally true except close to the zero-dispersion wavelength
of the fiber. On account of this pulse walk-off phenomenon, the pulses, which were
initially temporally coincident, cease to be so after propagating for some distance
and cannot interact further. Thus the effect of CPM is reduced. For example, the
effects of CPM are negligible in standard SMF operating in the 1550 nm band with
100 GHz channel spacings. In general, all nonlinear effects in optical fiber are weak
and depend on long interaction lengths to build up to significant levels, so any mech-
anism that reduces the interaction length decreases the effect of the nonlinearity.
Note, however, that in dispersion-shifted fiber, the pulses in different channels do
not walk away from each other since they travel with approximately the same group
velocities. Thus CPM can be a significant problem in high-speed (10 Gb/s and higher)
WDM systems operating over dispersion-shifted fiber.

2.5.8 Four-Wave Mixing

In a WDM system using the angular frequencies ω1, . . . , ωn, the intensity dependence
of the refractive index not only induces phase shifts within a channel but also gives
rise to signals at new frequencies such as 2ωi−ωj and ωi+ωj−ωk. This phenomenon
is called four-wave mixing. In contrast to SPM and CPM, which are significant mainly
for high-bit-rate systems, the four-wave mixing effect is independent of the bit rate
but is critically dependent on the channel spacing and fiber chromatic dispersion.
Decreasing the channel spacing increases the four-wave mixing effect, and so does
decreasing the chromatic dispersion. Thus the effects of FWM must be considered
even for moderate-bit-rate systems when the channels are closely spaced and/or
dispersion-shifted fibers are used.

To understand the effects of four-wave mixing, consider a WDM signal that is
the sum of n monochromatic plane waves. Thus the electric field of this signal can
be written as

E(r, t) =
n∑

i=1

Ei cos(ωi t − βiz).
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Using (2.19), the nonlinear dielectric polarization is given by

�NL(r, t) = ε0χ
(3)

n∑
i=1

n∑
j=1

n∑
k=1

Ei cos(ωi t − βiz)Ej cos(ωj t − βjz)Ek cos(ωkt − βkz)

= 3ε0χ
(3)

4

n∑
i=1

⎛
⎝E2

i + 2
∑
j �=i

EiEj

⎞
⎠Ei cos(ωi t − βiz) (2.28)

+ ε0χ
(3)

4

n∑
i=1

E3
i cos(3ωit − 3βiz) (2.29)

+ 3ε0χ
(3)

4

n∑
i=1

∑
j �=i

E2
i Ej cos((2ωi − ωj )t − (2βi − βj )z) (2.30)

+ 3ε0χ
(3)

4

n∑
i=1

∑
j �=i

E2
i Ej cos((2ωi + ωj )t − (2βi + βj )z) (2.31)

+ 6ε0χ
(3)

4

n∑
i=1

∑
j>i

∑
k>j

EiEjEk

(
cos((ωi + ωj + ωk)t − (βi + βj + βk)z) (2.32)

+ cos((ωi + ωj − ωk)t − (βi + βj − βk)z) (2.33)

+ cos((ωi − ωj + ωk)t − (βi − βj + βk)z) (2.34)

+ cos((ωi − ωj − ωk)t − (βi − βj − βk)z)

)
. (2.35)

Thus the nonlinear susceptibility of the fiber generates new fields (waves) at the
frequencies ωi ± ωj ± ωk (ωi , ωj , ωk not necessarily distinct). This phenomenon
is termed four-wave mixing. The reason for this term is that three waves with the
frequencies ωi , ωj , and ωk combine to generate a fourth wave at a frequency ωi ±
ωj ± ωk. For equal frequency spacing, and certain choices of i, j , and k, the fourth
wave contaminates ωi . For example, for a frequency spacing �ω, taking ω1, ω2, and
ωk to be successive frequencies, that is, ω2 = ω1 +�ω and ω3 = ω1 + 2�ω, we have
ω1 − ω2 + ω3 = ω2, and 2ω2 − ω1 = ω3.

The term (2.28) represents the effect of SPM and CPM that we have discussed
in Sections 2.5.5 and 2.5.7. The terms (2.29), (2.31), and (2.32) can be neglected
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because of lack of phase matching. Under suitable circumstances, it is possible to
approximately satisfy the phase-matching condition for the remaining terms, which
are all of the form ωi + ωj − ωk, i, j �= k (ωi , ωj not necessarily distinct). For
example, if the wavelengths in the WDM system are closely spaced, or are spaced
near the dispersion zero of the fiber, then β is nearly constant over these frequencies
and the phase-matching condition is nearly satisfied. When this is so, the power
generated at these frequencies can be quite significant.

There is a compact way to express these four-wave mixing terms of the form
ωi + ωj − ωk, i, j �= k, that is frequently used in the literature. Define ωijk =
ωi + ωj − ωk and the degeneracy factor

dijk =
{

3, i = j,

6, i �= j.

Then the nonlinear dielectric polarization term at ωijk can be written as

�ijk(z, t) = ε0χ
(3)

4
dijkEiEjEk cos((ωi + ωj − ωk)t − (βi + βj − βk)z). (2.36)

If we assume that the optical signals propagate as plane waves over an effective
cross-sectional area Ae within the fiber (see Figure 2.15) using (2.36), it can be shown
that the power of the signal generated at the frequency ωijk after traversing a fiber
length of L is

Pijk =
(

ωijkdijkχ
(3)

8Aeneffc

)2

PiPjPkL
2,

where Pi , Pj , and Pk are the input powers at ωi , ωj , and ωk. Note that the refractive
index n is replaced by the effective index neff of the fundamental mode. In terms of
the nonlinear refractive index n̄, this can be written as

Pijk =
(

ωijkn̄dijk

3cAe

)2
PiPjPkL

2. (2.37)

We now consider a numerical example. We assume that each of the optical signals
at ωi , ωj , and ωk has a power of 1 mW and the effective cross-sectional area of
the fiber is Ae = 50 μm2. We also assume ωi �= ωj so that dijk = 6. Using n̄ =
3.0 × 10−8 μm2/W, and taking the propagation distance L = 20 km, we calculate
that the power Pijk of the signal at the frequency ωijk generated by the four-wave
mixing process is about 9.5 μW. Note that this is only about 20 dB below the signal
power of 1 mW. In a WDM system, if another channel happens to be located at ωijk ,
the four-wave mixing process can produce significant degradation of that channel.
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In practice, the signals generated by four-wave mixing have lower powers due to
the lack of perfect phase matching and the attenuation of signals due to fiber loss.
We will consider some numerical examples that include these effects in Chapter 5.

2.5.9 Fiber Types to Mitigate Nonlinear Effects

Just as dispersion-shifted fibers were developed to reduce the pulse spreading due to
chromatic dispersion in the 1.55 μm band, other fiber types have been developed to
mitigate the effects of nonlinearities on optical communication systems. We discuss
the salient characteristics of these fibers in this section.

Nonzero-Dispersion Fiber

Although dispersion-shifted fiber overcomes the problems due to chromatic disper-
sion in the 1.55 μm wavelength window, unfortunately it is not suitable for use with
WDM because of severe penalties due to four-wave mixing and other nonlinearities
(see Section 5.8). As we shall see, these penalties are reduced if a little chromatic dis-
persion is present in the fiber because the different interacting waves then travel with
different group velocities. This led to the development of nonzero-dispersion fibers
(NZ-DSF). Such fibers have a chromatic dispersion between 1 and 6 ps/nm-km, or
between −1 and −6 ps/nm-km, in the 1.55 μm wavelength window. This reduces
the penalties due to nonlinearities while retaining most of the advantages of DSF.

Examples include the LS fiber from Corning, which has a zero-dispersion wave-
length of 1560 nm and a small chromatic dispersion of 0.092(λ− 1560) ps/nm-km in
the 1550 nm wavelength window, and the TrueWave fiber from Lucent Technologies.

Since all NZ-DSFs are designed to have a small nonzero value of the dispersion
in the C-band, their zero-dispersion wavelength lies outside the C-band but could lie
in the L-band or in the S-band. In such cases, a large portion of the band around
the zero-dispersion wavelength becomes unusable due to four-wave mixing. Alcatel’s
TeraLight fiber is an NZ-DSF with a zero-dispersion wavelength that lies below
1440 nm and is thus designed to be used in all three bands.

As we shall see in Chapter 5, in addition to having a small value, it is important
to have a small slope (versus wavelength) for the chromatic dispersion. Having a
small slope reduces the spread in the accumulated chromatic dispersion among the
different channels in a WDM system. If the spread is small, that is, the accumulated
chromatic dispersion in different channels is close to being uniform, it may be possible
to compensate the accumulated chromatic dispersion in all the channels with a single
chromatic dispersion compensator (discussed in Chapter 5). This would be cheaper
than using a chromatic dispersion compensator for each channel. The chromatic
dispersion slopes of TrueWave fiber, TrueWave RS (reduced slope) fiber, and LEAF
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Figure 2.20 Dispersion profiles (slopes) of TrueWave fiber, TrueWave RS fiber, and
LEAF.

(which is discussed below) are shown in Figure 2.20. Lucent’s TrueWave RS fiber
has been designed to have a smaller value of the chromatic dispersion slope, about
0.05 ps/nm-km2, compared to other NZ-DSFs, which have chromatic dispersion
slopes in the range 0.07–0.11 ps/nm-km2.

Large Effective Area Fiber

The effect of nonlinearities can be reduced by designing a fiber with a large effective
area. We have seen that nonzero-dispersion fibers have a small value of the chromatic
dispersion in the 1.55 μm band to minimize the effects of chromatic dispersion. Un-
fortunately, such fibers also have a smaller effective area. Recently, an NZ-DSF with
a large effective area—over 70 μm2—has been developed by both Corning (LEAF)
and Lucent (TrueWave XL). This compares to about 50 μm2 for a typical NZ-DSF
and 85 μm2 for SMF. These fibers thus achieve a better trade-off between chromatic
dispersion and nonlinearities than normal NZ-DSFs. However, the disadvantage is
that these fibers have a larger chromatic dispersion slope—about 0.11 ps/nm-km2

compared to about 0.07 ps/nm-km2 for other NZ-DSFs, and about 0.05 ps/nm-km2

for reduced slope fiber. Another trade-off is that a large effective area also reduces
the efficiency of distributed Raman amplification (see Sections 2.5.3 and 5.8.3).

A typical refractive index profile of LEAF is shown in Figure 2.21. The core region
consists of three parts. In the innermost part, the refractive index has a triangular
variation. In the annular (middle) part, the refractive index is equal to that of the
cladding. This is surrounded by the outermost part of the core, which is an annular
region of higher refractive index. The middle part of the core, being a region of lower
refractive index, does not confine the power, and thus the power gets distributed over
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Figure 2.22 Distribution of power in the cores of DSF and LEAF. Note that the power
in the case of LEAF is distributed over a larger area. (After [Liu98].)

a larger area. This reduces the peak power in the core and increases the effective area
of the fiber. Figure 2.22 shows the distribution of power in the cores of DSF and
LEAF.

Positive and Negative Dispersion Fibers

Fibers can be designed to have either positive chromatic dispersion or negative chro-
matic dispersion in the 1.55 μm band. Typical chromatic dispersion profiles of fibers,
having positive and negative chromatic dispersion in the 1.55 μm band, are shown



98 Propagation of Signals in Optical Fiber

1500 1550 1600
Wavelength (nm)

D
is

p
er

si
o
n

(p
s/

k
m

-n
m

)

0

2

4

6

�2

�6

�4

C-band

Positive
dispersion
fiber

Negative
dispersion
fiber
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in Figure 2.23. Positive chromatic dispersion fiber is used for terrestrial systems, and
negative chromatic dispersion fiber in submarine systems. (For chromatic dispersion
compensation, the opposite is true: negative chromatic dispersion fiber is used for ter-
restrial systems, and positive chromatic dispersion fiber for submarine systems.) Both
positive and negative chromatic dispersion cause pulse spreading, and the amount
of pulse spreading depends only on the magnitude of the chromatic dispersion, and
not on its sign (in the absence of chirping and nonlinearities). Then, why the need
for fibers with different signs of chromatic dispersion, positive for terrestrial systems
and negative for undersea links? To understand the motivation for this, we need to
understand another nonlinear phenomenon: modulation instability.

We have already seen in Section 2.4 (Figure 2.10) that pulse compression occurs
for a positively chirped pulse when the chromatic dispersion is positive (D > 0 and
β2 < 0). We have also seen that SPM causes positive chirping of pulses (Figure 2.18).
When the power levels are high, the interaction between these two phenomena—
chromatic dispersion and SPM-induced chirp—leads to a breakup of a relatively
broad pulse (of duration, say, 100 ps, which approximately corresponds to 10 Gb/s
transmission) into a stream of short pulses (of duration a few picoseconds). This
phenomenon is referred to as modulation instability and leads to a significantly
increased bit error rate. Modulation instability occurs only in positive chromatic
dispersion fiber and thus can be avoided by the use of negative chromatic dispersion
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fiber. Its effects in positive chromatic dispersion fiber can be minimized by using
lower power levels. (In the next section, we will see that due to the same interaction
between SPM and chromatic dispersion that causes modulation instability, a family
of narrow, high-power pulses with specific shapes, called solitions, can propagate
without pulse broadening.)

WDM systems cannot operate around the zero-dispersion wavelength of the fiber
due to the severity of four-wave mixing. For positive chromatic dispersion fiber, the
dispersion zero lies below the 1.55 μm band, and not in the L-band. Hence, systems
using positive chromatic dispersion fiber can be upgraded to use the L-band (see
Figure 2.2). This upgradability is an important feature for terrestrial systems. Thus,
positive chromatic dispersion fiber is preferred for terrestrial systems, and the power
levels are controlled so that modulation instability is not significant. For undersea
links, however, the use of higher power levels is very important due to the very long
link lengths. These links are not capable of being upgraded anyway—since they are
buried on the ocean floor—so the use of the L-band in these fibers at a later date is
not possible. Hence negative chromatic dispersion fiber is used for undersea links.

Since negative chromatic dispersion fiber is used for undersea links, the chromatic
dispersion can be compensated using standard single-mode fiber (SMF), which has
positive chromatic dispersion. That is, alternating lengths of negative chromatic
dispersion fiber and (positive chromatic dispersion) SMF can be used to keep the
total chromatic dispersion low. This is preferable to using dispersion compensating
fibers since they are more susceptible to nonlinear effects because of their lower
effective areas.

Note that all the fibers we have considered have positive chromatic dispersion
slope; that is, the chromatic dispersion increases with increasing wavelength. This is
mainly because the material dispersion slope of silica is positive and usually dom-
inates the negative chromatic dispersion slope of waveguide dispersion (see Fig-
ure 2.12). Negative chromatic dispersion slope fiber is useful in chromatic dispersion
slope compensation, a topic that we discuss in Section 5.7.3. While it is possible
to build a negative chromatic dispersion fiber (in the 1.55 μm band) with negative
slope, it is considered difficult to design a positive chromatic dispersion fiber with
negative slope.

In Figure 2.24, we summarize the chromatic dispersion in the C-band, and the
chromatic dispersion slope, for all the fibers we have discussed.

2.6 Solitons

Solitons are narrow pulses with high peak powers and special shapes. The most
commonly used soliton pulses are called fundamental solitons. The shape of these
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Figure 2.24 Chromatic dispersion in the C-band, and the chromatic dispersion slope,
for various fiber types.

pulses is shown in Figure 2.25. As we have seen in Section 2.4, most pulses undergo
broadening (spreading in time) due to group velocity dispersion when propagating
through optical fiber. However, the soliton pulses take advantage of nonlinear effects
in silica, specifically self-phase modulation discussed in Section 2.5.5, to overcome
the pulse-broadening effects of group velocity dispersion. Thus these pulses can
propagate for long distances with no change in shape.

As mentioned in Section 2.4, and discussed in greater detail in Appendix E,
a pulse propagates with the group velocity 1/β1 along the fiber, and in general,
because of the effects of group velocity dispersion, the pulse progressively broadens
as it propagates. If β2 = 0, all pulse shapes propagate without broadening, but if
β2 �= 0, is there any pulse shape that propagates without broadening? The key to
the answer lies in the one exception to this pulse-broadening effect that we already
encountered in Section 2.4, namely, that if the chirp parameter of the pulse has the
right sign (opposite to that of β2), the pulse initially undergoes compression. But we
have seen that even in this case (Problem 2.11), the pulse subsequently broadens. This
happens in all cases where the chirp is independent of the pulse envelope. However,
when the chirp is induced by SPM, the degree of chirp depends on the pulse envelope.
If the relative effects of SPM and GVD are controlled just right, and the appropriate
pulse shape is chosen, the pulse compression effect undergone by chirped pulses
can exactly offset the pulse-broadening effect of dispersion. The pulse shapes for
which this balance between pulse compression and broadening occurs so that the
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(b)

(a)

Figure 2.25 (a) A fundamental soliton pulse and (b) its envelope.

pulse either undergoes no change in shape or undergoes periodic changes in shape
only are called solitons. The family of pulses that undergo no change in shape are
called fundamental solitons, and those that undergo periodic changes in shape are
called higher-order solitons. A brief quantitative discussion of soliton propagation
in optical fiber appears in Section E.3.

The significance of solitons for optical communication is that they overcome the
detrimental effects of chromatic dispersion completely. Optical amplifiers can be used
at periodic intervals along the fiber so that the attenuation undergone by the pulses
is not significant, and the higher powers and the consequent soliton properties of the
pulses are maintained. Solitons and optical amplifiers, when used together, offer the
promise of very high-bit-rate, repeaterless data transmission over very large distances.
By the combined use of solitons and erbium-doped fiber amplifiers (Section 3.4.3),
repeaterless data transmission at a bit rate of 80 Gb/s over a distance of 10,000 km
has been demonstrated in the laboratory [NSK99].
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The use of soliton pulses is key to realizing the very high bit rates required in
OTDM systems. These aspects of solitons will be explored in Chapter 12.

The main advantage of soliton systems is their relative immunity to fiber disper-
sion, which in turn allows transmission at high speeds of a few tens of gigabits per
second. On the other hand, in conventional on-off–keyed systems, dispersion can be
managed in a much simpler manner by alternating fibers with positive and negative
dispersion. We encountered this in Section 2.5.9 and we will study this further in
Chapter 5. Such systems, when using special pulses called chirped RZ pulses, can
also be viewed as soliton systems, albeit of a different kind, and we discuss this
subject in the next section.

2.6.1 Dispersion-Managed Solitons

Solitons can also be used in conjunction with WDM, but significant impairments
arise when two pulses at different wavelengths overlap in time and position in
the fiber. Such collisions, which occur frequently in the fiber, add timing jitter to
the pulses. Although methods to overcome this timing jitter have been devised,
commercial deployment of soliton-based systems has not been widespread for two
main reasons. First, solitons require new disperson-shifted fiber with a small value
of anomalous dispersion (0 < D < 1 ps/nm-km). Thus soliton-based systems cannot
be used on existing fiber plants, whether based on SMF or on the popular NZ-DSF
fibers. Second, solitons require amplification about every 20 km or so, which is an
impracticably small spacing compared to today’s WDM systems, which work with
amplifier hut spacings of the order of 60–80 km. Larger values of dispersion lead
to higher levels of timing jitter, higher peak pulse powers, and even closer amplifier
spacings.

High-bit-rate transmission on widely deployed fiber plants, with reasonable am-
plifier spacings, has been achieved through a combination of (1) using pulses nar-
rower than a bit period but much wider than solitons, and (2) dispersion compensa-
tion of the fiber plant at periodic intervals to keep the average dispersion low. The
pulses used in such systems are called chirped return-to-zero (RZ) pulses and will
be discussed in Section 4.1. When the characteristics of such a dispersion-managed
system are mathematically analyzed, it can be shown that such a system is indeed
“soliton-like” in the sense that a specific chirped Gaussian pulse shape will be trans-
mitted through such a system with only periodic changes in shape, that is, with no
net broadening due to dispersion, in the absence of loss. Such pulses are also called
dispersion-managed (DM) solitons. We will discuss the performance of systems em-
ploying such pulses in Chapter 5. By the use of chirped RZ pulses, repeaterless data
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transmission in a 25-channel WDM system at a bit rate of 40 Gb/s per channel, over
a distance of 1500 km, has been demonstrated in the laboratory [SKN01].

2.7 Other Fiber Technologies

We will discuss two fiber types that are not traditional glass fibers. The first is
designed by having periodic structures, and the second uses plastic material.

2.7.1 Photonic Crystal Fiber

In previous sections we have seen how dopants and fiber profile can be engineered
to reduce loss, dispersion and nonlinearity, for better transmission. There is another
category of fiber designs that is not limited by bulk material properties. As in semi-
conductors, engineers can create sometimes startling properties that do not exist in
bulk materials by playing with periodic structures and defects in periodic structures
within the fiber. These fiber designs are called photonic crystal fibers (PCFs).

PCFs were first demonsrated in 1996 and have been an active area of research
since then. Some of the properties that can be created are dispersion, nonlinearity,
and even negative refractive index (e.g., according to Snell’s law, as illustrated in
Figure 2.4, if the refractive index is positive, the rays are refracted on the opposite
side of the normal on entering the material, but negative refractive index means rays
will be refracted on the same side).

PCF enables a number of functions in fiber, some of which are relevant to disper-
sion compensation, amplification, and wavelength conversion by nonlinear optics.
The PCF structures for fiber have been in two dimensions. We should note that the
associated science and fabrication of PCF has extended beyond fiber to materials for
other devices and that structures in three dimensions are being explored as well.

All the fiber types described below are “holey” fibers, in which the glass material is
laced with a carefully designed pattern of holes. Figure 2.26 shows what crosssections
of holey fiber may look like. We can see that structures have a pattern in two
dimensions. A common way to make such a fiber is to bundle together tubes of
glass and then to draw out the fiber. Fabrication of these holes and maintaining the
precision of the design while the fiber is drawn continues to be a challenge that limits
their use to specialty purposes.

However, there are two very different classes of holey fiber, which work on
different physical principles: index guiding and photonic bandgap. (Hybrid versions
that take advantage of both effects also exist.)
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(a) (b)

Figure 2.26 Two examples of the crosssection of holey fibers.

Index Guiding

The fibers we will discuss next have a periodic structure but do not rely on the peri-
odicity to provide fiber guiding. They still use index guiding. To get a flavor of what
these structures allow, suppose we would like to reduce the fiber’s bending loss (see
Section 2.1.1). One way to reduce loss is to confine the light more strongly to the core
by increasing the index difference between the core and cladding. However, (2.12)
implies that if the core size is kept constant, then the fiber will become multimoded at
a longer cutoff wavelength, possibly even at the operational wavelength of interest.
Conversely, if the core size is decreased to maintain the desired cutoff wavelength,
the mode size would shrink to the point that it becomes impractical to effectively
connect the fiber to other components, for example, by splicing or other connector
technologies.

Now suppose air holes are introduced into the cladding of the fiber. If these holes
are small enough that the optical mode “sees” only the average index, the effective
cladding index—an average between the original cladding material index and the air
index of unity—is dramatically lowered. The result is a very large index difference.

In reality, the index “seen” by the mode is more complex than simply the average
of air and glass indices since there is no way to completely remove the effect of
the periodic structure. Also note that the periodic structure can be optimized by a
designer so that its effects will improve the fiber’s performance further. One of these
effects is discussed in the next section on photonic bandgap fibers.

A holey fiber that has found commercial application is the Corning ClearCurve,
which uses holes in a ring within the cladding. These holes are so small (several
hundred nanometers in diameter) that the material is described as a “nanostructure.”
The ClearCurve fiber can be bent tightly (5 mm radius) with minimal loss. Cable
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made with the fiber can be handled like electrical wire when installed at residences
for fiber-to-the-home, which is not possible with ordinary single-mode fiber.

Holey fiber can also have its holes filled with materials rather than air. For
example, materials with high nonlinearity, including gases and liquid crystals, have
been introduced into the holes. These hybrids allow the designer to combine desired
properties of fiber guiding with a host of other material properties.

Photonic Bandgap

An air-guided fiber has a periodic array of holes running longitudinally down the
fiber, and these holes define a guiding structure. The “core” is defined by a defect or
extra hole such that the guided mode exists mostly in air. Figure 2.26(b) shows an
example with a hole in its center.

Note that since the “core” is mostly in air, it should have a lower index than
the surrounding cladding. Thus, this fiber does not exploit total internal reflection
to confine the light to the core. Instead, it uses the periodic structure of the holes.
The structure creates a photonic bandgap, which is a range (or band) of wavelengths
for which propagation is forbidden. The principle behind it is the same as that used
in Bragg gratings, which is covered in Section 3.3.3. A Bragg grating is a periodic
perturbation in the propagation medium, usually a periodic variation of the index
of refraction. For the fiber, the periodicity of the hole structure in the cladding
destructively interferes with light of certain wavelengths that attempts to penetrate
it. The periodicity in the cladding is designed to have a bandgap for the range of
wavelengths used in operation. Then wavelengths within the range are confined to
the core. This phenomenon is called a photonic bandgap because it is analagous to
an electronic bandgap found in semiconductors.

In practice, the tolerances required have kept air-guiding fiber from commercial
use to date. The demonstrated losses have been higher than conventional transmis-
sion fiber, and the manufacturing difficulty is considerably greater.

2.7.2 Plastic Optical Fiber

In today’s home networks, many types of media are being used to connect increasingly
high-speed data feeds between set-top boxes, computers, storage, and various pieces
of audiovisual equipment. These include various forms of copper (coax installed by
cable operators, existing phone lines, existing power lines), wireless, and even fiber.

One advantage plastic optical fiber has over glass fiber for home networking is
simplicity of termination, which can be done with a penknife or plastic-melting tools.
Another material-based difference from glass fiber is its long-term reliability under
sustained bends. Plastic optical fiber is able to creep (i.e., gradually deform over very
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long times) to relieve strain and hence does not suffer the chemical surface changes
that afflict strained glass.

Plastic optical fiber has been in the home for decades. For example, the
Sony/Philips Digital Interconnect Format (S/PDIF) interfaces are used to carry audio
signals between devices and stereo components. The physical medium can be optical
fiber using the TOSLINK R© (TOShiba-Link) standard. This application uses step-
index polymethyl methacrylate (PMMA) fibers whose 1 mm total diameter consists
of a 980 micron diameter plus 10 micron thick cladding ring. The core index is 1.49
and the cladding index is 1.42. The bit rate-distance product is 10 MHz-km. Because
of the short distances of the applications, the bandwidth limitations have typically
not come from the fiber but from the speed of the transmitters, which are 650 nm
LEDs. The material does not transmit in the infrared, thus disallowing the use of
850 nm VCSEL transmitters used in gigabit per second data communications.

Perfluorinated graded-index fiber (POF) is designed to reduce the material ab-
sorption loss at 850 nm wavelength, so that the fiber can be used with VCSELs for
high-speed home networking. The highest bit rate-distance products are obtainable
with smaller cores. As the core gets smaller, the design becomes similar to that of
silica-based multimode fiber. The trade-off is that increasing the bit rate-distance
product reduces both the mechanical tolerances for connectors and bend insensitiv-
ity.

Summary

Understanding light propagation in optical fiber is key to appreciating not only
the significant advantages of using optical fiber as a propagation medium but also
the problems that we must tackle in designing high-bit-rate WDM systems. We
started by understanding how light propagates in multimode fibers using a simple ray
theory approach. This introduced the concept of pulse broadening due to multimode
dispersion and motivated the use of single-mode fibers. After describing the elements
of light propagation in single-mode fibers, we studied the limitations imposed on
optical communication systems due to the pulse-broadening effects of chromatic
dispersion.

Although dispersion is the most important phenomenon limiting the performance
of systems at bit rates of 2.5 Gb/s and below, nonlinear effects become important at
higher bit rates. The main nonlinear effects that impair high-speed WDM transmis-
sion are self-phase modulation and four-wave mixing. We studied the origin of these,
as well as other nonlinear effects, and briefly outlined the constraints on optical com-
munication systems imposed by them. We will return to the system limitations of
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both dispersion and nonlinearities when we discuss the design of optical transmission
systems in Chapter 5.

We also studied the new types of fibers that have been introduced to mitigate
the effects of dispersion and nonlinearities. We then discussed solitons, which are
special pulses designed to play off dispersion and nonlinearities against each other
to achieve high-bit-rate, ultra-long-haul transmission.

We also discussed new types of multimode fiber, and novel fiber types such as
holey and plastic fibers.

Further Reading

The propagation of light in optical fiber is treated in several books at varying levels
of detail. One of the earliest books on this subject is by Marcuse [Mar74]. The
book by Green [Gre93] starts with the fundamentals of both geometrical optics and
electromagnetics and describes the propagation of light using both the ray and wave
theory approaches. The concepts of polarization and birefringence are also treated in
some detail. However, the effects of dispersion and nonlinearities are described only
qualitatively. The book on fiber optic communication by Agrawal [Agr97] focuses
on the wave theory approach and treats the evolution of chirped Gaussian pulses
in optical fiber and the pulse-broadening effects of chromatic dispersion in detail.
Chromatic dispersion and intermodal dispersion are also treated at length in the
books edited by Miller and Kaminow [MK88] and Lin [Lin89]. We recommend
the book by Ramo, Whinnery, and van Duzer [RWv93] for an in-depth study of
electromagnetic theory leading up to the description of light propagation in fiber. The
books by Jeunhomme [Jeu90] and Neumann [Neu88] are devoted to the propagation
of light in single-mode fibers. Jeunhomme treats fiber modes in detail and has a
more mathematical treatment. We recommend Neumann’s book for its physical
explanations of the phenomena involved. The paper by Gloge [Glo71] on fiber
modes is a classic.

In all these books, nonlinear effects are only briefly mentioned. The book by
Agrawal [Agr95] is devoted to nonlinear fiber optics and contains a very detailed
description of light propagation in optical fiber, including all the nonlinear effects
we have discussed. Soliton propagation is also discussed. One of the earliest papers
on four-wave mixing is [HJKM78]. Note that cgs units are used in this paper. The
units used in the description of nonlinear effects are a source of confusion. The
relationships between the various units and terminologies used in the description of
nonlinear effects are described in the book by Butcher and Cotter [BC90]. This book
also contains a particularly clear exposition of the fundamentals of nonlinear effects.
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The system impact of dispersion and nonlinearities and their interplay are discussed
in detail in [KK97, Chapter 8].

Information on the new types of fibers that have been introduced to combat
dispersion and nonlinearities can be found on the Web pages of the manufacturers:
Corning and OFS (formerly Lucent Technology’s Optical Fiber Solutions business
and now part of Furukawa Electric). Much of the data on the new fiber types for
this chapter was gathered from these Web pages. The ITU has standardized three
fiber types. ITU-T recommendation (standard) G.652 specifies the characteristics of
standard single-mode fiber, G.653 that of DSF, and G.655 that of NZ-DSF. ISO has
standards for multimode fiber [ISO02]. There are a number of references on pho-
tonic crystal fiber, for example, [Rus03, Rus06, LN08]. An overview and historical
perspective on waveguides can be found in [DK08]

A nice treatment of the basics of solitons appears in [KBW96]. Issues in the design
of WDM soliton communication systems are discussed at length in [KK97, Chapter
12]. A summary of soliton field trials appears in [And00]. DM solitons are discussed
in [Nak00].

Problems

Note that some of these problems require an understanding of the material in the
appendices referred to in this chapter.

2.1 Derive (2.2).

2.2 A step-index multimode glass fiber has a core diameter of 50 μm and cladding
refractive index of 1.45. If it is to have a limiting intermodal dispersion δT of 10
ns/km, find its acceptance angle. Also calculate the maximum bit rate for transmission
over a distance of 20 km.

2.3 Derive Equation (2.11) for the evolution of the magnetic field vector H̃.

2.4 Derive an expression for the cutoff wavelength λcutoff of a step-index fiber with core
radius a, core refractive index n1, and cladding refractive index n2. Calculate the
cutoff wavelength of a fiber with core radius a = 4 μm and � = 0.003. Assume
n1 = 1.5.

2.5 Consider a step-index fiber with a core radius of 4 μm and a cladding refractive
index of 1.45.

(a) For what range of values of the core refractive index will the fiber be single
moded for all wavelengths in the 1.2–1.6 μm range?
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(b) What is the value of the core refractive index for which the V parameter is
2.0 at λ = 1.55 μm? What is the propagation constant of the single mode
supported by the fiber for this value of the core refractive index?

2.6 Assume that, in the manufacture of a single-mode fiber, the tolerance in the core
radius a is ±5% and the tolerance in the normalized refractive index difference � is
±10%, from their respective nominal values. If the nominal value of � is specified to
be 0.005, what is the largest nominal value that you can specify for a while ensuring
that the resulting fiber will be single moded for λ > 1.2 μm even in the presence of
the worst-case (but within the specified tolerances) deviations of a and � from their
nominal values? Assume that the refractive index of the core is 1.5.

2.7 In a reference frame moving with the pulse, the basic propagation equation that
governs pulse evolution inside a dispersive fiber is

∂A

∂z
+ i

2
β2

∂2A

∂t2 = 0,

where A(z, t) is the pulse envelope. If A(0, t) = A0 exp(−t2/2T 2
0 ) for some constants

A0 and T0, solve this propagation equation to find an expression for A(z, t).
Note: You may use the following result without proof:∫ ∞

−∞
exp(−(x −m)2/2α) dx =

√
2πα

for all complex m and α provided (α) > 0.
Hint: Consider the Fourier transform Ã(z, ω) of A(z, t).

2.8 Starting from (E.8) in Appendix E, derive the expression (2.13) for the width Tz of a
chirped Gaussian pulse with initial width T0 after it has propagated a distance z.

2.9 Show that an unchirped Gaussian pulse launched at z = 0 remains Gaussian for all
z but acquires a distance-dependent chirp factor

κ(z) = sgn(β2)z/LD

1+ (z/LD)2 .

2.10 Show that the rms width of a Gaussian pulse whose half-width at the 1/e-intensity
point is T0 is given by T0/

√
2.

2.11 Consider a chirped Gaussian pulse for which the product κβ2 is negative that is
launched at z = 0. Let κ = 5.

(a) For what value of z (as a multiple of LD) does the launched pulse attain its
minimum width?
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(b) For what value of z is the width of the pulse equal to that of an unchirped
pulse, for the same value of z? (Assume the chirped and unchirped pulses
have the same initial pulse width.)

2.12 Show that in the case of four-wave mixing, the nonlinear polarization is given by
terms (2.28) through (2.32).

2.13 You want to design a soliton communication system at 1.55 μm, at which wavelength
the fiber has β2 = −2 ps2/km and γ = 1/W-km. The peak power of the pulses you
can generate is limited to 50 mW. If you must use fundamental solitons and the
bit period must be at least 10 times the full width at half-maximum (TFWHM) of
the soliton pulses, what is the largest bit rate you can use? (This problem requires
familiarity with the material in Appendix E.)
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3
c h a p t e r

Components

In this chapter, we will discuss the physical principles behind the operation
of the most important components of optical communication systems. For each

component, we will give a simple descriptive treatment followed by a more detailed
mathematical treatment.

The components used in modern optical networks include couplers, lasers, pho-
todetectors, optical amplifiers, optical switches, and filters and multiplexers. Cou-
plers are simple components used to combine or split optical signals. After describing
couplers, we will cover filters and multiplexers, which are used to multiplex and de-
multiplex signals at different wavelengths in WDM systems. We then describe various
types of optical amplifiers, which are key elements used to overcome fiber and other
component losses and, in many cases, can be used to amplify signals at multiple
wavelengths. Understanding filters and optical amplifiers is essential to understand-
ing the operation of lasers, which comes next. Semiconductor lasers are the main
transmitters used in optical communication systems. Then we discuss photodetec-
tors, which convert the optical signal back into the electrical domain. This is followed
by optical switches, which play an important role as optical networks become more
agile. Finally, we cover wavelength converters, which are used to convert signals
from one wavelength to another, at the edges of the optical network, as well as inside
the network.
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Input 1 Output 1

Output 2Input 2

l
(coupling length)

Fibers or waveguides

Figure 3.1 A directional coupler. The coupler is typically built by fusing two fibers
together. It can also be built using waveguides in integrated optics.

3.1 Couplers

A directional coupler is used to combine and split signals in an optical network.
A 2 × 2 coupler consists of two input ports and two output ports, as is shown in
Figure 3.1. The most commonly used couplers are made by fusing two fibers together
in the middle—these are called fused fiber couplers. Couplers can also be fabricated
using waveguides in integrated optics. A 2× 2 coupler, shown in Figure 3.1, takes a
fraction α of the power from input 1 and places it on output 1 and the remaining
fraction 1 − α on output 2. Similarly, a fraction 1 − α of the power from input 2 is
distributed to output 1 and the remaining power to output 2. We call α the coupling
ratio.

The coupler can be designed to be either wavelength selective or wavelength
independent (sometimes called wavelength flat) over a usefully wide range. In a
wavelength-independent device, α is independent of the wavelength; in a wavelength-
selective device, α depends on the wavelength.

A coupler is a versatile device and has many applications in an optical network.
The simplest application is to combine or split signals in the network. For example,
a coupler can be used to distribute an input signal equally among two output ports
if the coupling length, l in Figure 3.1, is adjusted such that half the power from each
input appears at each output. Such a coupler is called a 3 dB coupler. An n× n star
coupler is a natural generalization of the 3 dB 2×2 coupler. It is an n-input, n-output
device with the property that the power from each input is divided equally among
all the outputs. An n× n star coupler can be constructed by suitably interconnecting
a number of 3 dB couplers, as shown in Figure 3.2. A star coupler is useful when
multiple signals need to be combined and broadcast to many outputs. However,
other constructions of an n×n coupler in integrated optics are also possible (see, for
example, [Dra89]).
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Figure 3.2 A star coupler with eight inputs and eight outputs made by combining 3 dB
couplers. The power from each input is split equally among all the outputs.

Couplers are also used to tap off a small portion of the power from a light stream
for monitoring purposes or other reasons. Such couplers are also called taps and are
designed with values of α close to 1, typically 0.90–0.95.

Couplers are the building blocks for several other optical devices. We will explore
the use of directional couplers in modulators and switches in Sections 3.5.4 and
3.7. Couplers are also the principal components used to construct Mach-Zehnder
interferometers, which can be used as optical filters, multiplexers/demultiplexers, or
as building blocks for optical modulators, switches, and wavelength converters. We
will study these devices in Section 3.3.7.

So far, we have looked at wavelength-independent couplers. A coupler can be
made wavelength selective, meaning that its coupling coefficient will then depend
on the wavelength of the signal. Such couplers are widely used to combine signals
at 1310 nm and 1550 nm into a single fiber without loss. In this case, the 1310 nm
signal on input 1 is passed through to output 1, whereas the 1550 nm signal on input
2 is passed through also to output 1. The same coupler can also be used to separate
the two signals coming in on a common fiber. Wavelength-dependent couplers are
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also used to combine 980 nm or 1480 nm pump signals along with a 1550 nm signal
into an erbium-doped fiber amplifier; see Figures 3.34 and 3.37.

In addition to the coupling ratio α, we need to look at a few other parameters
while selecting couplers for network applications. The excess loss is the loss of the
device above the fundamental loss introduced by the coupling ratio α. For example,
a 3 dB coupler has a nominal loss of 3 dB but may introduce additional losses of,
say, 0.2 dB. The other parameter is the variation of the coupling ratio α compared
to its nominal value, due to tolerances in manufacturing, as well as wavelength
dependence. In addition, we also need to maintain low polarization-dependent loss
(PDL) for most applications.

3.1.1 Principle of Operation

When two waveguides are placed in proximity to each other, as shown in Figure 3.1,
light “couples” from one waveguide to the other. This is because the propagation
modes of the combined waveguide are quite different from the propagation modes
of a single waveguide due to the presence of the other waveguide. When the two
waveguides are identical, which is the only case we consider in this book, light
launched into one waveguide couples to the other waveguide completely and then
back to the first waveguide in a periodic manner. A quantitative analysis of this
coupling phenomenon must be made using coupled mode theory [Yar97] and is
beyond the scope of this book. The net result of this analysis is that the electric fields,
Eo1 and Eo2, at the outputs of a directional coupler may be expressed in terms of the
electric fields at the inputs Ei1 and Ei2, as follows:

(
Eo1(f )

Eo2(f )

)
= e−iβl

(
cos(κl) i sin(κl)

i sin(κl) cos(κl)

)(
Ei1(f )

Ei2(f )

)
. (3.1)

Here, l denotes the coupling length (see Figure 3.1), and β is the propagation constant
in each of the two waveguides of the directional coupler. The quantity κ is called the
coupling coefficient and is a function of the width of the waveguides, the refractive
indices of the waveguiding region (core) and the substrate, and the proximity of the
two waveguides. Equation (3.1) will prove useful in deriving the transfer functions
of more complex devices built using directional couplers (see Problem 3.1).

Although the directional coupler is a two-input, two-output device, it is often
used with only one active input, say, input 1. In this case, the power transfer function
of the directional coupler is

(
T11(f )

T12(f )

)
=
(

cos2(κl)

sin2(κl)

)
. (3.2)
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Here, Tij (f ) represents the power transfer function from input i to output j and is
defined by Tij (f ) = |Eoj |2/|Eii |2. Equation (3.2) can be derived from (3.1) by setting
Ei2 = 0.

Note from (3.2) that for a 3 dB coupler the coupling length must be chosen to
satisfy κl = (2k + 1)π/4, where k is a nonnegative integer.

3.1.2 Conservation of Energy

The general form of (3.1) can be derived merely by assuming that the directional
coupler is lossless. Assume that the input and output electric fields are related by a
general equation of the form(

Eo1
Eo2

)
=
(

s11 s12
s21 s22

)(
Ei1
Ei2

)
. (3.3)

The matrix

S =
(

s11 s12
s21 s22

)

is the transfer function of the device relating the input and output electric fields and
is called the scattering matrix. We use complex representations for the input and
output electric fields, and thus the sij are also complex. It is understood that we
must consider the real part of these complex fields in applications. This complex
representation for the sij allows us to conveniently represent any induced phase
shifts.

For convenience, we denote Eo = (Eo1, Eo2)
T and Ei = (Ei1, Ei2)

T , where the
superscript T denotes the transpose of the vector/matrix. In this notation, (3.3) can
be written compactly as Eo = SEi .

The sum of the powers of the input fields is proportional to ET
i E∗i = |Ei1|2+|Ei2|2.

Here, ∗ represents the complex conjugate. Similarly, the sum of the powers of the
output fields is proportional to ET

o E∗o = |Eo1|2 + |Eo2|2. If the directional coupler is
lossless, the power in the output fields must equal the power in the input fields so
that

ET
o Eo = (SEi )

T (SEi )
∗

= ET
i (ST S∗)E∗i

= ET
i E∗i .

Since this relationship must hold for arbitrary Ei , we must have

ST S∗ = I, (3.4)
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where I is the identity matrix. Note that this relation follows merely from conserva-
tion of energy and can be readily generalized to a device with an arbitrary number
of inputs and outputs.

For a 2× 2 directional coupler, by the symmetry of the device, we can set s21 =
s12 = a and s22 = s11 = b. Applying (3.4) to this simplified scattering matrix, we get

|a|2 + |b|2 = 1 (3.5)

and

ab∗ + ba∗ = 0. (3.6)

From (3.5), we can write

|a| = cos(x) and |b| = sin(x). (3.7)

If we write a = cos(x)eiφa and b = sin(x)eiφb , (3.6) yields

cos(φa − φb) = 0. (3.8)

Thus φa and φb must differ by an odd multiple of π/2. The general form of (3.1)
now follows from (3.7) and (3.8).

The conservation of energy has some important consequences for the kinds of
optical components that we can build. First, note that for a 3 dB coupler, though the
electric fields at the two outputs have the same magnitude, they have a relative phase
shift of π/2. This relative phase shift, which follows from the conservation of energy
as we just saw, plays a crucial role in the design of devices such as the Mach-Zehnder
interferometer that we will study in Section 3.3.7.

Another consequence of the conservation of energy is that lossless combining
is not possible. Thus we cannot design a device with three ports where the power
input at two of the ports is completely delivered to the third port. This result is
demonstrated in Problem 3.2.

3.2 Isolators and Circulators

Couplers and most other passive optical devices are reciprocal devices in that the
devices work exactly the same way if their inputs and outputs are reversed. However,
in many systems there is a need for a passive nonreciprocal device. An isolator is an
example of such a device. Its main function is to allow transmission in one direction
through it but block all transmission in the other direction. Isolators are used in
systems at the output of optical amplifiers and lasers primarily to prevent reflections
from entering these devices, which would otherwise degrade their performance. The
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Figure 3.3 Functional representation of circulators: (a) three-port and (b) four-port.
The arrows represent the direction of signal flow.

two key parameters of an isolator are its insertion loss, which is the loss in the
forward direction and which should be as small as possible, and its isolation, which
is the loss in the reverse direction and which should be as large as possible. The
typical insertion loss is around 1 dB, and the isolation is around 40–50 dB.

A circulator is similar to an isolator, except that it has multiple ports, typically
three or four, as shown in Figure 3.3. In a three-port circulator, an input signal on
port 1 is sent out on port 2, an input signal on port 2 is sent out on port 3, and
an input signal on port 3 is sent out on port 1. Circulators are useful to construct
optical add/drop elements, as we will see in Section 3.3.4. Circulators operate on the
same principles as isolators; therefore we only describe the details of how isolators
work next.

3.2.1 Principle of Operation

In order to understand the operation of an isolator, we need to understand the notion
of polarization. Recall from Section 2.3.3 that the state of polarization (SOP) of light
propagating in a single-mode fiber refers to the orientation of its electric field vector
on a plane that is orthogonal to its direction of propagation. At any time, the electric
field vector can be expressed as a linear combination of the two orthogonal linear
polarizations supported by the fiber. We will call these two polarization modes the
horizontal and vertical modes.

The principle of operation of an isolator is shown in Figure 3.4. Assume that the
input light signal has the vertical SOP shown in the figure. It is passed through a
polarizer, which passes only light energy in the vertical SOP and blocks light energy
in the horizontal SOP. Such polarizers can be realized using crystals, called dichroics,
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Figure 3.4 Principle of operation of an isolator that works only for a particular state
of polarization of the input signal.

which have the property of selectively absorbing light with one SOP. The polarizer
is followed by a Faraday rotator. A Faraday rotator is a nonreciprocal device, made
of a crystal that rotates the SOP, say, clockwise, by 45◦, regardless of the direction
of propagation. The Faraday rotator is followed by another polarizer that passes
only SOPs with this 45◦ orientation. Thus the light signal from left to right is passed
through the device without any loss. On the other hand, light entering the device
from the right due to a reflection, with the same 45◦ SOP orientation, is rotated
another 45◦ by the Faraday rotator, and thus blocked by the first polarizer.

Note that the preceding explanation assumes a particular SOP for the input
light signal. In practice we cannot control the SOP of the input, and so the isolator
must work regardless of the input SOP. This requires a more complicated design,
and many different designs exist. One such design for a miniature polarization-
independent isolator is shown in Figure 3.5. The input signal with an arbitrary SOP
is first sent through a spatial walk-off polarizer (SWP). The SWP splits the signal
into its two orthogonally polarized components. Such an SWP can be realized using
birefringent crystals whose refractive index is different for the two components.
When light with an arbitrary SOP is incident on such a crystal, the two orthogonally
polarized components are refracted at different angles. Each component goes through
a Faraday rotator, which rotates the SOPs by 45◦. The Faraday rotator is followed
by a half-wave plate. The half-wave plate (a reciprocal device) rotates the SOPs
by 45◦ in the clockwise direction for signals propagating from left to right, and
by 45◦ in the counterclockwise direction for signals propagating from right to left.
Therefore, the combination of the Faraday rotator and the half-wave plate converts
the horizontal polarization into a vertical polarization and vice versa, and the two
signals are combined by another SWP at the output. For reflected signals in the
reverse direction, the half-wave plate and Faraday rotator cancel each other’s effects,
and the SOPs remain unchanged as they pass through these two devices and are thus
not recombined by the SWP at the input.
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Figure 3.5 A polarization-independent isolator. The isolator is constructed along the
same lines as a polarization-dependent isolator but uses spatial walk-off polarizers at the
inputs and outputs. (a) Propagation from left to right. (b) Propagation from right to left.

3.3 Multiplexers and Filters

In this section, we will study the principles underlying the operation of a va-
riety of wavelength selection technologies. Optical filters are essential compo-
nents in transmission systems for at least two applications: to multiplex and de-
multiplex wavelengths in a WDM system—these devices are called multiplexers/
demultiplexers—and to provide equalization of the gain and filtering of noise in
optical amplifiers. Furthermore, understanding optical filtering is essential to under-
standing the operation of lasers later in this chapter.

The different applications of optical filters are shown in Figure 3.6. A simple
filter is a two-port device that selects one wavelength and rejects all others. It may
have an additional third port on which the rejected wavelengths can be obtained. A
multiplexer combines signals at different wavelengths on its input ports onto a com-
mon output port, and a demultiplexer performs the opposite function. Multiplexers
and demultiplexers are used in WDM terminals as well as in larger wavelength
crossconnects and wavelength add/drop multiplexers.

Demultiplexers and multiplexers can be cascaded to realize static wavelength
crossconnects (WXCs). In a static WXC, the crossconnect pattern is fixed at the time
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Figure 3.6 Different applications for optical filters in optical networks. (a) A simple
filter, which selects one wavelength and either blocks the remaining wavelengths or makes
them available on a third port. (b) A multiplexer, which combines multiple wavelengths
into a single fiber. In the reverse direction, the same device acts as a demultiplexer to
separate the different wavelengths.
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Figure 3.7 A static wavelength crossconnect. The device routes signals from an input
port to an output port based on the wavelength.

the device is made and cannot be changed dynamically. Figure 3.7 shows an example
of a static WXC. The device routes signals from an input port to an output port
based on the wavelength. Dynamic WXCs can be constructed by combining optical
switches with multiplexers and demultiplexers. Static WXCs are highly limited in
terms of their functionality. For this reason, the devices of interest are dynamic rather
than static WXCs. We will study different dynamic WXC architectures in Chapter 7.

A variety of optical filtering technologies are available. Their key characteristics
for use in systems are the following:
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1. Good optical filters should have low insertion losses. The insertion loss is the
input-to-output loss of the filter.

2. The loss should be independent of the state of polarization of the input signals.
The state of polarization varies randomly with time in most systems, and if the
filter has a polarization-dependent loss, the output power will vary with time as
well—an undesirable feature.

3. The passband of a filter should be insensitive to variations in ambient tempera-
ture. The temperature coefficient is measured by the amount of wavelength shift
per unit degree change in temperature. The system requirement is that over the
entire operating temperature range (about 100◦C typically), the wavelength shift
should be much less than the wavelength spacing between adjacent channels in
a WDM system.

4. As more and more filters are cascaded in a WDM system, the passband becomes
progressively narrower. To ensure reasonably broad passbands at the end of the
cascade, the individual filters should have very flat passbands, so as to accom-
modate small changes in operating wavelengths of the lasers over time. This is
measured by the 1 dB bandwidth, as shown in Figure 3.8.

5. At the same time, the passband skirts should be sharp to reduce the amount of
energy passed through from adjacent channels. This energy is seen as crosstalk
and degrades the system performance. The crosstalk suppression, or isolation of
the filter, which is defined as the relative power passed through from the adjacent
channels, is an important parameter as well.

In addition to all the performance parameters described, perhaps the most impor-
tant consideration is cost. Technologies that require careful hand assembly tend to be
more expensive. There are two ways of reducing the cost of optical filters. The first
is to fabricate them using integrated-optic waveguide technology. This is analogous
to semiconductor chips, although the state of integration achieved with optics is sig-
nificantly less. These waveguides can be made on many substrates, including silica,
silicon, InGaAs, and polymers. Waveguide devices tend to be inherently polarization
dependent due to the geometry of the waveguides, and care must be taken to reduce
the PDL in these devices. The second method is to realize all-fiber devices. Such de-
vices are amenable to mass production and are inherently polarization independent.
It is also easy to couple light in and out of these devices from/into other fibers. Both
of these approaches are being pursued today.

All the filters and multiplexers we study use the property of interference among
optical waves. In addition, some filters, for example, gratings, use the diffraction
property—light from a source tends to spread in all directions depending on the
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Figure 3.8 Characterization of some important spectral-shape parameters of optical
filters. λ0 is the center wavelength of the filter, and λ denotes the wavelength of the light
signal.

incident wavelength. Table 3.1 compares the performance of different filtering tech-
nologies.

3.3.1 Gratings

The term grating is used to describe almost any device whose operation involves
interference among multiple optical signals originating from the same source but with
different relative phase shifts. An exception is a device where the multiple optical
signals are generated by repeated traversals of a single cavity; such devices are called
etalons. An electromagnetic wave (light) of angular frequency ω propagating, say, in
the z direction has a dependence on z and t of the form cos(ωt − βz). Here, β is the
propagation constant and depends on the medium. The phase of the wave is ωt−βz.
Thus a relative phase shift between two waves from the same source can be achieved
if they traverse two paths of different lengths.

Two examples of gratings are shown in Figure 3.9(a) and (b). Gratings have been
widely used for centuries in optics to separate light into its constituent wavelengths.
In WDM communication systems, gratings are used as demultiplexers to separate
the individual wavelengths or as multiplexers to combine them. The Stimax grating
of Table 3.1 is a grating of the type we describe in this section.
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Table 3.1 Comparison of passive wavelength multiplexing/demultiplexing technolo-
gies. A 16-channel system with 100 GHz channel spacing is assumed. Other key
considerations include center wavelength accuracy and manufacturability. All these
approaches face problems in scaling with the number of wavelengths. TFMF is the
dielectric thin-film multicavity filter, and AWG is the arrayed waveguide grating. For
the fiber Bragg grating and the arrayed waveguide grating, the temperature coefficient
can be reduced to 0.001 nm/◦C by passive temperature compensation. The fiber Bragg
grating is a single channel filter, and multiple filters need to be cascaded in series to
demultiplex all 16 channels.

Filter Property Fiber Bragg TFMF AWG Stimax
Grating Grating

1 dB BW (nm) 0.3 0.4 0.22 0.1
Isolation (dB) 25 25 25 30
Loss (dB) 0.2 7 5.5 6
PDL (dB) 0 0.2 0.5 0.1
Temp. coeff. (nm/◦C) 0.01 0.0005 0.01 0.01
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Figure 3.9 (a) A transmission grating and (b) a reflection grating. θi is the angle of
incidence of the light signal. The angle at which the signal is diffracted depends on the
wavelength (θd1 for wavelength λ1 and θd2 for λ2).
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Consider the grating shown in Figure 3.9(a). Multiple narrow slits are spaced
equally apart on a plane, called the grating plane. The spacing between two adjacent
slits is called the pitch of the grating. Light incident from a source on one side
of the grating is transmitted through these slits. Since each slit is narrow, by the
phenomenon known as diffraction, the light transmitted through each slit spreads
out in all directions. Thus each slit acts as a secondary source of light. Consider
some other plane parallel to the grating plane at which the transmitted light from
all the slits interferes. We will call this plane the imaging plane. Consider any point
on this imaging plane. For wavelengths for which the individual interfering waves
at this point are in phase, we have constructive interference and an enhancement
of the light intensity at these wavelengths. For a large number of slits, which is the
case usually encountered in practice, the interference is not constructive at other
wavelengths, and there is little light intensity at this point from these wavelengths.
Since different wavelengths interfere constructively at different points on the imaging
plane, the grating effectively separates a WDM signal spatially into its constituent
wavelengths. In a fiber optic system, optical fibers could be placed at different imaging
points to collect light at the different wavelengths.

Note that if there were no diffraction, we would simply have light transmitted
or reflected along the directed dotted lines in Figure 3.9(a) and (b). Thus the phe-
nomenon of diffraction is key to the operation of these devices, and for this reason
they are called diffraction gratings. Since multiple transmissions occur in the grating
of Figure 3.9(a), this grating is called a transmission grating. If the transmission slits
are replaced by narrow reflecting surfaces, with the rest of the grating surface being
nonreflecting, we get the reflection grating of Figure 3.9(b). The principle of opera-
tion of this device is exactly analogous to that of the transmission grating. A majority
of the gratings used in practice are reflection gratings since they are somewhat easier
to fabricate. In addition to the plane geometry we have considered, gratings are
fabricated in a concave geometry. In this case, the slits (for a transmission grating)
are located on the arc of a circle. In many applications, a concave geometry leads to
fewer auxiliary parts like lenses and mirrors needed to construct the overall device,
say, a WDM demultiplexer, and is thus preferred.

The Stimax grating [LL84] is a reflection grating that is integrated with a concave
mirror and the input and output fibers. Its characteristics are described in Table 3.1,
and it has been used in commercially available WDM transmission systems. However,
it is a bulk device that cannot be easily fabricated and is therefore relatively expensive.
Attempts have been made to realize similar gratings in optical waveguide technology,
but these devices are yet to achieve loss, PDL, and isolation comparable to the bulk
version.
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Principle of Operation

To understand quantitatively the principle of operation of a (transmission) grating,
consider the light transmitted through adjacent slits as shown in Figure 3.10. The
distance between adjacent slits—the pitch of the grating—is denoted by a. We assume
that the light source is far enough away from the grating plane compared to a so that
the light can be assumed to be incident at the same angle θi to the plane of the grating
at each slit. We consider the light rays diffracted at an angle θd from the grating plane.
The imaging plane, like the source, is assumed to be far away from the grating plane
compared to the grating pitch. We also assume that the slits are small compared
to the wavelength so that the phase change across a slit is negligible. Under these
assumptions, it can be shown (Problem 3.4) that the path length difference between
the rays traversing through adjacent slits is the difference in lengths between the
line segments AB and CD and is given approximately by a[sin(θi) − sin(θd)]. Thus
constructive interference at a wavelength λ occurs at the imaging plane among the
rays diffracted at angle θd if the following grating equation is satisfied:

a[sin(θi)− sin(θd)] = mλ (3.9)

for some integer m, called the order of the grating. The grating effects the separation
of the individual wavelengths in a WDM signal since the grating equation is satisfied
at different points in the imaging plane for different wavelengths. This is illustrated
in Figure 3.9, where different wavelengths are shown being diffracted at the angles
at which the grating equation is satisfied for that wavelength. For example, θd1 is the
angle at which the grating equation is satisfied for λ1.

Note that the energy at a single wavelength is distributed over all the discrete
angles that satisfy the grating equation (3.9) at this wavelength. When the grating is
used as a demultiplexer in a WDM system, light is collected from only one of these
angles, and the remaining energy in the other orders is lost. In fact, most of the energy
will be concentrated in the zeroth-order (m = 0) interference maximum, which occurs
at θi = θd for all wavelengths. The light energy in this zeroth-order interference
maximum is wasted since the wavelengths are not separated. Thus gratings must
be designed so that the light energy is maximum at one of the other interference
maxima. This is done using a technique called blazing [KF86, p. 386].

Figure 3.11 shows a blazed reflection grating with blaze angle α. In such a grating,
the reflecting slits are inclined at an angle α to the grating plane. This has the effect of
maximizing the light energy in the interference maximum whose order corresponds
to the blazing angle. The grating equation for such a blazed grating can be derived
as before; see Problem 3.5.
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Figure 3.10 Principle of operation of a transmission grating. The reflection grating
works in an analogous manner. The path length difference between rays diffracted at
angle θd from adjacent slits is AB − CD = a[sin(θi)− sin(θd)].
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Figure 3.11 A blazed grating with blaze angle α. The energy in the interference maxi-
mum corresponding to the blaze angle is maximized.

3.3.2 Diffraction Pattern

So far, we have only considered the position of the diffraction maxima in the diffrac-
tion pattern. Often, we are also interested in the distribution of the intensity in the
diffraction maxima. We can derive the distribution of the intensity by relaxing the as-
sumption that the slits are much smaller than a wavelength, so that the phase change
across a slit can no longer be neglected. Consider a slit of length w stretching from
y = −w/2 to y = w/2. By reasoning along the same lines as we did in Figure 3.10,
the light diffracted from position y at angle θ from this slit has a relative phase shift
of φ(y) = (2πy sin θ)/λ compared to the light diffracted from y = 0. Thus, at the
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imaging plane, the amplitude A(θ) at angle θ is given by

A(θ)

A(0)
= 1

w

∫ w/2

−w/2
exp (iφ(y)) dy

= 1
w

∫ w/2

−w/2
exp (i2π(sin θ)y/λ) dy

= sin (πw sin θ/λ)

πw sin θ/λ
. (3.10)

Observe that the amplitude distribution at the imaging plane is the Fourier transform
of the rectangular slit. This result holds for a general diffracting aperture, and not
just a rectangular slit. For this more general case, if the diffracting aperture or slit is
described by f (y), the amplitude distribution of the diffraction pattern is given by

A(θ) = A(0)

∫ ∞

−∞
f (y) exp(2πi(sin θ)y/λ) dy. (3.11)

The intensity distribution is given by |A(θ)|2. Here, we assume f (y) is normalized so
that

∫∞
−∞ f (y) dy = 1. For a rectangular slit, f (y) = 1/w for |y| < w/2 and f (y) = 0,

otherwise, and the diffraction pattern is given by (3.10). For a pair of narrow slits
spaced distance d apart,

f (y) = 0.5(δ(y − d/2)+ δ(y + d/2))

and

A(θ) = A(0) cos (π(sin θ)λ/d) .

The more general problem of N narrow slits is discussed in Problem 3.6.

3.3.3 Bragg Gratings

Bragg gratings are widely used in fiber optic communication systems. In general,
any periodic perturbation in the propagating medium serves as a Bragg grating. This
perturbation is usually a periodic variation of the refractive index of the medium.
We will see in Section 3.5.1 that lasers use Bragg gratings to achieve single frequency
operation. In this case, the Bragg gratings are “written” in waveguides. Bragg gratings
written in fiber can be used to make a variety of devices such as filters, add/drop
multiplexers, and dispersion compensators. We will see later that the Bragg grating
principle also underlies the operation of the acousto-optic tunable filter. In this case,
the Bragg grating is formed by the propagation of an acoustic wave in the medium.
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Principle of Operation

Consider two waves propagating in opposite directions with propagation constants
β0 and β1. Energy is coupled from one wave to the other if they satisfy the Bragg
phase-matching condition

|β0 − β1| =
2π

�
,

where � is the period of the grating. In a Bragg grating, energy from the forward
propagating mode of a wave at the right wavelength is coupled into a backward
propagating mode. Consider a light wave with propagation constant β1 propagating
from left to right. The energy from this wave is coupled onto a scattered wave
traveling in the opposite direction at the same wavelength provided

|β0 − (−β0)| = 2β0 = 2π

�
.

Letting β0 = 2πneff/λ0, λ0 being the wavelength of the incident wave and neff the
effective refractive index of the waveguide or fiber, the wave is reflected provided

λ0 = 2neff�.

This wavelength λ0 is called the Bragg wavelength. In practice, the reflection effi-
ciency decreases as the wavelength of the incident wave is detuned from the Bragg
wavelength; this is plotted in Figure 3.12(a). Thus if several wavelengths are trans-
mitted into a fiber Bragg grating, the Bragg wavelength is reflected while the other
wavelengths are transmitted.

The operation of the Bragg grating can be understood by reference to Figure 3.13,
which shows a periodic variation in refractive index. The incident wave is reflected
from each period of the grating. These reflections add in phase when the path length
in wavelength λ0 each period is equal to half the incident wavelength λ0. This is
equivalent to neff� = λ0/2, which is the Bragg condition.

The reflection spectrum shown in Figure 3.12(a) is for a grating with a uniform
refractive index pattern change across its length. In order to eliminate the undesirable
side lobes, it is possible to obtain an apodized grating, where the refractive index
change is made smaller toward the edges of the grating. (The term apodized means
“to cut off the feet.”) The reflection spectrum of an apodized grating is shown
in Figure 3.12(b). Note that, for the apodized grating, the side lobes have been
drastically reduced but at the expense of increasing the main lobe width.

The index distribution across the length of a Bragg grating is analogous to the
grating aperture discussed in Section 3.3.2, and the reflection spectrum is obtained
as the Fourier transform of the index distribution. The side lobes in the case of a
uniform refractive index profile arise due to the abrupt start and end of the grating,
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Figure 3.12 Reflection spectra of Bragg gratings with (a) uniform index profile and
(b) apodized index profile. � is a measure of the bandwidth of the grating and is the
wavelength separation between the peak wavelength and the first reflection minimum, in
the uniform index profile case. � is inversely proportional to the length of the grating.
�λ is the detuning from the phase-matching wavelength.
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Figure 3.13 Principle of operation of a Bragg grating.

which result in a sinc(.) behavior for the side lobes. Apodization can be achieved by
gradually starting and ending the grating. This technique is similar to pulse shaping
used in digital communication systems to reduce the side lobes in the transmitted
spectrum of the signal.

The bandwidth of the grating, which can be measured, for example, by the width
of the main lobe, is inversely proportional to the length of the grating. Typically, the
grating is a few millimeters long in order to achieve a bandwidth of 1 nm.

3.3.4 Fiber Gratings

Fiber gratings are attractive devices that can be used for a variety of applications,
including filtering, add/drop functions, and compensating for accumulated dispersion
in the system. Being all-fiber devices, their main advantages are their low loss, ease of
coupling (with other fibers), polarization insensitivity, low temperature-coefficient,
and simple packaging. As a result, they can be extremely low-cost devices.

Gratings are written in fibers by making use of the photosensitivity of certain
types of optical fibers. A conventional silica fiber doped with germanium becomes
extremely photosensitive. Exposing this fiber to ultraviolet (UV) light causes changes
in the refractive index within the fiber core. A grating can be written in such a fiber
by exposing its core to two interfering UV beams. This causes the radiation intensity
to vary periodically along the length of the fiber. Where the intensity is high, the
refractive index is increased; where it is low, the refractive index is unchanged. The
change in refractive index needed to obtain gratings is quite small—around 10−4.
Other techniques, such as phase masks, can also be used to produce gratings. A phase
mask is a diffractive optical element. When it is illuminated by a light beam, it splits
the beams into different diffractive orders, which then interfere with one another to
write the grating into the fiber.

Fiber gratings are classified as either short-period or long-period gratings, based
on the period of the grating. Short-period gratings are also called Bragg gratings and
have periods that are comparable to the wavelength, typically around 0.5 μm. We
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discussed the behavior of Bragg gratings in Section 3.3.3. Long-period gratings, on
the other hand, have periods that are much greater than the wavelength, ranging
from a few hundred micrometers to a few millimeters.

Fiber Bragg Gratings

Fiber Bragg gratings can be fabricated with extremely low loss (0.1 dB), high wave-
length accuracy (± 0.05 nm is easily achieved), high adjacent channel crosstalk
suppression (40 dB), as well as flat tops.

The temperature coefficient of a fiber Bragg grating is typically 1.25×10−2 nm/◦C
due to the variation in fiber length with temperature. However, it is possible to
compensate for this change by packaging the grating with a material that has a
negative thermal expansion coefficient. These passively temperature-compensated
gratings have temperature coefficients of around 0.07 × 10−2 nm/◦C. This implies
a very small 0.07 nm center wavelength shift over an operating temperature range
of 100◦C, which means that they can be operated without any active temperature
control.

These properties of fiber Bragg gratings make them very useful devices for sys-
tem applications. Fiber Bragg gratings are finding a variety of uses in WDM systems,
ranging from filters and optical add/drop elements to dispersion compensators. A
simple optical drop element based on fiber Bragg gratings is shown in Figure 3.14(a).
It consists of a three-port circulator with a fiber Bragg grating. The circulator trans-
mits light coming in on port 1 out on port 2 and transmits light coming in on port
2 out on port 3. In this case, the grating reflects the desired wavelength λ2, which is
then dropped at port 3. The remaining three wavelengths are passed through. It is
possible to implement an add/drop function along the same lines, by introducing a
coupler to add the same wavelength that was dropped, as shown in Figure 3.14(b).
Many variations of this simple add/drop element can be realized by using gratings
in combination with couplers and circulators. A major concern in these designs is
that the reflection of these gratings is not perfect, and as a result, some power at the
selected wavelength leaks through the grating. This can cause undesirable crosstalk,
and we will study this effect in Chapter 5.

Fiber Bragg gratings can also be used to compensate for dispersion accumulated
along the link. We will study this application in Chapter 5 in the context of dispersion
compensation.

Long-Period Fiber Gratings

Long-period fiber gratings are fabricated in the same manner as fiber Bragg gratings
and are used today primarily as filters inside erbium-doped fiber amplifiers to com-
pensate for their nonflat gain spectrum. As we will see, these devices serve as very
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Figure 3.14 Optical add/drop elements based on fiber Bragg gratings. (a) A drop ele-
ment. (b) A combined add/drop element.

efficient band rejection filters and can be tailored to provide almost exact equaliza-
tion of the erbium gain spectrum. Figure 3.15 shows the transmission spectrum of
such a grating. These gratings retain all the attractive properties of fiber gratings and
are expected to become widely used for several filtering applications.

Principle of Operation

These gratings operate on somewhat different principles than Bragg gratings. In
fiber Bragg gratings, energy from the forward propagating mode in the fiber core at
the right wavelength is coupled into a backward propagating mode. In long-period
gratings, energy is coupled from the forward propagating mode in the fiber core
onto other forward propagating modes in the cladding. These cladding modes are
extremely lossy, and their energy decays rapidly as they propagate along the fiber,
due to losses at the cladding–air interface and due to microbends in the fiber. There
are many cladding modes, and coupling occurs between a core mode at a given
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Figure 3.15 Transmission spectrum of a long-period fiber Bragg grating used as a gain
equalizer for erbium-doped fiber amplifiers. (After [Ven96a].)

wavelength and a cladding mode depending on the pitch of the grating �, as follows:
if β denotes the propagation constant of the mode in the core (assuming a single-mode
fiber) and β

p

cl that of the pth-order cladding mode, then the phase-matching condition
dictates that

β − β
p

cl =
2π

�
.

In general, the difference in propagation constants between the core mode and any
one of the cladding modes is quite small, leading to a fairly large value of � in order
for coupling to occur. This value is usually a few hundred micrometers. (Note that
in Bragg gratings the difference in propagation constants between the forward and
backward propagating modes is quite large, leading to a small value for �, typically
around 0.5 μm.) If neff and n

p

eff denote the effective refractive indices of the core and
pth-order cladding modes, then the wavelength at which energy is coupled from the
core mode to the cladding mode can be obtained as

λ = �(neff − n
p

eff),

where we have used the relation β = 2πneff/λ.
Therefore, once we know the effective indices of the core and cladding modes,

we can design the grating with a suitable value of � so as to cause coupling
of energy out of a desired wavelength band. This causes the grating to act as
a wavelength-dependent loss element. Methods for calculating the propagation
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Figure 3.16 Principle of operation of a Fabry-Perot filter.

constants for the cladding modes are discussed in [Ven96b]. The amount of
wavelength-dependent loss can be controlled during fabrication by controlling the
UV exposure time. Complicated transmission spectra can be obtained by cascading
multiple gratings with different center wavelengths and different exposures. The ex-
ample shown in Figure 3.15 was obtained by cascading two such gratings [Ven96a].
These gratings are typically a few centimeters long.

3.3.5 Fabry-Perot Filters

A Fabry-Perot filter consists of the cavity formed by two highly reflective mirrors
placed parallel to each other, as shown in Figure 3.16. This filter is also called a
Fabry-Perot interferometer or etalon. The input light beam to the filter enters the
first mirror at right angles to its surface. The output of the filter is the light beam
leaving the second mirror.

This is a classical device that has been used widely in interferometric applications.
Fabry-Perot filters have been used for WDM applications in several optical network
testbeds. There are better filters today, such as the thin-film resonant multicavity
filter that we will study in Section 3.3.6. These latter filters can be viewed as Fabry-
Perot filters with wavelength-dependent mirror reflectivities. Thus the fundamental
principle of operation of these filters is the same as that of the Fabry-Perot filter. The
Fabry-Perot cavity is also used in lasers (see Section 3.5.1).

Compact Fabry-Perot filters are commercially available components. Their main
advantage over some of the other devices is that they can be tuned to select different
channels in a WDM system, as discussed later.

Principle of Operation

The principle of operation of the device is illustrated in Figure 3.16. The input signal
is incident on the left surface of the cavity. After one pass through the cavity, as
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shown in Figure 3.16, a part of the light leaves the cavity through the right facet
and a part is reflected. A part of the reflected wave is again reflected by the left facet
to the right facet. For those wavelengths for which the cavity length is an integral
multiple of half the wavelength in the cavity—so that a round trip through the cavity
is an integral multiple of the wavelength—all the light waves transmitted through
the right facet add in phase. Such wavelengths are called the resonant wavelengths of
the cavity. The determination of the resonant wavelengths of the cavity is discussed
in Problem 3.7.

The power transfer function of a filter is the fraction of input light power that is
transmitted by the filter as a function of optical frequency f , or wavelength. For the
Fabry-Perot filter, this function is given by

TFP (f ) =

(
1− A

1−R

)2

(
1+

(
2
√

R
1−R

sin(2πf τ)
)2
) . (3.12)

This can also be expressed in terms of the optical free-space wavelength λ as

TFP (λ) =

(
1− A

1−R

)2

(
1+

(
2
√

R
1−R

sin(2πnl/λ)
)2
) .

(By a slight abuse of notation, we use the same symbol for the power transfer
function in both cases.) Here A denotes the absorption loss of each mirror, which is
the fraction of incident light that is absorbed by the mirror. The quantity R denotes
the reflectivity of each mirror (assumed to be identical), which is the fraction of
incident light that is reflected by the mirror. The one-way propagation delay across
the cavity is denoted by τ . The refractive index of the cavity is denoted by n and its
length by l. Thus τ = nl/c, where c is the velocity of light in vacuum. This transfer
function can be derived by considering the sum of the waves transmitted by the
filter after an odd number of passes through the cavity. This is left as an exercise
(Problem 3.8).

The power transfer function of the Fabry-Perot filter is plotted in Figure 3.17
for A = 0 and R = 0.75, 0.9, and 0.99. Note that very high mirror reflectivities are
required to obtain good isolation of adjacent channels.

The power transfer function TFP (f ) is periodic in f , and the peaks, or passbands,
of the transfer function occur at frequencies f that satisfy f τ = k/2 for some
positive integer k. Thus in a WDM system, even if the wavelengths are spaced
sufficiently far apart compared to the width of each passband of the filter transfer
function, several frequencies (or wavelengths) may be transmitted by the filter if
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Figure 3.17 The transfer function of a Fabry-Perot filter. FSR denotes the free spectral
range, f the frequency, and R the reflectivity.

they coincide with different passbands. The spectral range between two successive
passbands of the filter is called the free spectral range (FSR). A measure of the
width of each passband is its full width at the point where the transfer function
is half of its maximum (FWHM). In WDM systems, the separation between two
adjacent wavelengths must be at least a FWHM in order to minimize crosstalk. (More
precisely, as the transfer function is periodic, adjacent wavelengths must be separated
by a FWHM plus an integral multiple of the FSR.) Thus the ratio FSR/FWHM is an
approximate (order-of-magnitude) measure of the number of wavelengths that can
be accommodated by the system. This ratio is called the finesse, F, of the filter and
is given by

F = π
√

R

1− R
. (3.13)

This expression can be derived from (3.12) and is left as an exercise (Problem 3.9).
If the mirrors are highly reflective, won’t virtually all the input light get reflected?

Also, how does light get out of the cavity if the mirrors are highly reflective? To
resolve this paradox, we must look at the light energy over all the frequencies. When
we do this, we will see that only a small fraction of the input light is transmitted
through the cavity because of the high reflectivities of the input and output facets, but
at the right frequency, all the power is transmitted. This aspect is explored further in
Problem 3.10.
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Tunability

A Fabry-Perot filter can be tuned to select different wavelengths in one of several
ways. The simplest approach is to change the cavity length. The same effect can be
achieved by varying the refractive index within the cavity. Consider a WDM system,
all of whose wavelengths lie within one FSR of the Fabry-Perot filter. The frequency
f0 that is selected by the filter satisfies f0τ = k/2 for some positive integer k. Thus f0
can be changed by changing τ , which is the one-way propagation time for the light
beam across the cavity. If we denote the length of the cavity by l and its refractive
index by n, τ = ln/c, where c is the speed of light in vacuum. Thus τ can be changed
by changing either l or n.

Mechanical tuning of the filter can be effected by moving one of the mirrors so
that the cavity length changes. This permits tunability only in times of the order of a
few milliseconds. For a mechanically tuned Fabry-Perot filter, a precise mechanism
is needed in order to keep the mirrors parallel to each other in spite of their relative
movement. The reliability of mechanical tuning mechanisms is also relatively poor.

Another approach to tuning is to use a piezoelectric material within the cavity.
A piezoelectric filter undergoes compression on the application of a voltage. Thus
the length of the cavity filled with such a material can be changed by the application
of a voltage, thereby effecting a change in the resonant frequency of the cavity. The
piezo material, however, introduces undesirable effects such as thermal instability
and hysteresis, making such a filter difficult to use in practical systems.

3.3.6 Multilayer Dielectric Thin-Film Filters

A thin-film resonant cavity filter (TFF) is a Fabry-Perot interferometer, or etalon
(see Section 3.3.5), where the mirrors surrounding the cavity are realized by using
multiple reflective dielectric thin-film layers (see Problem 3.13). This device acts as a
bandpass filter, passing through a particular wavelength and reflecting all the other
wavelengths. The wavelength that is passed through is determined by the cavity
length.

A thin-film resonant multicavity filter (TFMF) consists of two or more cavities
separated by reflective dielectric thin-film layers, as shown in Figure 3.18. The effect
of having multiple cavities on the response of the filter is illustrated in Figure 3.19.
As more cavities are added, the top of the passband becomes flatter and the skirts
become sharper, both very desirable filter features.

In order to obtain a multiplexer or a demultiplexer, a number of these filters can
be cascaded, as shown in Figure 3.20. Each filter passes a different wavelength and
reflects all the others. When used as a demultiplexer, the first filter in the cascade
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Figure 3.18 A three-cavity thin-film resonant dielectric thin-film filter. (After [SS96].)
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Figure 3.19 Transfer functions of single-cavity, two-cavity, and three-cavity dielectric
thin-film filters. Note how the use of multiple cavities leads to a flatter passband and a
sharper transition from the passband to the stop band.
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Figure 3.20 A wavelength multiplexer/demultiplexer using multilayer dielectric thin-
film filters. (After [SS96].)

passes one wavelength and reflects all the others onto the second filter. The second
filter passes another wavelength and reflects the remaining ones, and so on.

This device has many features that make it attractive for system applications.
It is possible to have a very flat top on the passband and very sharp skirts. The
device is extremely stable with regard to temperature variations, has low loss, and
is insensitive to the polarization of the signal. Typical parameters for a 16-channel
multiplexer are shown in Table 3.1. For these reasons, TFMFs are becoming widely
used in commercial systems today. Understanding the principle of operation of these
devices requires some knowledge of electromagnetic theory, and so we defer this to
Appendix G.

3.3.7 Mach-Zehnder Interferometers

A Mach-Zehnder interferometer (MZI) is an interferometric device that makes use
of two interfering paths of different lengths to resolve different wavelengths. Devices
constructed on this principle have been around for some decades. Today, Mach-
Zehnder interferometers are typically constructed in integrated optics and consist of
two 3 dB directional couplers interconnected through two paths of differing lengths,
as shown in Figure 3.21(a). The substrate is usually silicon, and the waveguide and
cladding regions are silica (SiO2).
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Figure 3.21 (a) An MZI constructed by interconnecting two 3 dB directional couplers.
(b) A block diagram representation of the MZI in (a). �L denotes the path difference
between the two arms. (c) A block diagram of a four-stage Mach-Zehnder interferometer,
which uses different path length differences in each stage.

Mach-Zehnder interferometers are useful as both filters and (de)multiplexers.
Even though there are better technologies for making narrow band filters, for exam-
ple, dielectric multicavity thin-film filters, MZIs are still useful in realizing wide band
filters. For example, MZIs can be used to separate the wavelengths in the 1.3 μm and
1.55 μm bands. Narrow band MZI filters are fabricated by cascading a number of
stages, as we will see, and this leads to larger losses. In principle, very good crosstalk
performance can be achieved using MZIs if the wavelengths are spaced such that the
undesired wavelengths occur at, or close to, the nulls of the power transfer function.
However, in practice, the wavelengths cannot be fixed precisely (for example, the
wavelengths drift because of temperature variations or age). Moreover, the coupling
ratio of the directional couplers is not 50:50 and could be wavelength dependent. As
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a result, the crosstalk performance is far from the ideal situation. Also the passband
of narrow band MZIs is not flat. In contrast, the dielectric multicavity thin-film filters
can have flat passbands and good stop bands.

MZIs are useful as two-input, two-output multiplexers and demultiplexers. They
can also be used as tunable filters, where the tuning is achieved by varying the
temperature of one of the arms of the device. This causes the refractive index of
that arm to change, which in turn affects the phase relationship between the two
arms and causes a different wavelength to be coupled out. The tuning time required
is of the order of several milliseconds. For higher channel-count multiplexers and
demultiplexers, better technologies are available today. One example is the arrayed
waveguide grating (AWG) described in the next section. Since understanding the
MZI is essential to understanding the AWG, we will now describe the principle of
operation of MZIs.

Principle of Operation

Consider the operation of the MZI as a demultiplexer; so only one input, say, input
1, has a signal (see Figure 3.21(a)). After the first directional coupler, the input signal
power is divided equally between the two arms of the MZI, but the signal in one arm
has a phase shift of π/2 with respect to the other. Specifically, the signal in the lower
arm lags the one in the upper arm in phase by π/2, as discussed in Section 3.1. This is
best understood from (3.1). Since there is a length difference of �L between the two
arms, there is a further phase lag of β�L introduced in the signal in the lower arm.
In the second directional coupler, the signal from the lower arm undergoes another
phase delay of π/2 in going to the first output relative to the signal from the upper
arm. Thus the total relative phase difference at the first or upper output between the
two signals is π/2 + β�L + π/2. At the output directional coupler, in going to the
second output, the signal from the upper arm lags the signal from the lower arm in
phase by π/2. Thus the total relative phase difference at the second or lower output
between the two signals is π/2+ β�L− π/2 = β�L.

If β�L = kπ and k is odd, the signals at the first output add in phase, whereas
the signals at the second output add with opposite phases and thus cancel each
other. Thus the wavelengths passed from the first input to the first output are those
wavelengths for which β�L = kπ and k is odd. The wavelengths passed from the
first input to the second output are those wavelengths for which β�L = kπ and
k is even. This could have been easily deduced from the transfer function of the
MZI in the following equation (3.14), but this detailed explanation will help in the
understanding of the arrayed waveguide grating (Section 3.3.8).
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Figure 3.22 Transfer functions of each stage of a multistage MZI.

Assume that the difference between these path lengths is �L and that only one
input, say, input 1, is active. Then it can be shown (see Problem 3.14) that the power
transfer function of the Mach-Zehnder interferometer is given by(

T11(f )

T12(f )

)
=
(

sin2(β�L/2)

cos2(β�L/2)

)
. (3.14)

Thus the path difference between the two arms, �L, is the key parameter character-
izing the transfer function of the MZI. We will represent the MZI of Figure 3.21(a)
using the block diagram of Figure 3.21(b).

Now consider k MZIs interconnected, as shown in Figure 3.21(c) for k = 4.
Such a device is termed a multistage Mach-Zehnder interferometer. The path length
difference for the kth MZI in the cascade is assumed to be 2k−1�L. The transfer
function of each MZI in this multistage MZI together with the power transfer
function of the entire filter is shown in Figure 3.22. The power transfer function of
the multistage MZI is also shown on a decibel scale in Figure 3.23.
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Figure 3.23 Transfer function of a multistage Mach-Zehnder interferometer.

We will now describe how an MZI can be used as a 1 × 2 demultiplexer. Since
the device is reciprocal, it follows from the principles of electromagnetics that if the
inputs and outputs are interchanged, it will act as a 2× 1 multiplexer.

Consider a single MZI with a fixed value of the path difference �L. Let one
of the inputs, say, input 1, be a wavelength division multiplexed signal with all the
wavelengths chosen to coincide with the peaks or troughs of the transfer function.
For concreteness, assume the propagation constant β = 2πneff/λ, where neff is the
effective refractive index of the waveguide. The input wavelengths λi would have to
be chosen such that neff�L/λi = mi/2 for some positive integer mi . The wavelengths
λi for which m is odd would then appear at the first output (since the transfer
function is sin2(miπ/2)), and the wavelengths for which mi is even would appear at
the second output (since the transfer function is cos2(miπ/2)).

If there are only two wavelengths, one for which mi is odd and the other for which
mi is even, we have a 1× 2 demultiplexer. The construction of a 1× n demultiplexer
when n is a power of two, using n − 1 MZIs, is left as an exercise (Problem 3.15).
But there is a better method of constructing higher channel count demultiplexers,
which we describe next.

3.3.8 Arrayed Waveguide Grating

An arrayed waveguide grating (AWG) is a generalization of the Mach-Zehnder in-
terferometer. This device is illustrated in Figure 3.24. It consists of two multiport
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couplers interconnected by an array of waveguides. The MZI can be viewed as a de-
vice where two copies of the same signal, but shifted in phase by different amounts,
are added together. The AWG is a device where several copies of the same signal, but
shifted in phase by different amounts, are added together.

The AWG has several uses. It can be used as an n × 1 wavelength multiplexer.
In this capacity, it is an n-input, 1-output device where the n inputs are signals at
different wavelengths that are combined onto the single output. The inverse of this
function, namely, 1× n wavelength demultiplexing, can also be performed using an
AWG. Although these wavelength multiplexers and demultiplexers can also be built
using MZIs interconnected in a suitable fashion, it is preferable to use an AWG. Rel-
ative to an MZI chain, an AWG has lower loss and flatter passband, and is easier to
realize on an integrated-optic substrate. The input and output waveguides, the mul-
tiport couplers, and the arrayed waveguides are all fabricated on a single substrate.
The substrate material is usually silicon, and the waveguides are silica, Ge-doped
silica, or SiO2-Ta2O5. Thirty-two–channel AWGs are commercially available, and
smaller AWGs are being used in WDM transmission systems. Their temperature co-
efficient (0.01 nm/◦C) is not as low as those of some other competing technologies
such as fiber gratings and multilayer thin-film filters. So we will need to use active
temperature control for these devices.

Another way to understand the working of the AWG as a demultiplexer is to think
of the multiport couplers as lenses and the array of waveguides as a prism. The input
coupler collimates the light from an input waveguide to the array of waveguides. The
array of waveguides acts like a prism, providing a wavelength-dependent phase shift,
and the output coupler focuses different wavelengths on different output waveguides.

The AWG can also be used as a static wavelength crossconnect. However, this
wavelength crossconnect is not capable of achieving an arbitrary routing pattern.
Although several interconnection patterns can be achieved by a suitable choice of

Input
coupler

Output
coupler

Arrayed
waveguides

Input
waveguides

Output
waveguides

Figure 3.24 An arrayed waveguide grating.
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Figure 3.25 The crossconnect pattern of a static wavelength crossconnect constructed
from an arrayed waveguide grating. The device routes signals from an input to an output
based on their wavelength.

the wavelengths and the FSR of the device, the most useful one is illustrated in
Figure 3.25. This figure shows a 4 × 4 static wavelength crossconnect using four
wavelengths with one wavelength routed from each of the inputs to each of the
outputs.

In order to achieve this interconnection pattern, the operating wavelengths and
the FSR of the AWG must be chosen suitably. The FSR of the AWG is derived in
Problem 3.17. Given the FSR, we leave the determination of the wavelengths to be
used to achieve this interconnection pattern as another exercise (Problem 3.18).

Principle of Operation

Consider the AWG shown in Figure 3.24. Let the number of inputs and outputs of
the AWG be denoted by n. Let the couplers at the input and output be n × m and
m × n in size, respectively. Thus the couplers are interconnected by m waveguides.
We will call these waveguides arrayed waveguides to distinguish them from the input
and output waveguides. The lengths of these waveguides are chosen such that the
difference in length between consecutive waveguides is a constant denoted by �L.
The MZI is a special case of the AWG, where n = m = 2. We will now determine
which wavelengths will be transmitted from a given input to a given output. The
first coupler splits the signal into m parts. The relative phases of these parts are
determined by the distances traveled in the coupler from the input waveguides to
the arrayed waveguides. Denote the differences in the distances traveled (relative to
any one of the input waveguides and any one of the arrayed waveguides) between
input waveguide i and arrayed waveguide k by d in

ik. Assume that arrayed waveguide
k has a path length larger than arrayed waveguide k− 1 by �L. Similarly, denote the
differences in the distances traveled (relative to any one of the arrayed waveguides
and any one of the output waveguides) between arrayed waveguide k and output
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waveguide j by dout
kj . Then, the relative phases of the signals from input i to output

j traversing the m different paths between them are given by

φijk = 2π

λ
(n1d

in
ik + n2k�L+ n1d

out
kj ), k = 1, . . . ,m. (3.15)

Here, n1 is the refractive index in the input and output directional couplers, and n2
is the refractive index in the arrayed waveguides. From input i, those wavelengths λ,
for which φijk , k = 1, . . . ,m, differ by a multiple of 2π will add in phase at output
j . The question is, Are there any such wavelengths?

If the input and output couplers are designed such that d in
ik = d in

i + kδin
i and

dout
kj = dout

j + kδout
j , then (3.15) can be written as

φijk = 2π

λ
(n1d

in
i + n1d

out
j )

+ 2πk

λ
(n1δ

in
i + n2�L+ n1δ

out
j ), k = 1, . . . ,m. (3.16)

Such a construction is possible and is called the Rowland circle construction. It is
illustrated in Figure 3.26 and discussed further in Problem 3.16. Thus wavelengths
λ that are present at input i and that satisfy n1δ

in
i + n2�L + n1δ

out
j = pλ for some

integer p add in phase at output j .

Arrayed
waveguides

Input
waveguides

R

R

Figure 3.26 The Rowland circle construction for the couplers used in the AWG. The
arrayed waveguides are located on the arc of a circle, called the grating circle, whose
center is at the end of the central input (output) waveguide. Let the radius of this circle
be denoted by R. The other input (output) waveguides are located on the arc of a circle
whose diameter is equal to R; this circle is called the Rowland circle. The vertical spacing
between the arrayed waveguides is chosen to be constant.
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Figure 3.27 A simple AOTF. An acoustic wave introduces a grating whose pitch de-
pends on the frequency of the acoustic wave. The grating couples energy from one
polarization mode to another at a wavelength that satisfies the Bragg condition.

For use as a demultiplexer, all the wavelengths are present at the same input,
say, input i. Therefore, if the wavelengths, λ1, λ2, . . . , λn in the WDM system satisfy
n1δ

in
i + n2�L + n1δ

out
j = pλj for some integer p, we infer from (3.16) that these

wavelengths are demultiplexed by the AWG. Note that though δin
i and �L are neces-

sary to define the precise set of wavelengths that are demultiplexed, the (minimum)
spacing between them is independent of δin

i and �L, and determined primarily by
δout
j .

Note in the preceding example that if wavelength λ′j satisfies n1δ
in
i + n2�L +

n1δ
out
j = (p+ 1)λ′j , then both λj and λ′j are “demultiplexed” to output j from input

i. Thus like many of the other filter and multiplexer/demultiplexer structures we have
studied, the AWG has a periodic response (in frequency), and all the wavelengths
must lie within one FSR. The derivation of an expression for this FSR is left as an
exercise (Problem 3.17).

3.3.9 Acousto-Optic Tunable Filter

The acousto-optic tunable filter is a versatile device. It is probably the only known
tunable filter that is capable of selecting several wavelengths simultaneously. This
capability can be used to construct a wavelength crossconnect, as we will explain
later in this section.

The acousto-optic tunable filter (AOTF) is one example of several optical devices
whose construction is based on the interaction of sound and light. Basically, an
acoustic wave is used to create a Bragg grating in a waveguide, which is then used to
perform the wavelength selection. Figure 3.27 shows a simple version of the AOTF.
We will see that the operation of this AOTF is dependent on the state of polarization
of the input signal. Figure 3.28 shows a more realistic polarization-independent
implementation in integrated optics.
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Principle of Operation

Consider the device shown in Figure 3.27. It consists of a waveguide constructed from
a birefringent material and supporting only the lowest-order TE and TM modes (see
Section 2.3.4). We assume that the input light energy is entirely in the TE mode. A
polarizer, which selects only the light energy in the TM mode, is placed at the other
end of the channel waveguide. If, somehow, the light energy in a narrow spectral
range around the wavelength to be selected is converted to the TM mode, while the
rest of the light energy remains in the TE mode, we have a wavelength-selective filter.
This conversion is effected in an AOTF by launching an acoustic wave along, or
opposite to, the direction of propagation of the light wave.

As a result of the propagation of the acoustic wave, the density of the medium
varies in a periodic manner. The period of this density variation is equal to the
wavelength of the acoustic wave. This periodic density variation acts as a Bragg
grating. From the discussion of such gratings in Section 3.3.3, it follows that if the
refractive indices nTE and nTM of the TE and TM modes satisfy the Bragg condition

nTM

λ
= nTE

λ
± 1

�
, (3.17)

then light couples from one mode to the other. Thus light energy in a narrow spectral
range around the wavelength λ that satisfies (3.17) undergoes TE to TM mode
conversion. Thus the device acts as a narrow bandwidth filter when only light energy
in the TE mode is input and only the light energy in the TM mode is selected at the
output, as shown in Figure 3.27.

Figure 3.28 A polarization-independent integrated-optics AOTF. A polarizer splits the
input signal into its constituent polarization modes, and each mode is converted in two
separate arms, before being recombined at the output.
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In LiNbO3, the TE and TM modes have refractive indices nTE and nTM that
differ by about 0.07. If we denote this refractive index difference by (�n), the Bragg
condition (3.17) can be written as

λ = �(�n). (3.18)

The wavelength that undergoes mode conversion and thus lies in the passband of
the AOTF can be selected, or tuned, by suitably choosing the acoustic wavelength
�. In order to select a wavelength of 1.55 μm, for (�n) = 0.07, using (3.18),
the acoustic wavelength is about 22 μm. Since the velocity of sound in LiNbO3 is
about 3.75 km/s, the corresponding RF frequency is about 170 MHz. Since the RF
frequency is easily tuned, the wavelength selected by the filter can also be easily
tuned. The typical insertion loss is about 4 dB.

The AOTF considered here is a polarization-dependent device since the input
light energy is assumed to be entirely in the TE mode. A polarization-independent
AOTF, shown in Figure 3.28, can be realized in exactly the same manner as a
polarization-independent isolator by decomposing the input light signal into its TE
and TM constituents and sending each constituent separately through the AOTF and
recombining them at the output.

Transfer Function

Whereas the Bragg condition determines the wavelength that is selected, the width
of the filter passband is determined by the length of the acousto-optic interaction.
The longer this interaction, and hence the device, the narrower the passband. It can
be shown that the wavelength dependence of the fraction of the power transmitted
by the AOTF is given by

T (λ) =
sin2

(
(π/2)

√
1+ (2�λ/�)2

)
1+ (2�λ/�)2 .

This is plotted in Figure 3.29. Here �λ = λ− λ0, where λ0 is the optical wavelength
that satisfies the Bragg condition, and � = λ2

0/l�n is a measure of the filter passband
width. Here, l is the length of the device (or, more correctly, the length of the
acousto-optic interaction). It can be shown that the full width at half-maximum
(FWHM) bandwidth of the filter is ≈ 0.8� (Problem 3.20). This equation clearly
shows that the longer the device, the narrower the passband. However, there is a
trade-off here: the tuning speed is inversely proportional to l. This is because the
tuning speed is essentially determined by the time it takes for a sound wave to travel
the length of the filter.
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Figure 3.29 The power transfer function of the acousto-optic tunable filter.

AOTF as a Wavelength Crossconnect

The polarization-independent AOTF illustrated in Figure 3.28 can be used as a two-
input, two-output dynamic wavelength crossconnect. We studied the operation of
this device as a filter earlier; in this case, only one of the inputs was active. We leave
it as an exercise (Problem 3.21) to show that when the second input is also active,
the energy at the wavelength λ satisfying the Bragg phase-matching condition (3.18)
is exchanged between the two ports. This is illustrated in Figure 3.30(a), where the
wavelength λ1 satisfies the Bragg condition and is exchanged between the ports.

Now the AOTF has one remarkable property that is not shared by any other
tunable filter structure we know. By launching multiple acoustic waves simultane-
ously, the Bragg condition (3.18) can be satisfied for multiple optical wavelengths
simultaneously. Thus multiple wavelength exchanges can be accomplished simulta-
neously between two ports with a single device of the form shown in Figure 3.28.
This is illustrated in Figure 3.30(b), where the wavelengths λ1 and λ4 are exchanged
between the ports. Thus this device performs the same routing function as the static
crossconnect of Figure 3.7. However, the AOTF is a completely general two-input,
two-output dynamic crossconnect since the routing pattern, or the set of wavelengths
to be exchanged, can be changed easily by varying the frequencies of the acoustic
waves launched in the device. In principle, larger dimensional dynamic crossconnects
(with more input and output ports) can be built by suitably cascading 2 × 2 cross-
connects. We will see in Section 3.7, however, that there are better ways of building
large-scale crossconnects.
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Figure 3.30 Wavelength crossconnects constructed from acousto-optic tunable filters.
(a) The wavelength λ1 is exchanged between the two ports. (b) The wavelengths λ1 and
λ4 are simultaneously exchanged between the two ports by the simultaneous launching
of two appropriate acoustic waves.

As of this writing, the AOTF has not yet lived up to its promise either as a
versatile tunable filter or a wavelength crossconnect. One reason for this is the high
level of crosstalk that is present in the device. As can be seen from Figure 3.29,
the first side lobe in its power transfer function is not even 10 dB below the peak
transmission. This problem can be alleviated to some extent by cascading two such
filters. In fact, the cascade can even be built on a single substrate. But even then
the first side lobe would be less than 20 dB below the peak transmission. It is
harder to cascade more such devices without facing other problems such as an
unacceptably high transmission loss. Another reason for the comparative failure
of the AOTF today is that the passband width is fairly large (100 GHz or more)
even when the acousto-optic interaction length is around 1 inch (Problem 3.22).
This makes it unsuitable for use in dense WDM systems where channel spacings
are now down to 50 GHz. Devices with larger interaction lengths are more difficult
to fabricate. However, some recent theoretical work [Son95] indicates that some of
these problems, particularly crosstalk, may be solvable. The crosstalk problems that
arise in AOTFs when used as wavelength crossconnects are discussed in detail in
[Jac96].
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3.3.10 High Channel Count Multiplexer Architectures

With the number of wavelengths continuously increasing, designing multiplexers and
demultiplexers to handle large numbers of wavelengths has become an important
problem. The desired attributes of these devices are the same as what we saw at
the beginning of Section 3.3. Our discussion will be based on demultiplexers, but
these demultiplexers can all be used as multiplexers as well. In fact, in bidirectional
applications, where some wavelengths are transmitted in one direction over a fiber
and others in the opposite direction over the same fiber, the same device acts as a
multiplexer for some wavelengths and a demultiplexer for others. We describe several
architectural approaches to construct high channel count demultiplexers below.

Serial

In this approach, the demultiplexing is done one wavelength at a time. The demul-
tiplexer consists of W filter stages in series, one for each of the W wavelengths.
Each filter stage demultiplexes a wavelength and allows the other wavelengths to
pass through. The architecture of the dielectric thin-film demultiplexer shown in
Figure 3.20 is an example. One advantage of this architecture is that the filter stages
can potentially be added one at a time, as more wavelengths are added. This allows
a “pay as you grow” approach.

Serial approaches work for demultiplexing relatively small numbers of channels
but do not scale to handle a large number of channels. This is because the insertion
loss (in decibels) of the demultiplexer increases almost linearly with the number of
channels to be demultiplexed. Moreover, different channels see different insertion
losses based on the order in which the wavelengths are demultiplexed, which is not
a desirable feature.

Single Stage

Here, all the wavelengths are demultiplexed together in a single stage. The AWG
shown in Figure 3.24 is an example of such an architecture. This approach provides
relatively lower losses and better loss uniformity, compared to the serial approach.
However, the number of channels that can be demultiplexed is limited by the max-
imum number of channels that can be handled by a single device, typically around
40 channels in commercially available AWGs today.

Multistage Banding

Going to larger channel counts requires the use of multiple demultiplexing stages,
due to the limitations of the serial and single-stage approaches discussed above. A
popular approach used today is to divide the wavelengths into bands. For example,
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Figure 3.31 A two-stage demultiplexing approach using bands. A 32-channel demulti-
plexer is realized using four bands of 8 channels each.

a total of 32 wavelengths may be divided into four bands, each with 8 wavelengths.
The demultiplexing is done in two stages, as shown in Figure 3.31. In the first
the set of wavelengths is demultiplexed into bands. In the second stage, the bands
are demultiplexed, and individual wavelengths are extracted. The scheme can be
extended to more than two stages as well. It is also modular in that the demultiplexers
in the second stage (or last stage in a multistage scheme) can be populated one band
at a time.

One drawback of the banding approach is that we will usually need to leave a
“guard” space between bands, as shown in Figure 3.31. This guard space allows
the first-stage filters to be designed to provide adequate crosstalk suppression while
retaining a low insertion loss.

Multistage Interleaving

Interleaving provides another approach to realizing large channel count demultiplex-
ers. A two-stage interleaver is shown in Figure 3.32. In this approach the first stage
separates the wavelengths into two groups. The first group consists of wavelengths
1, 3, 5, . . . and the second group consists of wavelengths 2, 4, 6, . . . . The second stage
extracts the individual wavelengths. This approach is also modular in the sense that
the last stage of demultiplexers can be populated as needed. More than two stages
can be used if needed as well.
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Figure 3.32 A two-stage multiplexing approach using interleaving. In this 32-channel
demultiplexer, the first stage picks out every alternate wavelength, and the second stage
extracts the individual wavelength.

A significant benefit of this approach is that the filters in the last stage can be
much wider than the channel width. As an example, suppose we want to demultiplex
a set of 32 channels spaced 50 GHz apart. After the first stage of demultiplexing,
the channels are spaced 100 GHz apart, as shown in Figure 3.32. So demultiplexers
with a broader passband suitable for demultiplexing 100 GHz spaced channels can
be used in the second stage. In contrast, the single-stage or serial approach would
require the use of demultiplexers capable of demultiplexing 50 GHz spaced channels,
which are much more difficult to build. Carrying this example further, the second
stage itself can in turn be made up of two stages. The first stage extracts every
other 100 GHz channel, leading to a 200 GHz interchannel spacing after this stage.
The final stage can then use even broader filters to extract the individual channels.
Another advantage of this approach is that no guard bands are required in the
channel plan.

The challenges with the interleaving approach lie in realizing the demultiplex-
ers that perform the interleaving at all the levels except the last level. In principle,
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any periodic filter can be used as an interleaver by matching its period to the de-
sired channel spacing. For example, a fiber-based Mach-Zehnder interferometer is a
common choice. These devices are now commercially available, and interleaving is
becoming a popular approach toward realizing high channel count multiplexers and
demultiplexers.

3.4 Optical Amplifiers

In an optical communication system, the optical signals from the transmitter are at-
tenuated by the optical fiber as they propagate through it. Other optical components,
such as multiplexers and couplers, also add loss. After some distance, the cumulative
loss of signal strength causes the signal to become too weak to be detected. Before
this happens, the signal strength has to be restored. Prior to the advent of optical
amplifiers over the last decade, the only option was to regenerate the signal, that is,
receive the signal and retransmit it. This process is accomplished by regenerators.
A regenerator converts the optical signal to an electrical signal, cleans it up, and
converts it back into an optical signal for onward transmission.

Optical amplifiers offer several advantages over regenerators. On one hand, re-
generators are specific to the bit rate and modulation format used by the communi-
cation system. On the other hand, optical amplifiers are insensitive to the bit rate or
signal formats. Thus a system using optical amplifiers can be more easily upgraded,
for example, to a higher bit rate, without replacing the amplifiers. In contrast, in a
system using regenerators, such an upgrade would require all the regenerators to be
replaced. Furthermore, optical amplifiers have fairly large gain bandwidths, and as
a consequence, a single amplifier can simultaneously amplify several WDM signals.
In contrast, we would need a regenerator for each wavelength. Thus optical ampli-
fiers have become essential components in high-performance optical communication
systems.

Amplifiers, however, are not perfect devices. They introduce additional noise,
and this noise accumulates as the signal passes through multiple amplifiers along
its path due to the analog nature of the amplifier. The spectral shape of the gain,
the output power, and the transient behavior of the amplifier are also important
considerations for system applications. Ideally, we would like to have a sufficiently
high output power to meet the needs of the network application. We would also
like the gain to be flat over the operating wavelength range and to be insensitive to
variations in input power of the signal. We will study the impact of optical amplifiers
on the physical layer design of the system in Chapters 4 and 5. Here we explore their
principle of operation.
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Figure 3.33 Stimulated emission and absorption in an atomic system with two energy
levels.

We will consider three different types of amplifiers: erbium-doped fiber amplifiers,
Raman amplifiers, and semiconductor optical amplifiers.

3.4.1 Stimulated Emission

In all the amplifiers we consider, the key physical phenomenon behind signal ampli-
fication is stimulated emission of radiation by atoms in the presence of an electro-
magnetic field. (This is not true of fiber Raman or fiber Brillouin amplifiers, which
make use of fiber nonlinearities, but we do not treat these here.) This field is an
optical signal in the case of optical amplifiers. Stimulated emission is the principle
underlying the operation of lasers as well; we will study lasers in Section 3.5.1.

According to the principles of quantum mechanics, any physical system (for
example, an atom) is found in one of a discrete number of energy levels. Accordingly,
consider an atom and two of its energy levels, E1 and E2, with E2 > E1. An
electromagnetic field whose frequency fc satisfies hfc = E2 − E1 induces transitions
of atoms between the energy levels E1 and E2. Here, h is Planck’s constant (6.63×
10−34 J s). This process is depicted in Figure 3.33. Both kinds of transitions, E1 → E2
and E2 → E1, occur. E1 → E2 transitions are accompanied by absorption of photons
from the incident electromagnetic field. E2 → E1 transitions are accompanied by the
emission of photons of energy hfc, the same energy as that of the incident photons.
This emission process is termed stimulated emission to distinguish it from another
kind of emission called spontaneous emission, which we will discuss later. Thus if
stimulated emission were to dominate over absorption—that is, the incident signal
causes more E2 → E1 transitions than E1 → E2 transitions—we would have a net
increase in the number of photons of energy hfc and an amplification of the signal.
Otherwise, the signal will be attenuated.
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It follows from the theory of quantum mechanics that the rate of the E1 → E2
transitions per atom equals the rate of the E2 → E1 transitions per atom. Let this
common rate be denoted by r. If the populations (number of atoms) in the energy
levels E1 and E2 are N1 and N2, respectively, we have a net increase in power (energy
per unit time) of (N2−N1)rhfc. Clearly, for amplification to occur, this must be pos-
itive, that is, N2 > N1. This condition is known as population inversion. The reason
for this term is that, at thermal equilibrium, lower energy levels are more highly pop-
ulated, that is, N2 < N1. Therefore, at thermal equilibrium, we have only absorption
of the input signal. In order for amplification to occur, we must invert the relationship
between the populations of levels E1 and E2 that prevails under thermal equilibrium.

Population inversion can be achieved by supplying additional energy in a suitable
form to pump the electrons to the higher energy level. This additional energy can be
in optical or electrical form.

3.4.2 Spontaneous Emission

Before describing the operation of the different types of amplifiers, it is important to
understand the impact of spontaneous emission. Consider again the atomic system
with the two energy levels discussed earlier. Independent of any external radiation
that may be present, atoms in energy level E2 transit to the lower energy level E1,
emitting a photon of energy hfc. The spontaneous emission rate per atom from level
E2 to level E1 is a characteristic of the system, and its reciprocal, denoted by τ21,
is called the spontaneous emission lifetime. Thus, if there are N2 atoms in level E2,
the rate of spontaneous emission is N2/τ21, and the spontaneous emission power is
hfcN2/τ21.

The spontaneous emission process does not contribute to the gain of the amplifier
(to first order). Although the emitted photons have the same energy hfc as the incident
optical signal, they are emitted in random directions, polarizations, and phase. This
is unlike the stimulated emission process, where the emitted photons not only have
the same energy as the incident photons but also the same direction of propagation,
phase, and polarization. This phenomenon is usually described by saying that the
stimulated emission process is coherent, whereas the spontaneous emission process
is incoherent.

Spontaneous emission has a deleterious effect on the system. The amplifier treats
spontaneous emission radiation as another electromagnetic field at the frequency hfc,
and the spontaneous emission also gets amplified, in addition to the incident optical
signal. This amplified spontaneous emission (ASE) appears as noise at the output
of the amplifier. The implications of ASE for the design of optical communication
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systems are discussed in Chapters 4 and 5. In addition, in some amplifier designs, the
ASE can be large enough to saturate the amplifier. Saturation effects are explored in
Chapter 5.

3.4.3 Erbium-Doped Fiber Amplifiers

An erbium-doped fiber amplifier (EDFA) is shown in Figure 3.34. It consists of a
length of silica fiber whose core is doped with ionized atoms (ions), Er3+, of the rare
earth element erbium. This fiber is pumped using a pump signal from a laser, typically
at a wavelength of 980 nm or 1480 nm. In order to combine the output of the pump
laser with the input signal, the doped fiber is preceded by a wavelength-selective
coupler.

At the output, another wavelength-selective coupler may be used if needed to
separate the amplified signal from any remaining pump signal power. Usually, an
isolator is used at the input and/or output of any amplifier to prevent reflections into
the amplifier. We will see in Section 3.5 that reflections can convert the amplifier into
a laser, making it unusable as an amplifier.

A combination of several factors has made the EDFA the amplifier of choice in
today’s optical communication systems: (1) the availability of compact and reliable
high-power semiconductor pump lasers, (2) the fact that it is an all-fiber device,
making it polarization independent and easy to couple light in and out of it, (3) the
simplicity of the device, and (4) the fact that it introduces no crosstalk when amplify-
ing WDM signals. This last aspect is discussed later in the context of semiconductor
optical amplifiers.

Principle of Operation

Three of the energy levels of erbium ions in silica glass are shown in Figure 3.35
and are labeled E1, E2, and E3 in order of increasing energy. Several other levels in
Er3+ are not shown. Each energy level that appears as a discrete line in an isolated

Pump

Signal in Signal out

Residual pump

IsolatorErbium fiber

Wavelength-selective
coupler

1550 nm

980 nm

Figure 3.34 An erbium-doped fiber amplifier.
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ion of erbium is split into multiple energy levels when these ions are introduced into
silica glass. This process is termed Stark splitting. Moreover, glass is not a crystal
and thus does not have a regular structure. Thus the Stark splitting levels introduced
are slightly different for individual erbium ions, depending on the local surroundings
seen by those ions. Macroscopically, that is, when viewed as a collection of ions,
this has the effect of spreading each discrete energy level of an erbium ion into a
continuous energy band. This spreading of energy levels is a useful characteristic for
optical amplifiers since they increase the frequency or wavelength range of the signals
that can be amplified. Within each energy band, the erbium ions are distributed in
the various levels within that band in a nonuniform manner by a process known as
thermalization. It is due to this thermalization process that an amplifier is capable
of amplifying several wavelengths simultaneously. Note that Stark splitting denotes
the phenomenon by which the energy levels of free erbium ions are split into a
number of levels, or into an energy band, when the ion is introduced into silica glass.
Thermalization refers to the process by which the erbium ions are distributed within
the various (split) levels constituting an energy band.

Recall from our discussion of the two-energy-level atomic system that only an
optical signal at the frequency fc satisfying hfc = E2−E1 could be amplified in that

E1

E2

E3

E4

1530 nm 980 nm

980 nm

1480 nm

(Fluoride
glass only)

Figure 3.35 Three energy levels E1, E2, and E3 of Er3+ ions in silica glass. The fourth
energy level, E4, is present in fluoride glass but not in silica glass. The energy levels are
spread into bands by the Stark splitting process. The difference between the energy levels
is labeled with the wavelength in nm of the photon corresponding to it. The upward
arrows indicate wavelengths at which the amplifier can be pumped to excite the ions into
the higher energy level. The 980 nm transition corresponds to the band gap between the
E1 and E3 levels. The 1480 nm transition corresponds to the gap between the bottom
of the E1 band to the top of the E2 band. The downward transition represents the
wavelength of photons emitted due to spontaneous and stimulated emission.
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case. If these levels are spread into bands, all frequencies that correspond to the energy
difference between some energy in the E2 band and some energy in the E1 band can
be amplified. In the case of erbium ions in silica glass, the set of frequencies that can
be amplified by stimulated emission from the E2 band to the E1 band corresponds
to the wavelength range 1525–1570 nm, a bandwidth of 50 nm, with a peak around
1532 nm. By a lucky coincidence, this is exactly one of the low-attenuation windows
of standard optical fiber that optical communication systems use.

Denote ionic population in level Ei by Ni , i = 1, 2, 3. In thermal equilibrium,
N1 > N2 > N3. The population inversion condition for stimulated emission from
E2 to E1 is N2 > N1 and can be achieved by a combination of absorption and
spontaneous emission as follows. The energy difference between the E1 and E3 levels
corresponds to a wavelength of 980 nm. So if optical power at 980 nm—called the
pump power—is injected into the amplifier, it will cause transitions from E1 to E3
and vice versa. Since N1 > N3, there will be a net absorption of the 980 nm power.
This process is called pumping.

The ions that have been raised to level E3 by this process will quickly transit
to level E2 by the spontaneous emission process. The lifetime for this process, τ32,
is about 1 μs. Atoms from level E2 will also transit to level E1 by the spontaneous
emission process, but the lifetime for this process, τ21, is about 10 ms, which is much
larger than the E3 to E2 lifetime. Moreover, if the pump power is sufficiently large,
ions that transit to the E1 level are rapidly raised again to the E3 level only to transit
to the E2 level again. The net effect is that most of the ions are found in level E2,
and thus we have population inversion between the E2 and E1 levels. Therefore, if
simultaneously a signal in the 1525–1570 nm band is injected into the fiber, it will
be amplified by stimulated emission from the E2 to the E1 level.

Several levels other than E3 are higher than E2 and, in principle, can be used
for pumping the amplifier. But the pumping process is more efficient, that is, uses
less pump power for a given gain, at 980 nm than these other wavelengths. Another
possible choice for the pump wavelength is 1480 nm. This choice corresponds to
absorption from the bottom sublevel of the E1 band to the top sublevel of the E2
band itself. Pumping at 1480 nm is not as efficient as 980 nm pumping. Moreover, the
degree of population inversion that can be achieved by 1480 nm pumping is lower.
The higher the population inversion, the lower the noise figure of the amplifier. Thus
980 nm pumping is preferred to realize low-noise amplifiers. However, higher-power
pump lasers are available at 1480 nm, compared to 980 nm, and thus 1480 nm
pumps find applications in amplifiers designed to yield high output powers. Another
advantage of the 1480 nm pump is that the pump power can also propagate with
low loss in the silica fiber that is used to carry the signals. Therefore, the pump laser
can be located remotely from the amplifier itself. This feature is used in some systems
to avoid placing any active components in the middle of the link.
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Figure 3.36 The gain of a typical EDFA as a function of the wavelength for four
different values of the pump power, obtained through simulations. The length of the
doped fiber is taken to be 15 m and 980 nm pumping is assumed.

Gain Flatness

Since the population levels at the various levels within a band are different, the
gain of an EDFA becomes a function of the wavelength. In Figure 3.36, we plot
the gain of a typical EDFA as a function of the wavelength for different values of
the pump power. When such an EDFA is used in a WDM communication system,
different WDM channels undergo different degrees of amplification. This is a critical
issue, particularly in WDM systems with cascaded amplifiers, and is discussed in
Section 5.5.2.

One way to improve the flatness of the amplifier gain profile is to use fluoride
glass fiber instead of silica fiber, doped with erbium [Cle94]. Such amplifiers are
called erbium-doped fluoride fiber amplifiers (EDFFAs). The fluoride glass produces
a naturally flatter gain spectrum compared to silica glass. However, there are a few
drawbacks to using fluoride glass. The noise performance of EDFFAs is poorer than
EDFAs. One reason is that they must be pumped at 1480 nm and cannot be pumped
at 980 nm. This is because fluoride glass has an additional higher energy level E4
above the E3 level, as shown in Figure 3.35, with the difference in energies between
these two levels corresponding to 980 nm. This causes the 980 nm pump power to
be absorbed for transitions from the E3 to E4 level, which does not produce useful
gain. This phenomenon is called excited state absorption.
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Figure 3.37 A two-stage erbium-doped fiber amplifier with a loss element inserted
between the first and second stage.

In addition to this drawback, fluoride fiber itself is difficult to handle. It is brittle,
difficult to splice with conventional fiber, and susceptible to moisture. Nevertheless,
EDFFAs are now commercially available devices.

Another approach to flatten the EDFA gain is to use a filter inside the amplifier.
The EDFA has a relatively high gain at 1532 nm, which can be reduced by using a
notch filter in that wavelength region inside the amplifier. Some of the filters described
in Section 3.3 can be used for this purpose. Long-period fiber gratings and dielectric
thin-film filters are currently the leading candidates for this application.

Multistage Designs

In practice, most amplifiers deployed in real systems are more complicated than
the simple structure shown in Figure 3.34. Figure 3.37 shows a more commonly
used two-stage design. The two stages are optimized differently. The first stage is
designed to provide high gain and low noise, and the second stage is designed
to produce high output power. As we will see in Problem 4.5 in Chapter 4, the
noise performance of the whole amplifier is determined primarily by the first stage.
Thus this combination produces a high-performance amplifier with low noise and
high output power. Another important consideration in the design is to provide
redundancy in the event of the failure of a pump, the only active component of the
amplifier. The amplifier shown in the figure uses two pumps and can be designed so
that the failure of one pump has only a small impact on the system performance.
Another feature of the two-stage design that we will address in Problem 4.5 is
that a loss element can be placed between the two stages with negligible impact on
the performance. This loss element may be a gain-flattening filter, a simple optical
add/drop multiplexer, or a dispersion compensation module used to compensate for
accumulated dispersion along the link.



3.4 Optical Amplifiers 165

L-Band EDFAs

So far, we have focused mostly on EDFAs operating in the C-band (1530–1565 nm).
Erbium-doped fiber, however, has a relatively long tail to the gain shape extending
well beyond this range to about 1605 nm. This has stimulated the development of
systems in the so-called L-band from 1565 to 1625 nm. Note that current L-band
EDFAs do not yet cover the top portion of this band from 1610 to 1625 nm.

L-band EDFAs operate on the same principle as C-band EDFAs. However, there
are significant differences in the design of L- and C-band EDFAs. The gain spectrum
of erbium is much flatter intrinsically in the L-band than in the C-band. This makes
it easier to design gain-flattening filters for the L-band. However, the erbium gain
coefficient in the L-band is about three times smaller than in the C-band. This neces-
sitates the use of either much longer doped fiber lengths or fiber with higher erbium
doping concentrations. In either case, the pump powers required for L-band EDFAs
are much higher than their C-band counterparts. Due to the smaller absorption
cross sections in the L-band, these amplifiers also have higher amplified spontaneous
emission. Finally, many of the other components used inside the amplifier, such as
isolators and couplers, exhibit wavelength-dependent losses and are therefore speci-
fied differently for the L-band than for the C-band. There are several other subtleties
associated with L-band amplifiers; see [Flo00] for a summary.

As a result of the significant differences between C- and L-band amplifiers, these
amplifiers are usually realized as separate devices rather than as a single device. In
a practical system application, the C- and L-band wavelengths on a fiber are first
separated by a demultiplexer, then amplified by separate amplifiers, and recombined
together afterward.

3.4.4 Raman Amplifiers

In Section 2.5.3, we studied stimulated Raman scattering (SRS) as one of the non-
linear impairments that affect signals propagating through optical fiber. The same
nonlinearity can be exploited to provide amplification as well. As we saw in Fig-
ure 2.17, the Raman gain spectrum is fairly broad, and the peak of the gain is
centered about 13 THz below the frequency of the pump signal used. In the near-
infrared region of interest to us, this corresponds to a wavelength separation of
about 100 nm. Therefore, by pumping a fiber using a high-power pump laser, we
can provide gain to other signals, with a peak gain obtained 13 THz below the pump
frequency. For instance, using pumps around 1460–1480 nm provides Raman gain
in the 1550–1600 nm window.

A few key attributes distinguish Raman amplifiers from EDFAs. Unlike EDFAs,
we can use the Raman effect to provide gain at any wavelength. An EDFA provides
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Figure 3.38 Distributed Raman amplifier using a backward propagating pump, shown
operating along with discrete erbium-doped fiber amplifiers.

gain in the C- and L-bands (1528–1605 nm). Thus Raman amplification can poten-
tially open up other bands for WDM, such as the 1310 nm window, or the so-called
S-band lying just below 1528 nm. Also, we can use multiple pumps at different
wavelengths and different powers simultaneously to tailor the overall Raman gain
shape.

Second, Raman amplification relies on simply pumping the same silica fiber used
for transmitting the data signals, so that it can be used to produce a lumped or
discrete amplifier, as well as a distributed amplifier. In the lumped case, the Raman
amplifier consists of a sufficiently long spool of fiber along with the appropriate pump
lasers in a package. In the distributed case, the fiber can simply be the fiber span of
interest, with the pump attached to one end of the span, as shown in Figure 3.38.

Today the most popular use of Raman amplifiers is to complement EDFAs by
providing additional gain in a distributed manner in ultra-long-haul systems. The
biggest challenge in realizing Raman amplifiers lies in the pump source itself. These
amplifiers require high-power pump sources of the order of 1 W or more, at the
right wavelength. We will study some techniques for realizing these pump sources in
Section 3.5.5.

The noise sources in Raman amplifiers are somewhat different from EDFAs. The
Raman gain responds instantaneously to the pump power. Therefore fluctuations
in pump power will cause the gain to vary and will appear as crosstalk to the
desired signals. This is not the case with EDFAs. We will see in Section 3.4.6 that
the response time of the gain is much slower—on the order of milliseconds—in those
devices. Therefore, for Raman amplifiers, it is important to keep the pump at a
constant power. Having the pump propagate in the opposite direction to the signal
helps dramatically because fluctuations in pump power are then averaged over the
propagation time over the fiber. To understand this, first consider the case where the
pump propagates along with the signal in the same direction. The two waves travel
at approximately the same velocity. In this case, when the pump power is high at the
input, the signal sees high gain, and when the power is low, the signal sees a lower
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gain. Now consider the case when the signal and pump travel in opposite directions.
To keep things simple, suppose that the pump power varies between two states: high
and low. As the signal propagates through the fiber, whenever it overlaps with the
pump signal in the high power state, it sees a high gain. When it overlaps with the
pump signal in the low power state, it sees a lower gain. If the pump fluctuations are
relatively fast compared to the propagation time of the signal across the fiber, the
gain variations average out, and by the time the signal exits the fiber, it has seen a
constant gain.

Another major concern with Raman amplifiers is crosstalk between the WDM
signals due to Raman amplification. A modulated signal at a particular wavelength
depletes the pump power, effectively imposing the same modulation on the pump sig-
nal. This modulation on the pump then affects the gain seen by the next wavelength,
effectively appearing as crosstalk on that wavelength. Again, having the pump prop-
agate in the opposite direction to the signal dramatically reduces this effect. For these
reasons, most Raman amplifiers use a counterpropagating pump geometry.

Another source of noise is due to the back-reflections of the pump signal caused
by Rayleigh scattering in the fiber. Spontaneous emission noise is relatively low in
Raman amplifiers. This is usually the dominant source of noise because, by careful
design, we can eliminate most of the other noise sources.

3.4.5 Semiconductor Optical Amplifiers

Semiconductor optical amplifiers (SOAs) actually preceded EDFAs, although we will
see that they are not as good as EDFAs for use as amplifiers. However, they are
finding other applications in switches and wavelength converter devices. Moreover,
the understanding of SOAs is key to the understanding of semiconductor lasers, the
most widely used transmitters today.

Figure 3.39 shows the block diagram of a semiconductor optical amplifier. The
SOA is essentially a pn-junction. As we will explain shortly, the depletion layer that is
formed at the junction acts as the active region. Light is amplified through stimulated
emission when it propagates through the active region. For an amplifier, the two ends
of the active region are given an antireflection (AR) coating to eliminate ripples in
the amplifier gain as a function of wavelength. Alternatively, the facets may also be
angled slightly to reduce the reflection. In the case of a semiconductor laser, there
would be no AR coating.

SOAs differ from EDFAs in the manner in which population inversion is
achieved. First, the populations are not those of ions in various energy states but
of carriers—electrons or holes—in a semiconductor material. Holes can also be
thought of as charge carriers similar to electrons except that they have a positive
charge. A semiconductor consists of two bands of electron energy levels: a band of
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Figure 3.39 Block diagram of a semiconductor optical amplifier. Amplification occurs
when light propagates through the active region. The facets are given an antireflective
coating to prevent undesirable reflections, which cause ripple in the amplifier gain.

low-mobility levels called the valence band and a band of high-mobility levels called
the conduction band. These bands are separated by an energy difference called the
bandgap and denoted by Eg. No energy levels exist in the bandgap. Consider a
p-type semiconductor material. At thermal equilibrium, there is only a very small
concentration of electrons in the conduction band of the material, as shown in Fig-
ure 3.40(a). With reference to the previous discussion of EDFAs, it is convenient to
think of the conduction band as the higher energy band E2, and the valence band as
the lower energy band E1. The terms higher and lower refer to the electron energy in
these bands. (Note that if we were considering an n-type semiconductor, we would be
considering hole energies rather than electron energies, the conduction band would
be the lower energy band E1, and the valence band, the higher energy band E2.)
In the population inversion condition, the electron concentration in the conduction
band is much higher, as shown in Figure 3.40(b). This increased concentration is
such that, in the presence of an optical signal, there are more electrons transiting
from the conduction band to the valence band by the process of stimulated emission
than there are electrons transiting from the valence band to the conduction band
by the process of absorption. In fact, for SOAs, this condition must be used as the
defining one for population inversion, or optical gain.

Population inversion in an SOA is achieved by forward-biasing a pn-junction. A
pn-junction consists of two semiconductors: a p-type semiconductor that is doped
with suitable impurity atoms so as to have an excess concentration of holes, and
an n-type semiconductor that has an excess concentration of electrons. When the
two semiconductors are in juxtaposition, as in Figure 3.41(a), holes diffuse from
the p-type semiconductor to the n-type semiconductor, and electrons diffuse from
the n-type semiconductor to the p-type semiconductor. This creates a region with
net negative charge in the p-type semiconductor and a region with net positive
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Figure 3.40 The energy bands in a p-type semiconductor and the electron concentration
at (a) thermal equilibrium and (b) population inversion.

charge in the n-type semiconductor, as shown in Figure 3.41(b). These regions are
devoid of free charge carriers and are together termed the depletion region. When
no voltage (bias) is applied to the pn-junction, the minority carrier concentrations
(electrons in the p-type region and holes in the n-type region) remain at their thermal
equilibrium values. When the junction is forward biased—positive bias is applied to
the p-type and negative bias to the n-type—as shown in Figure 3.41(c), the width of
the depletion region is reduced, and there is a drift of electrons from the n-type region
to the p-type region. This drift increases the electron concentration in the conduction
band of the p-type region. Similarly, there is a drift of holes from the p-type to the
n-type region that increases the hole concentration in the valence band of the n-type
region. When the forward-bias voltage is sufficiently high, these increased minority
carrier concentrations result in population inversion, and the pn-junction acts as an
optical amplifier.

In practice, a simple pn-junction is not used, but a thin layer of a different
semiconductor material is sandwiched between the p-type and n-type regions. Such
a device is called a heterostructure. This semiconductor material then forms the active
region or layer. The material used for the active layer has a slightly smaller bandgap
and a higher refractive index than the surrounding p-type and n-type regions. The
smaller bandgap helps to confine the carriers injected into the active region (electrons
from the n-type region and holes from the p-type region). The larger refractive
index helps to confine the light during amplification since the structure now forms a
dielectric waveguide (see Section 2.3.4).

In semiconductor optical amplifiers, the population inversion condition (stimu-
lated emission exceeds absorption) must be evaluated as a function of optical fre-
quency or wavelength. Consider an optical frequency fc such that hfc > Eg, where
Eg is the bandgap of the semiconductor material. The lowest optical frequency
(or largest wavelength) that can be amplified corresponds to this bandgap. As the
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Figure 3.41 A forward-biased pn-junction used as an amplifier. (a) A pn-junction.
(b) Minority carrier concentrations and depletion region with no bias voltage applied.
(c) Minority carrier concentrations and depletion region with a forward-bias voltage, Vf .

forward-bias voltage is increased, the population inversion condition for this wave-
length is reached first. As the forward bias voltage increases further, the electrons
injected into the p-type region occupy progressively higher energy levels, and signals
with smaller wavelengths can be amplified. In practice, bandwidths on the order of
100 nm can be achieved with SOAs. This is much larger than what is achievable
with EDFAs. Signals in the 1.3 and 1.55 μm bands can even be simultaneously am-
plified using SOAs. Nevertheless, EDFAs are widely preferred to SOAs for several
reasons. The main reason is that SOAs introduce severe crosstalk when they are used
in WDM systems. This is discussed next. The gains and output powers achievable
with EDFAs are higher. The coupling losses and the polarization-dependent losses
are also lower with EDFAs since the amplifier is also a fiber. Due to the higher input
coupling loss, SOAs have higher noise figures relative to EDFAs. (We will discuss
noise figure in Section 4.4.5. For our purposes here, we can think of it as a measure
of the noise introduced by the amplifier.) Finally, the SOA requires very high-quality
antireflective coatings on its facets (reflectivity of less than 10−4), which is not easy
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to achieve. Higher values of reflectivity create ripples in the gain spectrum and cause
gain variations due to temperature fluctuations. (Think of this device as a Fabry-
Perot filter with very poor reflectivity, and the spectrum as similar to the one plotted
in Figure 3.17 for the case of poor reflectivity.) Alternatively, the SOA facets can
be angled to obtain the desired reflectivities, at the cost of an increased polarization
dependence.

3.4.6 Crosstalk in SOAs

Consider an SOA to which is input the sum of two optical signals at different
wavelengths. Assume that both wavelengths are within the bandwidth of the SOA.
The presence of one signal will deplete the minority carrier concentration by the
stimulated emission process so that the population inversion seen by the other signal
is reduced. Thus the other signal will not be amplified to the same extent and, if the
minority carrier concentrations are not very large, may even be absorbed! (Recall that
if the population inversion condition is not achieved, there is net absorption of the
signal.) Thus, for WDM networks, the gain seen by the signal in one channel varies
with the presence or absence of signals in the other channels. This phenomenon is
called crosstalk, and it has a detrimental effect on system performance.

This crosstalk phenomenon depends on the spontaneous emission lifetime from
the high-energy to the low-energy state. If the lifetime is large enough compared to
the rate of fluctuations of power in the input signals, the electrons cannot make the
transition from the high-energy state to the lower-energy state in response to these
fluctuations. Thus there is no crosstalk whatsoever. In the case of SOAs, this lifetime
is on the order of nanoseconds. Thus the electrons can easily respond to fluctuations
in power of signals modulated at gigabit/second rates, resulting in a major system
impairment due to crosstalk. In contrast, the spontaneous emission lifetime in an
EDFA is about 10 ms. Thus crosstalk is introduced only if the modulation rates of
the input signals are less than a few kilohertz, which is not usually the case. Thus
EDFAs are better suited for use in WDM systems than SOAs.

There are several ways of reducing the crosstalk introduced by SOAs. One way
is to operate the amplifier in the small signal region where the gain is relatively
independent of the input power of the signal. Another is to clamp the gain of the
amplifier using a variety of techniques, so that even at high signal powers, its gain
remains relatively constant, independent of the input signal. Also, if a sufficiently
large number of signals at different wavelengths are present, although each signal
varies in power, the total signal power into the amplifier can remain fairly constant.

The crosstalk effect is not without its uses. We will see in Section 3.8.2 that it
can be used to make a wavelength converter.
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3.5 Transmitters

We will study many different types of light sources in this section. The most im-
portant one is the laser, of which there are many different types. Lasers are used as
transmitters as well as to pump both erbium-doped and Raman amplifiers.

When using a laser as a light source for WDM systems, we need to consider the
following important characteristics:

1. Lasers need to produce a reasonably high output power. For WDM systems, the
typical laser output powers are in the 0–10 dBm range. Related parameters are
the threshold current and slope efficiency. Both of these govern the efficiency of
converting electrical power into optical power. The threshold current is the drive
current at which the laser starts to emit optical power, and the slope efficiency is
the ratio of output optical power to drive current.

2. The laser needs to have a narrow spectral width at a specified operating wave-
length so that the signal can pass through intermediate filters and multiple chan-
nels can be placed close together. The side-mode suppression ratio is a related
parameter, which we will discuss later. In the case of a tunable laser, the operating
wavelength can be varied.

3. Wavelength stability is an important criterion. When maintained at constant
temperature, the wavelength drift over the life of the laser needs to be small
relative to the wavelength spacing between adjacent channels.

4. For lasers that are modulated, chromatic dispersion can be an important limiting
factor that affects the link length. We will see in Chapter 5 that the dispersion
limit can be stated in terms of a penalty as a function of the total accumulated
dispersion along the link.

Pump lasers are required to produce much higher power levels than lasers used
as WDM sources. Pump lasers used in erbium-doped fiber amplifiers put out 100–
200 mW of power, and pump lasers for Raman amplifiers may go up to a few watts.

3.5.1 Lasers

A laser is essentially an optical amplifier enclosed within a reflective cavity that
causes it to oscillate via positive feedback. Semiconductor lasers use semiconductors
as the gain medium, whereas fiber lasers typically use erbium-doped fiber as the gain
medium. Semiconductor lasers are by far the most popular light sources for optical
communication systems. They are compact, usually only a few hundred micrometers
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Figure 3.42 Reflection and transmission at the facets of a Fabry-Perot cavity.

in size. Since they are essentially pn-junctions, they can be fabricated in large volumes
using highly advanced integrated semiconductor technology. The lack of any need
for optical pumping, unlike fiber lasers, is another advantage. In fact, a fiber laser
typically uses a semiconductor laser as a pump! Semiconductor lasers are also highly
efficient in converting input electrical (pump) energy into output optical energy.

Both semiconductor and erbium fiber lasers are capable of achieving high output
powers, typically between 0 and 20 dBm, although semiconductor lasers used as
WDM sources typically have output powers between 0 and 10 dBm. Fiber lasers are
used mostly to generate periodic trains of very short pulses (by using a technique
called mode locking, discussed later in this section).

Principle of Operation

Consider any of the optical amplifiers described, and assume that a part of the
optical energy is reflected at the ends of the amplifying or gain medium, or cavity, as
shown in Figure 3.42. Further assume that the two ends of the cavity are plane and
parallel to each other. Thus the gain medium is placed in a Fabry-Perot cavity (see
Section 3.3.5). Such an optical amplifier is called a Fabry-Perot amplifier. The two
end faces of the cavity (which play the role of the mirrors) are called facets.

The result of placing the gain medium in a Fabry-Perot cavity is that the gain is
high only for the resonant wavelengths of the cavity. The argument is the same as
that used in the case of the Fabry-Perot filter (Section 3.3.5). After one pass through
the cavity, as shown in Figure 3.42, part of the light leaves the cavity through the
right facet, and part is reflected. Part of the reflected wave is again reflected by the left
facet to the right facet. For the resonant wavelengths of the cavity, all the light waves
transmitted through the right facet add in phase. As a result of in-phase addition, the
amplitude of the transmitted wave is greatly increased for these resonant wavelengths
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compared to other wavelengths. Thus, when the facets are at least partially reflecting,
the gain of the optical amplifier becomes a function of the wavelength.

If the combination of the amplifier gain and the facet reflectivity is sufficiently
large, the amplifier will start to “oscillate,” or produce light output, even in the
absence of an input signal. For a given device, the point at which this happens is
called its lasing threshold. Beyond the threshold, the device is no longer an ampli-
fier but an oscillator or laser. This occurs because the stray spontaneous emission,
which is always present at all wavelengths within the bandwidth of the amplifier,
gets amplified even without an input signal and appears as the light output. This
process is quite similar to what happens in an electronic oscillator, which can be
viewed as an (electronic) amplifier with positive feedback. (In electronic oscillators,
the thermal noise current due to the random motion of electrons serves the same
purpose as spontaneous emission.) Since the amplification process is due to stimu-
lated emission, the light output of a laser is coherent. The term laser is an acronym
for light amplification by stimulated emission of radiation.

Longitudinal Modes

For laser oscillation to occur at a particular wavelength, two conditions must be
satisfied. First, the wavelength must be within the bandwidth of the gain medium
that is used. Thus, if a laser is made from erbium-doped fiber, the wavelength must
lie in the range 1525–1560 nm. The second condition is that the length of the cavity
must be an integral multiple of half the wavelength in the cavity. For a given laser,
all the wavelengths that satisfy this second condition are called the longitudinal
modes of that laser. The adjective “longitudinal” is used to distinguish these from
the waveguide modes (which should strictly be called spatial modes) that we studied
in Section 2.2.

The laser described earlier is called a Fabry-Perot laser (FP laser) and will usu-
ally oscillate simultaneously in several longitudinal modes. Such a laser is termed
a multiple-longitudinal mode (MLM) laser. MLM lasers have large spectral widths,
typically around 10 nm. A typical spectrum of the output of an MLM laser is shown
in Figure 3.43(a). We saw in Section 2.4 that for high-speed optical communication
systems, the spectral width of the source must be as narrow as possible to minimize
the effects of chromatic dispersion. Similarly, a narrow spectral width is also needed
to minimize crosstalk in WDM systems (see Section 3.3). Thus it is desirable to de-
sign a laser that oscillates in a single-longitudinal mode (SLM) only. The spectrum
of the output of an SLM laser is shown in Figure 3.43(b). Single-longitudinal mode
oscillation can be achieved by using a filtering mechanism in the laser that selects
the desired wavelength and provides loss at the other wavelengths. An important
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Figure 3.43 The spectrum of the output of (a) an MLM laser and (b) an SLM laser. The
laser cavity length is denoted by l, and its refractive index by n. The frequency spacing
between the modes of an MLM laser is then c/2nl.

attribute of such a laser is its side-mode suppression ratio, which determines the
level to which the other longitudinal modes are suppressed, compared to the main
mode. This ratio is typically more than 30 dB for practical SLM lasers. We will
now consider some mechanisms that are commonly employed for realizing SLM
lasers.

Distributed-Feedback Lasers

In the Fabry-Perot laser described earlier, the feedback of the light occurs from the
reflecting facets at the ends of the cavity. Thus the feedback can be said to be localized
at the facets. Light feedback can also be provided in a distributed manner by a series
of closely spaced reflectors. The most common means of achieving this is to provide
a periodic variation in the width of the cavity, as shown in Figure 3.44(a) and (b).

In the corrugated section of the cavity, the incident wave undergoes a series
of reflections. The contributions of each of these reflected waves to the resulting
transmitted wave from the cavity add in phase if the period of the corrugation is
an integral multiple of half the wavelength in the cavity. The reasoning for this
condition is the same as that used for the Fabry-Perot cavity. This condition is
called the Bragg condition and was discussed in Section 3.3.3. The Bragg condition
will be satisfied for a number of wavelengths, but the strongest transmitted wave
occurs for the wavelength for which the corrugation period is equal to half the
wavelength, rather than some other integer multiple of it. Thus this wavelength gets
preferentially amplified at the expense of the other wavelengths. By suitable design
of the device, this effect can be used to suppress all other longitudinal modes so that
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Figure 3.44 The structure of (a) a DFB laser and (b) a DBR laser. In a DFB laser, the
gain and wavelength selection are obtained in the same region, whereas in a DBR laser,
the wavelength selection region is outside the gain region.

the laser oscillates in a single-longitudinal mode whose wavelength is equal to twice
the corrugation period. By varying the corrugation period at the time of fabrication,
different operating wavelengths can be obtained.

Any laser that uses a corrugated waveguide to achieve single-longitudinal mode
operation can be termed a distributed-feedback laser. However, the acronym DFB
laser is used only when the corrugation occurs within the gain region of the cavity,
as shown in Figure 3.44(a). When the corrugation is outside the gain region, as in
Figure 3.44(b), the laser is called a distributed Bragg reflector (DBR) laser. The main
advantage of DBR lasers is that the gain region is decoupled from the wavelength
selection region. Thus it is possible to control both regions independently. For exam-
ple, by changing the refractive index of the wavelength selection region, the laser can
be tuned to a different wavelength without affecting its other operating parameters.
Indeed, this is how many of the tunable lasers that we will study in Section 3.5.3 are
realized.

DFB lasers are inherently more complex to fabricate than FP lasers and thus
relatively more expensive. However, DFB lasers are required in almost all high-speed
transmission systems today. FP lasers are used for shorter-distance data communica-
tion applications.

Reflections into a DFB laser cause its wavelength and power to fluctuate and are
prevented by packaging the laser with an isolator in front of it. The laser is also
usually packaged with a thermoelectric (TE) cooler and a photodetector attached to
its rear facet. The TE cooler is necessary to maintain the laser at a constant operating
temperature to prevent its wavelength from drifting. The temperature sensitivity of
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Figure 3.45 The structure of an external cavity laser.

a semiconductor DFB laser operating in the 1.55 μm wavelength region is about
0.1 nm/◦C. The photodetector monitors the optical power leaking out of the rear
facet, which is proportional to the optical power coming out of the laser.

The packaging of a DFB laser contributes a significant fraction of the overall cost
of the device. For WDM systems, it is very useful to package multiple DFB lasers
at different wavelengths inside a single package. This device can then serve as a
multiwavelength light source or, alternatively, as a tunable laser (only one of the lasers
in the array is turned on, depending on the desired wavelength). These lasers can all be
grown on a single substrate in the form of an array. Four- and eight-wavelength laser
arrays have been fabricated in research laboratories, but have not quite progressed
to volume manufacturing. The primary reason for this is the relatively low yield of
the array as a whole. If one of the lasers doesn’t meet specifications, the entire array
will have to be discarded.

External Cavity Lasers

Suppression of oscillation at more than one longitudinal mode can also be achieved
by using another cavity—called an external cavity—following the primary cavity
where gain occurs. This is illustrated in Figure 3.45. Just as the primary cavity has
resonant wavelengths, so does the external cavity. This effect can be achieved, for
example, by using reflecting facets for the external cavity as well. The net result
of having an external cavity is that the laser is capable of oscillating only at those
wavelengths that are resonant wavelengths of both the primary and external cavity.
By suitable design of the two cavities, it can be ensured that only one wavelength
in the gain bandwidth of the primary cavity satisfies this condition. Thus the laser
oscillation can be confined to a single-longitudinal mode.

Instead of another Fabry-Perot cavity, as shown in Figure 3.45, we can use a
diffraction grating (see Section 3.3.1) in the external cavity, as shown in Figure 3.46.
Such a laser is called a grating external cavity laser. In this case, the facet of the
gain cavity facing the grating is given an antireflection coating. The wavelengths
reflected by the diffraction grating back to the gain cavity are determined by the



178 Components

Figure 3.46 The structure of a grating external cavity laser. By rotating the grating, we
can tune the wavelength of the laser.

pitch of the grating (see Section 3.3.1) and its tilt angle (see Figure 3.46) with respect
to the gain cavity. An external cavity laser, in general, uses a wavelength-selective
mirror instead of a wavelength-flat mirror. (A highly polished and/or metal-coated
facet used in conventional lasers acts as a wavelength-flat mirror.) The reflectiv-
ity of a wavelength-selective mirror is a function of the wavelength. Thus only
certain wavelengths experience high reflectivities and are capable of lasing. If the
wavelength-selective mirror is chosen suitably, only one such wavelength will occur
within the gain bandwidth, and we will have a single-mode laser.

Several of the filters discussed in Section 3.3 can be used as wavelength-selective
mirrors in external cavity lasers. We have already seen the use of the diffraction
grating (Section 3.3.1) and Fabry-Perot filter (Section 3.3.5) in external cavity lasers.
These laser structures are used today primarily in optical test instruments and are
not amenable to low-cost volume production as SLM light sources for transmission
systems. One version of the external cavity laser, though, appears to be particularly
promising for this purpose. This device uses a fiber Bragg grating in front of a
conventional FP laser with its front facet AR coated. This device then acts as an
SLM DBR laser. It can be fabricated at relatively low cost compared to DFB lasers
and is inherently more temperature stable in wavelength due to the low temperature-
coefficient of the fiber grating.

One disadvantage of external cavity lasers is that they cannot be modulated
directly at high speeds. This is related to the fact that the cavity length is large.

Vertical Cavity Surface-Emitting Lasers

In this section, we will study another class of lasers that achieve single-longitudinal
mode operation in a slightly different manner. As we saw in Figure 3.43, the frequency
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Figure 3.47 The structure of a VCSEL.

spacing between the modes of an MLM laser is c/2nl, where l is the length of the
cavity and n is its refractive index. If we were to make the length of the cavity
sufficiently small, the mode spacing increases such that only one longitudinal mode
occurs within the gain bandwidth of the laser. It turns out that making a very
thin active layer is much easier if the active layer is deposited on a semiconductor
substrate, as illustrated in Figure 3.47. This leads to a vertical cavity with the mirrors
being formed on the top and bottom surfaces of the semiconductor wafer. The laser
output is also taken from one of these (usually top) surfaces. For these reasons, such
lasers are called vertical cavity surface-emitting lasers (VCSELs). The other lasers
that we have been discussing hitherto can thus be referred to as edge-emitting lasers.

Since the gain region has a very short length, very high mirror reflectivities are
required in order for laser oscillation to occur. Such high mirror reflectivities are
difficult to obtain with metallic surfaces. A stack of alternating low- and high-index
dielectrics serves as a highly reflective, though wavelength-selective, mirror. The
reflectivity of such a mirror is discussed in Problem 3.13. Such dielectric mirrors can
be deposited at the time of fabrication of the laser.

One problem with VCSELs is the large ohmic resistance encountered by the
injected current. This leads to considerable heating of the device and the need for
efficient thermal cooling. Many of the dielectric materials used to make the mirrors
have low thermal conductivity. So the use of such dielectric mirrors makes room
temperature operation of VCSELs difficult to achieve since the heat generated by
the device cannot be dissipated easily. For this reason, for several years after they
were first demonstrated in 1979, VCSELs were not capable of operating at room
temperature. However, significant research effort has been expended on new mate-
rials and techniques, VCSELs operating at 1.3 μm at room temperature have been
demonstrated [Har00].

The advantages of VCSELs, compared to edge-emitting lasers, include simpler
and more efficient fiber coupling, easier packaging and testing, and their ability
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Figure 3.48 A two-dimensional array of vertical cavity surface-emitting lasers.

to be integrated into multiwavelength arrays. VCSELs operating at 0.85 μm are
commercially available and used for low-cost, short-distance multimode fiber inter-
connections. In addition, 1.3 μm VCSELs have been commercially available.

In a WDM system, many wavelengths are transmitted simultaneously over each
link. Usually, this requires a separate laser for each wavelength. The cost of the
transmitters can be significantly reduced if all the lasers can be integrated on a single
substrate. This is the main motivation for the development of arrayed lasers such
as the DFB laser arrays that we discussed earlier. Moreover, an arrayed laser can
be used as a tunable laser simply by turning on only the one required laser in the
array. The use of surface-emitting lasers enables us to fabricate a two-dimensional
array of lasers, as shown in Figure 3.48. Much higher array packing densities can be
achieved using surface-emitting lasers than edge-emitting ones because of this added
dimension. However, it is harder to couple light from the lasers in this array onto
optical fiber since multiplexers that work conveniently with this two-dimensional
geometry are not readily available. These arrayed lasers have the same yield problem
as other arrayed laser structures; if one of the lasers does not meet specifications, the
entire array will have to be discarded.

Mode-Locked Lasers

Mode-locked lasers are used to generate narrow optical pulses that are needed for the
high-speed TDM systems that we will study in Chapter 12. Consider a Fabry-Perot
laser that oscillates in N longitudinal modes, which are adjacent to each other. This
means that if the wavelengths of the modes are λ0, λ1, . . . , λN−1, the cavity length l

satisfies l = (k+i)λi/2, i = 0, 1, . . . , N−1, for some integer k. From this condition, it
can be shown (see Problem 3.7) that the corresponding frequencies f0, f1, . . . , fN−1
of these modes must satisfy fi = f0 + i�f , i = 0, 1, . . . , N − 1. The oscillation at
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Figure 3.49 Output oscillation of a laser oscillating simultaneously in 10 longitudinal
modes. (a) The phases of the modes are chosen at random. (b) All the phases are equal
to each other; such a laser is said to be mode locked.

frequency fi is of the form ai cos(2πfit + φi), where ai is the amplitude and φi the
phase of mode i. (Strictly speaking, this is the distribution in time of the electric field
associated with the longitudinal mode.) Thus the total laser output oscillation takes
the form

N−1∑
i=0

ai cos(2πfit + φi).

This expression is plotted in Figure 3.49 for N = 10, for different sets of values of
the φi . In Figure 3.49(a), the φi are chosen at random, and in Figure 3.49(b), they
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are chosen to be equal to each other. All the ai are chosen to be equal in both cases,
and the frequency f0 has been diminished from its typical value for the purpose of
illustration.

From Figure 3.49(a), we observe that the output amplitude of an MLM laser
varies rapidly with time when it is not mode locked. We have also seen in Fig-
ure 3.43(a) that the frequency spacing between adjacent longitudinal modes is c/2nl.
If n = 3 and l = 200 μm, which are typical values for semiconductor lasers, this
frequency spacing is 250 GHz. Thus these amplitude fluctuations occur extremely
rapidly (at a time scale on the order of a few picoseconds) and pose no problems for
on-off modulation even at bit rates of a few tens of gigabits per second.

We see from Figure 3.49(b) that when the φi are chosen to be equal to each
other, the output oscillation of the laser takes the form of a periodic train of narrow
pulses. A laser operating in this manner is called a mode-locked laser and is the most
common means of generating narrow optical pulses.

The time interval between two pulses of a mode-locked laser is 2nl/c, as indicated
in Figure 3.49(b). For a typical semiconductor laser, as we have seen earlier, this
corresponds to a few picoseconds. For modulation in the 1–10 GHz range, the
interpulse interval should be in the 0.1–1 ns range. Cavity lengths, l, of the order
of 1–10 cm (assuming n = 1.5) are required in order to realize mode-locked lasers
with interpulse intervals in this range. These large cavity lengths are easily obtained
using fiber lasers, which require the length anyway to obtain sufficient gain to induce
lasing.

The most common means of achieving mode lock is by modulating the gain
of the laser cavity. Either amplitude or frequency modulation can be used. Mode
locking using amplitude modulation is illustrated in Figure 3.50. The gain of the
cavity is modulated with a period equal to the interpulse interval, namely, 2nl/c.
The amplitude of this modulation is chosen such that the average gain is insufficient
for any single mode to oscillate. However, if a large number of modes are in phase,
there can be a sufficient buildup in the energy inside the cavity for laser oscillation
to occur at the instants of high gain, as illustrated in Figure 3.50.

Gain modulation of the fiber laser can be achieved by introducing an external
modulator inside the cavity.

3.5.2 Light-Emitting Diodes

Lasers are expensive devices and are not affordable for many applications where the
data rates are low and distances are short. This is the case in many data communi-
cations applications (see Chapter 6) and in some access networks (Chapter 11). In
such cases, light-emitting diodes (LEDs) provide a cheaper alternative.
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Figure 3.50 Illustration of mode locking by amplitude modulation of the cavity gain.

An LED is a forward-biased pn-junction in which the recombination of the
injected minority carriers (electrons in the p-type region and holes in the n-type
region) by the spontaneous emission process produces light. (Unwanted nonradiative
recombination is also possible and is an important factor affecting the performance of
LEDs.) Because spontaneous emission occurs within the entire bandwidth of the gain
medium (corresponding to all energy differences between the valence and conduction
bands for an LED), the light output of an LED has a broad spectrum, unlike that
of a laser. We can crudely think of an LED as a laser with facets that are not very
reflective. Increasing the pump current simply increases the spontaneous emission,
and there is no chance to build up stimulated emission due to the poor reflectivity
of the facets. For this reason, LEDs are also not capable of producing high-output
powers like lasers, and typical output powers are on the order of −20 dBm. They
cannot be directly modulated (see Section 3.5.4) at data rates higher than a few
hundred megabits per second.

In some low-speed, low-budget applications, there is a requirement for a source
with a narrow spectral width. DFB lasers provide narrow spectral widths but may be
too expensive for these applications. In such cases, LED slicing provides a cheaper
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alternative. An LED slice is the output of a narrow passband optical filter placed in
front of the LED. The optical filter selects a portion of the LED’s output. Different
filters can be used to select (almost) nonoverlapping spectral slices of the LED output.
Thus one LED can be shared by a number of users. We will see an application for
this technique in Chapter 11.

3.5.3 Tunable Lasers

Tunable lasers are highly desirable components for WDM networks for several rea-
sons. Fixed-wavelength DFB lasers work very well for today’s applications. However,
each wavelength requires a different, unique laser. This implies that in order to sup-
ply a 100-channel WDM system, we need to stock 100 different laser types. The
inventory and sparing issues associated with this are expensive and affect everybody
from laser manufacturers to network operators. Laser manufacturers need to set
up multiple production and test lines for each laser wavelength (or time-share the
same production and test line but change the settings each time a different laser is
made). Equipment suppliers need to stock these different lasers and keep inventories
and spares for each wavelength. Finally, network operators need to stockpile spare
wavelengths in the event transmitters fail in the field and need to be replaced. Having
a tunable laser alleviates this problem dramatically.

Tunable lasers are also one of the key enablers of reconfigurable optical networks.
They provide the flexibility to choose the transmit wavelength at the source of a
lightpath. For instance, if we wanted to have a total of, say, four lightpaths starting
at a node, we would equip that node with four tunable lasers. This would allow
us to choose the four transmit wavelengths in an arbitrary manner. In contrast, if
we were to use fixed-wavelength lasers, either we would have to preequip the node
with a large number of lasers to cover all the possible wavelengths, or we would
have to manually equip the appropriate wavelength as needed. We will see more of
this application in Chapter 7. The tuning time required for such applications is on
the order of milliseconds because the wavelength selection happens only at the times
where the lightpath is set up, or when it needs to be rerouted in the event of a failure.

Another application for tunable lasers is in optical packet-switched networks,
where data needs to be transmitted on different wavelengths on a packet-by-packet
basis. These networks are primarily in their early stages of research today, but sup-
porting such an application would require tuning times on the order of nanoseconds
to microseconds, depending on the bit rate and packet size used.

Finally, tunable lasers are a staple in most WDM laboratories and test environ-
ments, where they are widely used for characterizing and testing various types of
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optical equipment. These lasers are typically tabletop-type devices and are not suit-
able for use in telecom applications, which call for compact, low-cost semiconductor
lasers.

The InGaAsP/InP material used for most long-wavelength lasers is enhanced by
the use of quantum well structures and has an overall gain bandwidth of about
250 nm at 1.55 μm, large enough for the needs of current WDM systems. However,
the tuning mechanisms available potentially limit the tuning range to a small fraction
of this number. The following tuning mechanisms are typically used:

Injecting current into a semiconductor laser causes a change in the refractive
index of the material, which in turn changes the lasing wavelength. This effect is
fairly small—about a 0.5–2% change in the refractive index (and the wavelength)
is possible. This effect can be used to effect a tuning range of approximately 10–
15 nm in the 1.55 μm wavelength window.

Temperature tuning is another possibility. The wavelength sensitivity of a semi-
conductor laser to temperature is approximately 0.1 nm/◦C. In practice, the al-
lowed range for temperature tuning is about 1 nm, corresponding to a 10◦C
temperature variation. Operating the laser at significantly higher temperatures
than room temperature causes it to age rapidly, degrading its lifetime.

Mechanical tuning can be used to provide a wide tunable range in lasers that
use a separate external cavity mechanism. Many of these lasers tend to be bulky.
We will look at one laser structure of this type using a micro-electro-mechanical
tuning mechanism, which is quite compact.

As we will see, the tuning mechanisms are complex and, in many cases, interact
with the modulation mechanisms, making it difficult to directly modulate most of
the tunable lasers that we will study here.

The ideal tunable laser is a device that can tune rapidly over a wide continuous
tuning range of over 100 nm. It should be stable over its lifetime and easily con-
trollable and manufacturable. Many of the tunable laser technologies described here
have been around for many years, but we are only now beginning to see commer-
cially available devices due to the complexity of manufacturing and controlling these
devices and solving the reliability challenges. The strong market demand for these
devices has stimulated a renewed effort to solve these problems.

External Cavity Lasers

External cavity lasers can be tuned if the center wavelength of the grating or other
wavelength-selective mirror used can be changed. Consider the grating external cav-
ity laser shown in Figure 3.46. The wavelength selected by the grating for reflection
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Figure 3.51 Structure of a tunable micro-electro-mechanical vertical cavity surface-
emitting laser (MEM-VCSEL) (from [Vak99]).

to the gain cavity is determined by the pitch of the diffraction grating, its tilt angle
with respect to the gain cavity, and its distance from the gain cavity (see Section 3.3.1,
specifically, (3.9)). Thus by varying the tilt angle and the distance of the diffraction
grating from the gain cavity (shown by the dotted arrows in Figure 3.46), the laser
wavelength can be changed. This is a slow method of tuning since the tilt and posi-
tion of the diffraction grating have to be changed by mechanical means. However, a
very wide tuning range of about 100 nm can be obtained for semiconductor lasers
by this method. This method of tuning is appropriate for test instruments but not
for a compact light source for communication systems.

Tunable VCSELs

We studied VCSELs in Section 3.5.1. There we saw that the main challenges in
realizing long-wavelength 1.55 μm VCSELs were in obtaining sufficient cavity gain,
obtaining highly reflective mirror surfaces, dealing with the heat dissipation, and
making the laser operate in a single-longitudinal mode. Figure 3.51 shows a VCSEL
design [Vak99] that attempts to solve these problems, while also making the laser
itself tunable. The tunability is achieved by having the upper mirror be a movable
micro-electro-mechanical (MEM) membrane. The cavity spacing can be adjusted by
moving the upper mirror by applying a voltage across the upper and lower mirrors.
The upper mirror is curved to prevent beam walk-off in the cavity, leading to better
stability of the lasing mode.

To conduct the heat away from the bottom mirror, a hole is etched in the InP
substrate. The design uses a 980 nm pump laser to pump the VCSEL cavity. Any
pump wavelength lower than the desired lasing wavelength can be used to excite the
semiconductor electrons to the conduction band. For example, the 980 nm semicon-
ductor pumps used to pump erbium-doped fiber amplifiers can be used here as well.
By designing the pump spot size to match the size of the fundamental lasing mode,
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the laser can be made single mode while suppressing the higher-order Fabry-Perot
cavity modes. Using gain to perform this function is better than trying to design the
cavity to provide higher loss at the higher-order modes. The high gain also allows the
output coupling reflectivity to be reduced, while still maintaining sufficient inversion
inside the cavity to prevent excessive recombination.

The laser described in [Vak99] was able to put out about 0 dBm of power in
continuous-wave (CW) mode over a tuning range of 50 nm.

Two- and Three-Section DBR Lasers

We saw earlier that we can change the refractive index of a semiconductor laser by
injecting current into it. This can result in an overall tuning range of about 10 nm.
The DFB laser shown in Figure 3.44 can be tuned by varying the forward-bias
current, which changes the refractive index, which in turn changes the effective pitch
of the grating inside the laser cavity. However, changing the forward-bias current
also changes the output power of the device, making this technique unsuitable for
use in a DFB laser.

A conventional DBR laser also has a single gain region, which is controlled by
injecting a forward-bias current Ig , as shown in Figure 3.44(b). Varying this current
only changes the output power and does not affect the wavelength. This structure
can be modified by adding another electrode to inject a separate current Ib into the
Bragg region that is decoupled from the gain region, as shown in Figure 3.52(a). This
allows the wavelength to be controlled independently of the output power.

As in a conventional DBR laser, the laser has multiple closely spaced cavity modes
corresponding to the cavity length, of which the one that lases corresponds to the
wavelength peak of the Bragg grating. As the wavelength peak of the grating is varied
by varying Ib, the laser hops from one cavity mode to another. This effect is shown
in Figure 3.52(a). As the current Ib is varied, the Bragg wavelength changes. At the
same time, there is also a small change in the cavity mode spacing due to the change
in refractive index in the grating portion of the overall cavity. The two changes do
not track each other, however. As a result, as Ib is varied and the Bragg wavelength
changes, the laser wavelength changes, with the laser remaining on the same cavity
mode for some time. As the current is varied further, the laser hops to the next cavity
mode. By careful control over the cavity length, we can make the wavelength spacing
between the cavity modes equal to the WDM channel spacing.

In order to obtain continuous tuning over the entire wavelength range, an ad-
ditional third phase section can be added to the DBR, as shown in Figure 3.52(b).
Injecting a third current Ip into this section allows us to obtain control of the cavity
mode spacing, independent of the other effects that are present in the laser. Recall
from Section 3.3.5 that it is sufficient to vary the effective cavity length by half a
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Figure 3.52 Two- and three-section DBR lasers and their principle of wavelength se-
lection. (a) Two-section DBR showing separate control of the gain and Bragg sections.
(c) Three-section DBR, which adds an additional control for the cavity phase.

wavelength (or equivalently, the phase by π) in order to obtain tuning across an
entire free spectral range. This is a small fraction of the overall cavity length and is
easily achieved by current injection into the phase section. By carefully controlling Ip

to line up a cavity mode to correspond to the wavelength peak of the Bragg grating
determined by Ib, the wavelength can be tuned continuously over the tunable range.

Two- and three-section DBRs capable of tuning over 32 channels in 50 GHz
increments were demonstrated several years ago [KK90, Kam96] and are nearing
commercial availability.

Clearly, a major problem that needs to be solved is in the control of these lasers,
which can be quite complicated. As the laser ages, or temperature changes, the control
currents may need to be recalibrated; otherwise the laser could end up hopping to
another wavelength. The hopping could happen back and forth rapidly, and could
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manifest itself as relative intensity noise (RIN) at the laser output. In a sense, we are
eliminating the very fact that made DFB lasers so wavelength stable—a fixed grating.
These problems are only compounded further in the more complex laser structures
that we will discuss next.

The DBRs that we have looked at so far are all limited to about a 10–15 nm tuning
range by the 0.5–2% change in refractive index possible. Increasing the tuning range
beyond this value requires a new bag of tricks. One trick makes the laser wavelength
dependent on the difference between the refractive indices of two different regions.
The overall variation possible is much higher than the variation of each of the
individual regions. The so-called vertical grating-assisted coupler filter (VGF) lasers
[AKB+92, AI93] make use of this principle. The second trick is to make use of the
Vernier effect, where we have two combs of wavelengths, each with slightly different
wavelength spacing. The combination of the two combs yields another periodic comb
with a much higher wavelength spacing between its peaks. Problem 3.28 explains
this effect in more detail. Even if each comb can be tuned only to a small extent,
the combination of the two combs yields a much higher tuning range. The sampled
grating (SG) DBRs and the super-structure grating (SSG) DBRs [JCC93, Toh93] use
this approach. Finally, the grating-coupled sampled reflector (GCSR) laser [WMB92,
Rig95] is a combination of both approaches.

VGF Lasers

Figure 3.53 shows the schematic of a VGF laser. It consists of two waveguides,
with a coupling region between them. Its operation is similar to that of the acousto-
optic tunable filter of Section 3.3.9. Using (3.17), wavelength λ is coupled from one
waveguide of refractive index n1 to the other of refractive index n2 if

λ = �B(n1 − n2)

where �B is the period of the Bragg grating. Changing the refractive index of one
region, say, n1 by �n1, therefore results in a wavelength tuning of �λ where

�λ

λ
≈ �n1

n1 − n2
.

This is significantly larger than the �n1/n1 ratio that is achievable in the two- and
three-section DBRs that we studied earlier.

In Figure 3.53, current Ic controls the index n1, and current Ig provides the
current to the gain region in the other waveguide. Just as with the two- and three-
section DBRs, in order to obtain continuous tuning, the cavity mode spacing needs
to be controlled by a third current Ip. Lasers with tuning ranges over 70 nm have
been demonstrated using this approach.

One major problem with this approach is that the cavity length needs to be fairly
long (typically 800–1000 μm) to get good coupling between the waveguides. This
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Figure 3.53 A vertical grating-assisted coupler filter tunable laser.

causes the cavity modes to be spaced very closely together. The laser therefore tends
to hop fairly easily from one cavity mode to another, even though all the control
currents are held steady. This effectively results in a poor side-mode suppression,
making the laser not as suitable for high-bit-rate long-distance transmission.

Sampled Grating and Super-Structure Grating DBR Lasers

A sampled grating DBR laser is shown in Figure 3.54. It has two gratings, one in the
front and one in the back. The Bragg grating in front is interrupted periodically (or
sampled) with a period �1. This results in a periodic set of Bragg reflector peaks,
spaced apart in wavelength by λ2/2neff�1, as shown in Figure 3.54, where λ is the
nominal center wavelength. The peaks gradually taper off in reflectivity, with the
highest reflection occurring at the Bragg wavelength 2neff�, where � is the period
of the grating. The grating in the back is sampled with a different period �2, which
results in another set of reflection peaks spaced apart in wavelength by λ2/2neff�2.
In order for lasing to occur, we need to have an overlap between the two reflection
peaks of the Bragg gratings and a cavity mode. Even though the tuning range of each
reflection peak is limited to 10–15 nm, combining the two sets of reflection peaks
results in a large tuning range. Just as with the two- and three-section DBR lasers, a
separate phase section controls the cavity mode spacing to ensure continuous tuning.
An additional complication with this approach is that because the reflection peaks
taper off, the current in the gain region needs to be increased to compensate for the
poorer reflectivity as the laser is tuned away from the primary Bragg reflection peak.

Another way of getting the same effect is to use periodically chirped gratings
instead of the gratings shown in Figure 3.54. This structure is called a super-structure
grating DBR laser. The advantage of this structure is that the chirped gratings provide
a highly reflective set of peaks over a wider wavelength range than the sampled grating
structure.
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Figure 3.54 A sampled grating DBR laser and its principle of wavelength selection.

Grating-Coupled Sampled Reflector Laser

The GCSR laser is a combination of a VGF and a sampled or super-structure grating,
as shown in Figure 3.55. The VGF provides a wide tuning range, and the SSG grating
provides high selectivity to eliminate side modes. In a sense, the VGF provides coarse
tuning to select a wavelength band with multiple cavity modes in the band, and the
SSG grating provides the wavelength selection within the band. Just as in the two-
and three-section DBR lasers, an additional phase section provides the fine control
over the cavity modes to provide continuous tuning within the band to suppress side
modes.

Laser Arrays

Another way to obtain a tunable laser source is to use an array of wavelength-
differentiated lasers and turn one of them on at any time. Arrays could also be used
to replace individual light sources.
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Figure 3.55 A grating coupled sampled reflector laser.

One approach is to fabricate an array of DFB lasers, each of them at a different
wavelength. Combined with temperature tuning, we can use this method to obtain
fairly continous tuning. A major problem with this approach is in the wavelength
accuracy of the individual lasers in the array, making it difficult to obtain a comb of
accurately spaced wavelengths out of the array. However, if only one laser is to be
used at any given time, we can use temperature tuning to make up for this inaccuracy.
Lasers using this approach have been demonstrated and used in system experiments
[Zah92, You95].

Another approach is to use Fabry-Perot–type laser arrays and use an external
mechanism for selecting the lasing wavelength. Several structures have been proposed
[Soo92, ZJ94], one using an external waveguide grating and the other using an
external arrayed waveguide grating. With these structures, the wavelength accuracy
is determined by the external grating. The long cavity length results in potentially
a large number of cavity modes within the grating wavelength selection window,
which could cause the laser to hop between cavity modes during operation.

3.5.4 Direct and External Modulation

The process of imposing data on the light stream is called modulation. The simplest
and most widely used modulation scheme is called on-off keying (OOK), where the
light stream is turned on or off, depending on whether the data bit is a 1 or 0. We
will study this in more detail in Chapter 4.

OOK modulated signals are usually realized in one of two ways: (1) by direct
modulation of a semiconductor laser or an LED, or (2) by using an external modu-
lator. The direct modulation scheme is illustrated in Figure 3.56. The drive current
into the semiconductor laser is set well above threshold for a 1 bit and below (or
slightly above) threshold for a 0 bit. The ratio of the output powers for the 1 and
0 bits is called the extinction ratio. Direct modulation is simple and inexpensive
since no other components are required for modulation other than the light source
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Figure 3.56 Direct modulation of a semiconductor laser.

(laser/LED) itself. In fact, a major advantage of semiconductor lasers is that they can
be directly modulated. In contrast, many other lasers are continuous wave sources
and cannot be modulated directly at all. These lasers require an external modulator.
For example, because of the long lifetime of the erbium atoms at the E2 level in
Figure 3.35, erbium lasers cannot be directly modulated even at speeds of a few
kilobits per second.

The disadvantage of direct modulation is that the resulting pulses are consider-
ably chirped. Chirp is a phenomenon wherein the carrier frequency of the transmitted
pulse varies with time, and it causes a broadening of the transmitted spectrum. As we
saw in Section 2.4, chirped pulses have much poorer dispersion limits than unchirped
pulses. The amount of chirping can be reduced by increasing the power of a 0 bit so
that the laser is always kept well above its threshold; the disadvantage is that this
reduces the extinction ratio, which in turn, degrades the system performance, as we
will see in Section 5.3. In practice, we can realize an extinction ratio of around 7 dB
while maintaining reasonable chirp performance. This enhanced pulse broadening
of chirped pulses is significant enough to warrant the use of external modulators in
high-speed, dispersion-limited communication systems.

An OOK external modulator is placed in front of a light source and turns the
light signal on or off based on the data to be transmitted. The light source itself
is continuously operated. This has the advantage of minimizing undesirable effects,
particularly chirp. Several types of external modulators are commercially available
and are increasingly being integrated with the laser itself inside a single package
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to reduce the packaging cost. In fact, transmitter packages that include a laser,
external modulator, and wavelength stabilization circuits are becoming commercially
available for use in WDM systems.

External modulators become essential in transmitters for communication systems
using solitons or return-to-zero (RZ) modulation (see Section 2.6). As shown in Fig-
ure 3.57(a), to obtain a modulated train of RZ pulses, we can use a laser generating
a train of periodic pulses, such as a mode-locked laser (see Section 3.5.1) followed by
an external modulator. The modulator blocks the pulses corresponding to a 0 bit.
(Usually we cannot directly modulate a pulsed laser emitting periodic pulses.) Unfor-
tunately, cost-effective and compact solid-state lasers for generating periodic pulses
are not yet commercially available. More commonly, as shown in Figure 3.57(b),
practical RZ systems today use a continuous-wave DFB laser followed by a two-
stage external modulator. The first stage creates a periodic train of short (RZ) pulses,
and the second stage imposes the modulation by blocking out the 0 bits. Dispersion-
managed soliton systems (see Section 2.6.1) require the generation of RZ pulses with
a carefully controlled amount and sign of chirp. This can be accomplished by using
another phase modulation stage.

Two types of external modulators are widely used today: lithium niobate modu-
lators and semiconductor electro-absorption (EA) modulators. The lithium niobate
modulator makes use of the electro-optic effect, where an applied voltage induces a
change in refractive index of the material. The device itself is configured either as a
directional coupler or as a Mach-Zehnder interferometer (MZI). Figure 3.58 shows
the directional coupler configuration. Applying a voltage to the coupling region
changes its refractive index, which in turn determines how much power is coupled
from the input waveguide 1 to the output waveguide 1 in the figure.

Figure 3.59 shows the MZI configuration, which operates on the principles that
we studied in Section 3.3.7. Compared to a directional coupler, the MZI offers a
higher modulation speed for a given drive voltage and provides a higher extinction
ratio. For these reasons, it is the more popular configuration. In one state, the signals
in the two arms of the MZI are in phase and interfere constructively and appear
at the output. In the other state, applying a voltage causes a π phase shift between
the two arms of the MZI, leading to destructive interference and no output signal.
These modulators have very good extinction ratios ranging from 15 to 20 dB, and we
can control the chirp very precisely. Due to the high polarization dependence of the
device, a polarization maintaining fiber is used between the laser and the modulator.

The EA modulator is an attractive alternative to lithium niobate modulators
because it can be fabricated using the same material and techniques used to fabricate
semiconductor lasers. This allows an EA modulator to be integrated along with a
DFB laser in the same package and results in a very compact, lower-cost solution,
compared to using an external lithium niobate modulator. In simple terms, the EA
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Figure 3.57 Using external modulators to realize transmitters for systems using RZ or
soliton pulses. (a) A laser emitting a periodic pulse train, with the external modulator
used to block the 0 bits and pass through the 1 bits. (b) A more common approach using
a continuous-wave (CW) DFB laser followed by a two-stage modulator.

Input Output
V

Unmodulated light Modulated light

Figure 3.58 A lithium niobate external modulator using a directional coupler configu-
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Figure 3.59 A lithium niobate external modulator using a Mach-Zehnder interferom-
eter (MZI) configuration. (a) Device configuration. (b) Theoretical switching response as
a function of applied voltage, V. Vπ denotes the voltage required to achieve a π phase
shift between the two arms. Note that the MZI has a periodic response.

modulator uses a material such that under normal conditions, its bandgap is higher
than the photon energy of the incident light signal. This allows the light signal to
propagate through. Applying an electric field to the modulator results in shrinking
the bandgap of the material, causing the incident photons to be absorbed by the
material. This effect is called the Franz-Keldysh effect or the Stark effect. The response
time of this effect is sufficiently fast to enable us to realize 2.5 Gb/s and 10 Gb/s
modulators. The chirp performance of EA modulators, though much better than
directly modulated lasers, is not as good as that of lithium niobate MZI modulators.
(While ideally there is no chirp in an external modulator, in practice, some chirp is
induced in EA modulators because of residual phase modulation effects. This chirp
can be controlled precisely in lithium niobate modulators.)

3.5.5 Pump Sources for Raman Amplifiers

One of the biggest challenges in realizing the Raman amplifiers that we discussed in
Section 3.4.4 is a practical high-power pump source at the right wavelength. Since
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Figure 3.60 A high-power pump laser obtained by cascading resonators (after [Gru95]).

the Raman effect is only seen with very high powers in the fiber, pump powers on
the order of several watts are required to provide effective amplification.

Several approaches have been proposed to realize high-power pump sources.
One method is to combine a number of high-power semiconductor pump lasers.
The power that can be extracted from a single semiconductor pump laser diode is
limited to a few hundred milliwatts. Multiple semiconductor pump lasers can be
combined using a combination of wavelength and/or polarization multiplexing to
obtain a composite pump with sufficiently high power.

The other challenge lies in realizing the laser at the desired pump wavelength.
One interesting approach is the cascaded Raman laser, shown in Figure 3.60.

Starting with a high-power pump laser at a conveniently available wavelength,
we can generate pump sources at higher wavelengths using the Raman effect itself
in fiber, by successively cascading a series of resonator structures. The individual
resonators can be realized conveniently using fiber Bragg gratings or other filter
structures. In Figure 3.60, a pump input at 1100 nm provides Raman gain into a fiber.
A Fabry-Perot resonator is created in the fiber between by using a pair of matched
fiber Bragg gratings that serve as wavelength-selective mirrors (see Section 3.3.5 for
how the resonator works). The innermost resonator converts the initial pump signal
into another pump signal at 1155 nm. It passes through signals at other wavelengths.
The next resonator converts the 1155 nm pump into a 1218 nm pump. In principle,
we can obtain any desired pump wavelength by cascading the appropriate series of
resonators. The figure shows a series of resonators cascaded to obtain a 1455 nm
pump output. The fiber Bragg grating at the end is designed to have lower reflectivity,
allowing the 1455 nm pump signal to be output. This pump signal can then be
used to provide Raman gain around 1550 nm. Due to the low fiber loss and high
reflectivity of the fiber Bragg gratings, 80% of the input light is converted to the
output.
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Figure 3.61 Block diagram of a receiver in a digital communication system.

3.6 Detectors

A receiver converts an optical signal into a usable electrical signal. Figure 3.61 shows
the different components within a receiver. The photodetector generates an electrical
current proportional to the incident optical power. The front-end amplifier increases
the power of the generated electrical signal to a usable level. In digital communication
systems, the front-end amplifier is followed by a decision circuit that estimates the
data from the output of the front-end amplifier. The design of this decision circuit
depends on the modulation scheme used to transmit the data and will be discussed in
Section 4.4. An optical amplifier may be optionally placed before the photodetector
to act as a preamplifier. The performance of optically preamplified receivers will be
discussed in Chapter 4. This section covers photodetectors and front-end amplifiers.

3.6.1 Photodetectors

The basic principle of photodetection is illustrated in Figure 3.62. Photodetectors are
made of semiconductor materials. Photons incident on a semiconductor are absorbed
by electrons in the valence band. As a result, these electrons acquire higher energy
and are excited into the conduction band, leaving behind a hole in the valence band.
When an external voltage is applied to the semiconductor, these electron-hole pairs
give rise to an electrical current, termed the photocurrent.

It is a principle of quantum mechanics that each electron can absorb only one
photon to transit between energy levels. Thus the energy of the incident photon must
be at least equal to the bandgap energy in order for a photocurrent to be generated.
This is also illustrated in Figure 3.62. This gives us the following constraint on the
frequency fc or the wavelength λ at which a semiconductor material with bandgap
Eg can be used as a photodetector:

hfc = hc

λ
≥ eEg. (3.19)

Here, c is the velocity of light, and e is the electronic charge.
The largest value of λ for which (3.19) is satisfied is called the cutoff wavelength

and is denoted by λcutoff. Table 3.2 lists the bandgap energies and the corresponding
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Figure 3.62 The basic principle of photodetection using a semiconductor. Incident pho-
tons are absorbed by electrons in the valence band, creating a free or mobile electron-hole
pair. This electron-hole pair gives rise to a photocurrent when an external voltage is
applied.

cutoff wavelengths for a number of semiconductor materials. We see from this table
that the well-known semiconductors silicon (Si) and gallium arsenide (GaAs) cannot
be used as photodetectors in the 1.3 and 1.55 μm bands. Although germanium (Ge)
can be used to make photodetectors in both these bands, it has some disadvantages
that reduce its effectiveness for this purpose. The new compounds indium gallium
arsenide (InGaAs) and indium gallium arsenide phosphide (InGaAsP) are commonly
used to make photodetectors in the 1.3 and 1.55 μm bands. Silicon photodetectors
are widely used in the 0.8 μm band.

The fraction of the energy of the optical signal that is absorbed and gives rise
to a photocurrent is called the efficiency η of the photodetector. For transmission at
high bit rates over long distances, optical energy is scarce, and thus it is important
to design the photodetector to achieve an efficiency η as close to 1 as possible. This
can be achieved by using a semiconductor slab of sufficient thickness. The power
absorbed by a semiconductor slab of thickness L μm can be written as

Pabs = (1− e−αL)Pin, (3.20)

where Pin is the incident optical signal power, and α is the absorption coefficient of
the material; therefore,

η = Pabs

Pin
= 1− e−αL. (3.21)

The absorption coefficient depends on the wavelength and is zero for wavelengths
λ > λcutoff. Thus a semiconductor is transparent to wavelengths greater than its cutoff



200 Components

Table 3.2 Bandgap energies and cutoff wavelengths for a
number of semiconductor materials. In1−xGaxAs is a ternary
compound semiconductor material where a fraction 1−x of the
Ga atoms in GaAs are replaced by In atoms. In1−xGaxAsyP1−y

is a quaternary compound semiconductor material where, in
addition, a fraction 1 − y of the As atoms are replaced by P
atoms. By varying x and y, the bandgap energies and cutoff
wavelengths can be varied.

Material Eg (eV) λcutoff (μm)

Si 1.17 1.06
Ge 0.775 1.6
GaAs 1.424 0.87
InP 1.35 0.92
In0.55Ga0.45As 0.75 1.65
In1−0.45yGa0.45yAsyP1−y 0.75–1.35 1.65–0.92

wavelength. Typical values of α are on the order of 104/cm, so to achieve an efficiency
η > 0.99, a slab of thickness on the order of 10 μm is needed. The area of the
photodetector is usually chosen to be sufficiently large so that all the incident optical
power can be captured by it. Photodetectors have a very wide operating bandwidth
since a photodetector at some wavelength can also serve as a photodetector at all
smaller wavelengths. Thus a photodetector designed for the 1.55 μm band can also
be used in the 1.3 μm band.

Photodetectors are commonly characterized by their responsivity�. If a photode-
tector produces an average current of Ip amperes when the incident optical power is
Pin watts, the responsivity

� = Ip

Pin
A/W.

Since an incident optical power Pin corresponds to an incidence of Pin/hfc photons/s
on the average, and a fraction η of these incident photons are absorbed and generate
an electron in the external circuit, we can write

� = eη

hfc

A/W.

The responsivity is commonly expressed in terms of λ; thus

� = eηλ

hc
= ηλ

1.24
A/W,
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where λ in the last expression is expressed in μm. Since η can be made quite close
to 1 in practice, the responsivities achieved are on the order of 1 A/W in the 1.3 μm
band and 1.2 A/W in the 1.55 μm band.

In practice, the mere use of a slab of semiconductor as a photodetector does
not realize high efficiencies. This is because many of the generated conduction band
electrons recombine with holes in the valence band before they reach the external
circuit. Thus it is necessary to sweep the generated conduction band electrons rapidly
out of the semiconductor. This can be done by imposing an electric field of sufficient
strength in the region where the electrons are generated. This is best achieved by
using a semiconductor pn-junction (see Section 3.4.5) instead of a homogeneous
slab and applying a reverse-bias voltage (positive bias to the n-type and negative
bias to the p-type) to it, as shown in Figure 3.63. Such a photodetector is called a
photodiode.

The depletion region in a pn-junction creates a built-in electric field. Both the
depletion region and the built-in electric field can be enhanced by the application of
a reverse-bias voltage. In this case, the electrons that are generated by the absorption
of photons within or close to the depletion region will be swept into the n-type semi-
conductor before they recombine with the holes in the p-type semiconductor. This
process is called drift and gives rise to a current in the external circuit. Similarly, the
generated holes in or close to the depletion region drift into the p-type semiconductor
because of the electric field.

Electron-hole pairs that are generated far away from the depletion region travel
primarily under the effect of diffusion and may recombine without giving rise to
a current in the external circuit. This reduces the efficiency η of the photodetector.
More importantly, since diffusion is a much slower process than drift, the diffusion
current that is generated by these electron-hole pairs will not respond quickly to
changes in the intensity of the incident optical signal, thus reducing the frequency
response of the photodiode.

pin Photodiodes

To improve the efficiency of the photodetector, a very lightly doped intrinsic semi-
conductor is introduced between the p-type and n-type semiconductors. Such photo-
diodes are called pin photodiodes, where the i in pin is for intrinsic. In these photo-
diodes, the depletion region extends completely across this intrinsic semiconductor
(or region). The width of the p-type and n-type semiconductors is small compared
to the intrinsic region, so that much of the light absorption takes place in this region.
This increases the efficiency and thus the responsivity of the photodiode.

A more efficient method of increasing the responsivity is to use a semiconductor
material for the p-type and n-type regions that is transparent at the wavelength
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Figure 3.63 A reverse-biased pn-junction used as a photodetector. (a) A pn-junction
photodiode. (b) Depletion region with no bias voltage applied. (c) Depletion region with
a reverse-bias voltage, Va . (d) Built-in electric field on reverse bias.

of interest. Thus the wavelength of interest is larger than the cutoff wavelength of
this semiconductor, and no absorption of light takes place in these regions. This is
illustrated in Figure 3.64, where the material InP is used for the p-type and n-type
regions, and InGaAs for the intrinsic region. Such a pin photodiode structure is
termed a double heterojunction or a heterostructure since it consists of two junctions
of completely different semiconductor materials. From Table 3.2, we see that the
cutoff wavelength for InP is 0.92 μm and that for InGaAs is 1.65 μm. Thus the
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Figure 3.64 A pin photodiode based on a heterostructure. The p-type and n-type
regions are made of InP, which is transparent in the 1.3 and 1.55 μm wavelength bands.
The intrinsic region is made of InGaAs, which strongly absorbs in both these bands.

p-type and n-type regions are transparent in the 1.3–1.6 μm range, and the diffusion
component of the photocurrent is completely eliminated.

Avalanche Photodiodes

The responsivities of the photodetectors we have described thus far have been limited
by the fact that one photon can generate only one electron when it is absorbed.
However, if the generated electron is subjected to a very high electric field, it can
acquire sufficient energy to knock off more electrons from the valence band to
the conduction band. These secondary electron-hole pairs can generate even further
electron-hole pairs when they are accelerated to sufficient levels. This process is called
avalanche multiplication. Such a photodiode is called an avalanche photodiode, or
simply an APD.

The number of secondary electron-hole pairs generated by the avalanche multi-
plication process by a single (primary) electron is random, and the mean value of this
number is termed the multiplicative gain and denoted by Gm. The multiplicative gain
of an APD can be made quite large and even infinite—a condition called avalanche
breakdown. However, a large value of Gm is also accompanied by a larger variance
in the generated photocurrent, which adversely affects the noise performance of the
APD. Thus there is a trade-off between the multiplicative gain and the noise factor.
APDs are usually designed to have a moderate value of Gm that optimizes their
performance. We will study this issue further in Section 4.4.

3.6.2 Front-End Amplifiers

Two kinds of front-end amplifiers are used in optical communication systems: the
high-impedance front end and the transimpedance front end. The equivalent circuits
for these amplifiers are shown in Figure 3.65.

The capacitances C in this figure include the capacitance due to the photodiode,
the amplifier input capacitance, and other parasitic capacitances. The main design
issue is the choice of the load resistance RL. We will see in Chapter 4 that the thermal
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Figure 3.65 (a) Equivalent circuit for a high-impedance front-end amplifier. (b) Equiv-
alent circuit for a transimpedance front-end amplifier.

noise current that arises due to the random motion of electrons and contaminates the
photocurrent is inversely proportional to the load resistance. Thus, to minimize the
thermal noise, we must make RL large. However, the bandwidth of the photodiode,
which sets the upper limit on the usable bit rate, is inversely proportional to the out-
put load resistance seen by the photodiode, say, Rp. First consider the high-impedance
front end. In this case, Rp = RL, and we must choose RL small enough to accommo-
date the bit rate of the system. Thus there is a trade-off between the bandwidth of
the photodiode and its noise performance. Now consider the transimpedance front
end for which Rp = RL/(A + 1), where A is the gain of the amplifier. The band-
width is increased by a factor of A + 1 for the same load resistance. However, the
thermal noise current is also higher than that of a high-impedance amplifier with the
same RL (due to considerations beyond the scope of this book), but this increase is
quite moderate—a factor usually less than two. Thus the transimpedance front end
is chosen over the high-impedance one for most optical communication systems.

There is another consideration in the choice of a front-end amplifier: dynamic
range. This is the difference between the largest and smallest signal levels that the
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front-end amplifier can handle. This may not be an important consideration for
many optical communication links since the power level seen by the receivers is
usually more or less fixed. However, dynamic range of the receivers is a very im-
portant consideration in the case of networks where the received signal level can
vary by a few orders of magnitude, depending on the location of the source in the
network. The transimpedance amplifier has a significantly higher dynamic range
than the high-impedance one, and this is another factor in favor of choosing the
transimpedance amplifier. The higher dynamic range arises because large variations
in the photocurrent Ip translate into much smaller variations at the amplifier input,
particularly if the amplifier gain is large. This can be understood with reference to
Figure 3.65(b). A change �Ip in the photocurrent causes a change in voltage �IpRL

across the resistance RL (ignoring the current through the capacitance C). This results
in a voltage change across the inputs of the amplifier of only �IpRL/(A+1). Thus if
the gain, A, is large, this voltage change is small. In the case of the high-impedance
amplifier, however, the voltage change across the amplifier inputs would be �IpRL

(again ignoring the current through the capacitance C).
A field-effect transistor (FET) has a very high input impedance and for this reason

is often used as the amplifier in the front end. A pin photodiode and an FET are
often integrated on the same semiconductor substrate, and the combined device is
called a pinFET.

3.7 Switches

Optical switches are used in optical networks for a variety of applications. The
different applications require different switching times and number of switch ports, as
summarized in Table 3.3. One application of optical switches is in the provisioning of
lightpaths. In this application, the switches are used inside wavelength crossconnects
to reconfigure them to support new lightpaths. In this application, the switches are
replacements for manual fiber patch panels, but with significant added software for
end-to-end network management, a subject that we will cover in detail in Chapters 8
and 9. Thus, for this application, switches with millisecond switching times are
acceptable. The challenge here is to realize large switch sizes.

Another important application is that of protection switching, the subject of
Chapter 9. Here the switches are used to switch the traffic stream from a primary
fiber onto another fiber in case the primary fiber fails. The entire operation must
typically be completed in several tens of milliseconds, which includes the time to
detect the failure, communicate the failure to the appropriate network elements
handling the switching, and the actual switch time. Thus the switching time required
is on the order of a few milliseconds. Different types of protection switching are
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Table 3.3 Applications for optical switches and their switching time and port
count requirements.

Application Switching Time Required Number of Ports

Provisioning 1–10 ms > 1000
Protection switching 1–10 ms 2–1000
Packet switching 1 ns > 100
External modulation 10 ps 1

possible, and based on the scheme used, the number of switch ports needed may
vary from two ports to several hundreds to thousands of ports when used in a
wavelength crossconnect.

Switches are also important components in high-speed optical packet-switched
networks. In these networks, switches are used to switch signals on a packet-by-
packet basis. For this application, the switching time must be much smaller than a
packet duration, and large switches will be needed. For example, ordinary Ethernet
packets have lengths between about 60 to 1500 bytes. At 10 Gb/s, the transmission
time of a 60-byte packet is 48 ns. Thus, the switching time required for efficient
operation is on the order of a few nanoseconds. Optical packet switching is the
subject of Chapter 12.

Yet another use for switches is as external modulators to turn on and off the data
in front of a laser source. In this case, the switching time must be a small fraction of
the bit duration. So an external modulator for a 10 Gb/s signal (with a bit duration
of 100 ps) must have a switching time (or, equivalently, a rise and fall time) of about
10 ps.

In addition to the switching time and the number of ports, the other important
parameters used to characterize the suitability of a switch for optical networking
applications are the following:

1. The extinction ratio of an on-off switch is the ratio of the output power in the on
state to the output power in the off state. This ratio should be as large as possible
and is particularly important in external modulators. Whereas simple mechanical
switches have extinction ratios of 40–50 dB, high-speed external modulators tend
to have extinction ratios of 10–25 dB.

2. The insertion loss of a switch is the fraction of power (usually expressed in deci-
bels) that is lost because of the presence of the switch and must be as small as
possible. Some switches have different losses for different input-output connec-
tions. This is an undesirable feature because it increases the dynamic range of the
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signals in the network. With such switches, we may need to include variable op-
tical attenuators to equalize the loss across different paths. This loss uniformity
is determined primarily by the architecture used to build the switch, rather than
the inherent technology itself, as we will see in several examples below.

3. Switches are not ideal. Even if input x is nominally connected to output y, some
power from input x may appear at the other outputs. For a given switching state
or interconnection pattern, and output, the crosstalk is the ratio of the power at
that output from the desired input to the power from all other inputs. Usually,
the crosstalk of a switch is defined as the worst-case crosstalk over all outputs
and interconnection patterns.

4. As with other components, switches should have a low polarization-dependent
loss (PDL). When used as external modulators, polarization dependence can
be tolerated since the switch is used immediately following the laser, and
the laser’s output state of polarization can be controlled by using a special
polarization-preserving fiber to couple the light from the laser into the exter-
nal modulator.

5. A latching switch maintains its switch state even if power is turned off to the
switch. This is a somewhat desirable feature because it enables traffic to be passed
through the switch even in the event of power failures.

6. The switch needs to have a readout capability wherein its current state can
be monitored. This is important to verify that the right connections are made
through the switch.

7. The reliability of the switch is an important factor in telecommunications appli-
cations. The common way of establishing reliability is to cycle the switch through
its various states a large number of times, perhaps a few million cycles. However,
in the provisioning and protection-switching applications discussed above, the
switch remains in one state for a long period, say, even a few years, and is then
activated to change state. The reliability issue here is whether the switch will
actually switch after it has remained untouched for a long period. This property
is more difficult to establish without a long-term history of deployment.

3.7.1 Large Optical Switches

Switches with port counts ranging from a few hundred to a few thousand are being
sought by carriers for their next-generation networks. Given that a single central
office handles multiple fibers, with each fiber carrying several tens to hundreds of
wavelengths, it is easy to imagine the need for large-scale switches to provision and
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protect these wavelengths. We will study the use of such switches as wavelength
crossconnects in Chapter 7.

The main considerations in building large switches are the following:

Number of switch elements required. Large switches are made by using multiple
switch elements in some form or the other, as we will see below. The cost and
complexity of the switch to some extent depends on the number of switch el-
ements required. However, this is only one of the factors that affects the cost.
Other factors include packaging, splicing, and ease of fabrication and control.

Loss uniformity. As we mentioned in the context of switch characteristics earlier,
switches may have different losses for different combinations of input and out-
put ports. This situation is exacerbated for large switches. A measure of the
loss uniformity can be obtained by considering the minimum and maximum
number of switch elements in the optical path, for different input and output
combinations.

Number of crossovers. Some of the optical switches that we will study next are
fabricated by integrating multiple switch elements on a single substrate. Un-
like integrated electronic circuits (ICs), where connections between the various
components can be made at multiple layers, in integrated optics, all these con-
nections must be made in a single layer by means of waveguides. If the paths
of two waveguides cross, two undesirable effects are introduced: power loss and
crosstalk. In order to have acceptable loss and crosstalk performance for the
switch, it is thus desirable to minimize, or completely eliminate, such waveguide
crossovers. Crossovers are not an issue with respect to free-space switches, such
as the MEMS switches that we will describe later in this section.

Blocking characteristics. In terms of the switching function achievable, switches are
of two types: blocking or nonblocking. A switch is said to be nonblocking if
an unused input port can be connected to any unused output port. Thus a non-
blocking switch is capable of realizing every interconnection pattern between the
inputs and the outputs. If some interconnection pattern(s) cannot be realized, the
switch is said to be blocking. Most applications require nonblocking switches.
However, even nonblocking switches can be further distinguished in terms of
the effort needed to achieve the nonblocking property. A switch is said to be
wide-sense nonblocking if any unused input can be connected to any unused
output, without requiring any existing connection to be rerouted. Wide-sense
nonblocking switches usually make use of specific routing algorithms to route
connections so that future connections will not be blocked. A strict-sense non-
blocking switch allows any unused input to be connected to any unused output
regardless of how previous connections were made through the switch.
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Table 3.4 Comparison of different switch architectures. The switch count for the Spanke architec-
ture is made in terms of 1× n switches, whereas 2× 2 switches are used for the other architectures.

Nonblocking Type No. Switches Max. Loss Min. Loss

Crossbar Wide sense n2 2n− 1 1
Clos Strict sense 4

√
2n1.5 5

√
2n− 5 3

Spanke Strict sense 2n 2 2
Beneš Rearrangeable n

2 (2 log2 n− 1) 2 log2 n− 1 2 log2 n− 1
Spanke-Beneš Rearrangeable n

2 (n− 1) n n
2

A nonblocking switch that may require rerouting of connections to achieve
the nonblocking property is said to be rearrangeably nonblocking. Rerouting of
connections may or may not be acceptable depending on the application since the
connection must be interrupted, at least briefly, in order to switch it to a different
path. The advantage of rearrangeably nonblocking switch architectures is that
they use fewer small switches to build a larger switch of a given size, compared
to the wide-sense nonblocking switch architectures.

While rearrangeably nonblocking architectures use fewer switches, they re-
quire a more complex control algorithm to set up connections, but this control
complexity is not a significant issue, given the power of today’s microprocessors
used in these switches that would execute such an algorithm. The main drawback
of rearrangeably nonblocking switches is that many applications will not allow
existing connections to be disrupted, even temporarily, to accommodate a new
connection.

Usually, there is a trade-off between these different aspects. We will illustrate
this when we study different architectures for building large switches next. Table 3.4
compares the characteristics of these architectures.

Crossbar

A 4× 4 crossbar switch is shown in Figure 3.66. This switch uses 16 2× 2 switches,
and the interconnection between inputs and outputs is achieved by appropriately
setting the states of these 2× 2 switches. The settings of the 2× 2 switches required
to connect input 1 to output 3 are shown in Figure 3.66. This connection can be
viewed as taking a path through the network of 2× 2 switches making up the 4× 4
switch. Note that there are other paths from input 1 to output 3; however, this is the
preferred path as we will see next.

The crossbar architecture is wide-sense nonblocking. To connect input i to output
j , the path taken traverses the 2×2 switches in row i till it reaches column j and then
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Figure 3.66 A 4× 4 crossbar switch realized using 16 2× 2 switches.

traverses the switches in column j till it reaches output j . Thus the 2 × 2 switches
on this path in row i and column j must be set appropriately for this connection to
be made. We leave it to you to be convinced that if this connection rule is used, this
switch is nonblocking and does not require existing connections to be rerouted.

In general, an n× n crossbar requires n2 2× 2 switches. The shortest path length
is 1 and the longest path length is 2n− 1, and this is one of the main drawbacks of
the crossbar architecture. The switch can be fabricated without any crossovers.

Clos

The Clos architecture provides a strict-sense nonblocking switch and is widely used
in practice to build large port count switches. A three-stage 1024-port Clos switch
is shown in Figure 3.67. An n × n switch is constructed as follows. We use three
parameters, m, k, and p. Let n = mk. The first and third stage consist of k (m × p)

switches. The middle stage consists of p (k × k) switches. Each of the k switches in
the first stage is connected to all the switches in the middle stage. (Each switch in the
first stage has p outputs. Each output is connected to the input of a different switch
in the middle stage.) Likewise, each of the k switches in the third stage is connected
to all the switches in the middle stage. We leave it to you to verify that if p ≥ 2m−1,
the switch is strictly nonblocking (see Problem 3.29).

To minimize the cost of the switch, let us pick p = 2m−1. Usually, the individual
switches in each stage are designed using crossbar switches. Thus each of the m ×
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Figure 3.67 A strict-sense nonblocking 1024 × 1024 switch realized using 32 × 64 and
32× 32 switches interconnected in a three-stage Clos architecture.

(2m − 1) switches requires m(2m − 1) 2 × 2 switch elements, and each of the k × k

switches in the middle stage requires k2 2× 2 switch elements. The total number of
switch elements needed is therefore

2km(2m− 1)+ (2m− 1)k2.

Using k = n/m, we leave it to you to verify that the number of switch elements is
minimized when

m ≈
√

n

2
.

Using this value for m, the number of switch elements required for the minimum cost
configuration is approximately

4
√

2n3/2 − 4n,

which is significantly lower than the n2 required for a crossbar.
The Clos architecture has several advantages that make it suitable for use in a

multistage switch fabric. The loss uniformity between different input-output com-
binations is better than a crossbar, and the number of switch elements required is
significantly smaller than a crossbar.

Spanke

The Spanke architecture shown in Figure 3.68 is turning out to be a popular archi-
tecture for building large switches. An n × n switch is made by combining n 1 × n

switches along with n n × 1 switches, as shown in the figure. The architecture is
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Figure 3.68 A strict-sense nonblocking n × n switch realized using 2n 1 × n switches
interconnected in the Spanke architecture.

strict-sense nonblocking. So far we have been counting the number of 2× 2 switch
elements needed to build large switches as a measure of the switch cost. What makes
the Spanke architecture attractive is that, in many cases, a 1× n optical switch can
be built using a single switch element and does not need to be built out of 1 × 2
or 2 × 2 switch elements. This is the case with the MEMS analog beam steering
mirror technology that we will discuss later in this section. Therefore, only 2n such
switch elements are needed to build an n×n switch. This implies that the switch cost
scales linearly with n, which is significantly better than other switch architectures.
In addition, each connection passes through two switch elements, which is signifi-
cantly smaller than the number of switch elements in the path for other multistage
designs. This approach provides a much lower insertion loss than the multistage
designs. Moreover, the optical path length for all the input–output combinations can
be made essentially the same, so that the loss is the same regardless of the specific
input–output combination.

Beneš

The Beneš architecture is a rearrangeably nonblocking switch architecture and is one
of the most efficient switch architectures in terms of the number of 2 × 2 switches
it uses to build larger switches. A rearrangeably nonblocking 8 × 8 switch that
uses only 20 2 × 2 switches is shown in Figure 3.69. In comparison, an 8 × 8
crossbar switch requires 64 2×2 switches. In general, an n×n Beneš switch requires
(n/2)(2 log2 n − 1) 2 × 2 switches, n being a power of two. The loss is the same
through every path in the switch—each path goes through 2 log2 n−1 2×2 switches.
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Figure 3.69 A rearrangeably nonblocking 8× 8 switch realized using 20 2× 2 switches
interconnected in the Beneš architecture.

Its two main drawbacks are that it is not wide-sense nonblocking and that a number
of waveguide crossovers are required, making it difficult to fabricate in integrated
optics.

Spanke-Beneš

A good compromise between the crossbar and Beneš switch architectures is shown in
Figure 3.70, which is a rearrangeably nonblocking 8×8 switch using 28 2×2 switches
and no waveguide crossovers. This switch architecture was discovered by Spanke and
Beneš [SB87] and is called the n-stage planar architecture since it requires n stages
(columns) to realize an n × n switch. It requires n(n − 1)/2 switches, the shortest
path length is n/2, and the longest path length is n. There are no crossovers. Its main
drawbacks are that it is not wide-sense nonblocking and the loss is nonuniform.

3.7.2 Optical Switch Technologies

Many different technologies are available to realize optical switches. These are com-
pared in Table 3.5. With the exception of the large-scale MEMS switch, the switch
elements described in the next section all use the crossbar architecture.
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Figure 3.70 A rearrangeably nonblocking 8× 8 switch realized using 28 2× 2 switches
and no waveguide crossovers interconnected in the n-stage planar architecture.

Table 3.5 Comparison of different optical switching technologies. The mechanical, MEMS, and
polymer-based switches behave in the same manner for 1.3 and 1.55 μm wavelengths, but other
switches are designed to operate at only one of these wavelength bands. The numbers represent
parameters for commercially available switches in early 2001.

Type Size Loss Crosstalk PDL Switching
(dB) (dB) (dB) Time

Bulk mechanical 8× 8 3 55 0.2 10 ms
2D MEMS 32× 32 5 55 0.2 10 ms
3D MEMS 1000 × 1000 5 55 0.5 10 ms
Thermo-optic

silica 8× 8 8 40 Low 3 ms
Liquid crystal 2× 2 1 35 0.1 4 ms
Polymer 8× 8 10 30 Low 2 ms
Electro-optic

LiNbO3 4× 4 8 35 1 10 ps
SOA 4× 4 0 40 Low 1 ns
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Bulk Mechanical Switches

In mechanical switches, the switching function is performed by some mechanical
means. One such switch uses a mirror arrangement whereby the switching state
is controlled by moving a mirror in and out of the optical path. Another type of
mechanical switch uses a directional coupler. Bending or stretching the fiber in the
interaction region changes the coupling ratio of the coupler and can be used to switch
light from an input port between different output ports.

Bulk mechanical switches have low insertion losses, low PDL, and low crosstalk,
and are relatively inexpensive devices. In most cases, they are available in a cross-
bar configuration, which implies somewhat poor loss uniformity. However, their
switching speeds are on the order of a few milliseconds and the number of ports is
fairly small, say, 8 to 16. For these reasons, they are particularly suited for use in
small wavelength crossconnects for provisioning and protection-switching applica-
tions but not for the other applications discussed earlier. As with most mechanical
components, long-term reliability for these switches is of some concern. Larger
switches can be realized by cascading small bulk mechanical switches, as we saw in
Section 3.7.1, but there are better ways of realizing larger port count switches, as we
will explore next.

Micro-Electro-Mechanical System (MEMS) Switches

Micro-electro-mechanical systems (MEMS) are miniature mechanical devices typi-
cally fabricated using silicon substrates. In the context of optical switches, MEMS
usually refers to miniature movable mirrors fabricated in silicon, with dimensions
ranging from a few hundred micrometers to a few millimeters. A single silicon wafer
yields a large number of mirrors, which means that these mirrors can be manufac-
tured and packaged as arrays. Moreover, the mirrors can be fabricated using fairly
standard semiconductor manufacturing processes. These mirrors are deflected from
one position to another using a variety of electronic actuation techniques, such as
electromagnetic, electrostatic, or piezoelectric methods, hence the name MEMS. Of
these methods, electrostatic deflection is particularly power efficient but is relatively
hard to control over a wide deflection range.

The simplest mirror structure is a so-called two-state pop-up mirror, or 2D mirror,
shown in Figure 3.71. In one state, the mirror is flat in line with the substrate. In
this state, the light beam is not deflected. In the other state, the mirror pops up
to a vertical position, and the light beam, if present, is deflected. Such a mirror
can be used in a crossbar arrangement discussed below to realize an n × n switch.
Practical switch module sizes are limited by wafer sizes and processing constraints
to be around 32× 32. These switches are particularly easy to control through digital
means, as only two mirror positions need to be supported.
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Figure 3.71 A two-state pop-up MEMS mirror, from [LGT98], shown in the popped-
up position. The mirror can be moved to fold flat in its other position.
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Figure 3.72 An analog beam steering mirror. The mirror can be freely rotated on two
axes to deflect an incident light beam.

Another type of mirror structure is shown in Figure 3.72. The mirror is connected
through flexures to an inner frame, which in turn is connected through another set
of flexures to an outer frame. The flexures allow the mirror to be rotated freely on
two distinct axes. This mirror can be controlled in an analog fashion to realize a
continuous range of angular deflections. This type of mirror is sometimes referred
to as an analog beam steering mirror, a gimbel mirror, or a 3D mirror. A mirror of
this type can be used to realize a 1× n switch. The control of these mirrors is not a
trivial matter, with fairly sophisticated servo control mechanisms required to deflect
the mirrors to their correct position and hold them there.
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Figure 3.73 An n × n switch built using two arrays of analog beam steering MEMS
mirrors.

Figure 3.73 shows a large n× n switch using two arrays of analog beam steering
mirrors. This architecture corresponds to the Spanke architecture, which we dis-
cussed in Section 3.7.1. Each array has n mirrors, one associated with each switch
port. An input signal is coupled to its associated mirror in the first array using a
suitable arrangement of collimating lenses. The first mirror can be deflected to point
the beam to any of the mirrors in the second array. To make a connection from port
i to port j , the mirror i in the first array is pointed to mirror j in the second array
and vice versa. Mirror j then allows the beam to be coupled out of port j . To make
a connection from port i to another port, say, port k, mirror i in the first array and
mirror k in the second array are pointed at each other. Note that in order to switch
this connection from port i to port k, the beam is scanned from output mirror j to
output mirror k, passing over other mirrors along the way. This does not lead to
additional crosstalk because a connection is established only when the two mirrors
are pointed at each other and not under any other circumstances. Note also that
beams corresponding to multiple connections cross each other inside the switch but
do not interfere.

There are two types of fabrication techniques used to make MEMS structures:
surface micromachining and bulk micromachining. In surface micromachining, mul-
tiple layers are deposited on top of a silicon substrate. These layers are partially
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etched away, and pieces are left anchored to the substrate to produce various struc-
tures. In bulk micromachining, the MEMS structures are crafted directly from the
bulk of the silicon wafer. The type of micromachining used and the choice of the
appropriate type of silicon substrate directly influence the properties of the resulting
structure. For a more detailed discussion on some of the pros and cons of these
approaches, see [NR01]. Today we are seeing the simple 2D MEMS mirrors real-
ized using surface micromachining and the 3D MEMS mirrors realized using bulk
micromachining.

Among the various technologies discussed in this section, the 3D MEMS analog
beam steering mirror technology offers the best potential for building large-scale
optical switches, for example, 256 to 1000 ports. These switches are compact, have
very good optical properties (low loss, good loss uniformity, negligible dispersion),
and can have extremely low power consumption. Most of the other technologies are
limited to small switch sizes.

Liquid Crystal Switches

Liquid crystal cells offer another way for realizing small optical switches. These
switches typically make use of polarization effects to perform the switching function.
By applying a voltage to a suitably designed liquid crystal cell, we can cause the
polarization of the light passing through the cell either to be rotated or not. This
can then be combined with passive polarization beam splitters and combiners to
yield a polarization-independent switch, as shown in Figure 3.74. The principle of
operation is similar to the polarization-independent isolator of Figure 3.5. Typically,
the passive polarization beam splitter, combiner, and active switch element can all be
realized using an array of liquid crystal cells. The polarization rotation in the liquid
crystal cell does not have to be digital in nature—it can be controlled in an analog
fashion by controlling the voltage. Thus this technology can be used to realize a
variable optical attentuator (VOA) as well. In fact, the VOA can be incorporated
in the switch itself to control the output power being coupled out. The switching
time is on the order of a few milliseconds. Like the bubble-based waveguide switch,
a liquid crystal switch is a solid-state device. Thus, it can be better manufactured in
volume and low cost.

Electro-Optic Switches

A 2 × 2 electro-optic switch can be realized using one of the external modulator
configurations that we studied in Section 3.5.4. One commonly used material is
lithium niobate (LiNbO3). In the directional coupler configuration, the coupling
ratio is varied by changing the voltage and thus the refractive index of the material
in the coupling region. In the Mach-Zehnder configuration, the relative path length
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Figure 3.74 A 1 × 2 liquid crystal switch. (a) The rotation is turned off, causing the
light beam to exit on output port 1. (b) The rotation is turned on by applying a voltage
to the liquid crystal cell, causing the light beam to exit on output port 2.

between the two arms of the Mach-Zehnder is varied. An electro-optic switch is
capable of changing its state extremely rapidly—typically, in less than 1 ns. This
switching time limit is determined by the capacitance of the electrode configuration.

Among the advantages of lithium niobate switches are that they allow modest
levels of integration, compared to mechanical switches. Larger switches can be real-
ized by integrating several 2 × 2 switches on a single substrate. However, they tend
to have a relatively high loss and PDL, and are more expensive than mechanical
switches.

Thermo-Optic Switches

These switches are essentially 2× 2 integrated-optic Mach-Zehnder interferometers,
constructed on waveguide material whose refractive index is a function of the tem-
perature. By varying the refractive index in one arm of the interferometer, the relative
phase difference between the two arms can be changed, resulting in switching an in-
put signal from one output port to another. These devices have been made on silica as
well as polymer substrates, but have relatively poor crosstalk. Also the thermo-optic
effect is quite slow, and switching speeds are on the order of a few milliseconds.
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Semiconductor Optical Amplifier Switches

The SOA described in Section 3.4.5 can be used as an on-off switch by varying the
bias voltage to the device. If the bias voltage is reduced, no population inversion
is achieved, and the device absorbs input signals. If the bias voltage is present,
it amplifies the input signals. The combination of amplification in the on state and
absorption in the off state makes this device capable of achieving very large extinction
ratios. The switching speed is on the order of 1 ns. Larger switches can be fabricated
by integrating SOAs with passive couplers. However, this is an expensive component,
and it is difficult to make it polarization independent because of the highly directional
orientation of the laser active region, whose width is almost always much greater
than its height (except for VCSELs).

3.7.3 Large Electronic Switches

We have focused primarily on optical switch technologies in this section. However,
many of the practical “optical” or wavelength crossconnects actually use electronic
switch fabrics.

Typically, a large electronic switch uses a multistage design, and in many cases,
the Clos approach is the preferred approach as it provides a strict-sense nonblocking
architecture with a relatively small number of crosspoint switches. Two approaches
are possible. In the first approach, the input signal at 2.5 Gb/s or 10 Gb/s is converted
into a parallel bit stream at a manageable rate, say, 51 Mb/s, and all the switching
is done at the latter bit rate. This approach makes sense if we need to switch the
signal in units of 51 Mb/s for other reasons. Also in many cases, the overall cost of
an electronic switch is dominated by the cost of the optical to electrical converters,
rather than the switch fabric itself. This implies that once the signal is available in
the electrical domain, it makes sense to switch signals at a fine granularity.

The other approach is to design the switch to operate at the line rate in a serial
fashion without splitting the signal into lower-speed bit streams. The basic unit of
this serial approach is a crossbar fabricated as a single integrated circuit (IC). The
practical considerations related to building larger switches using these ICs have to do
with managing the power dissipation and the interconnects between switch stages.
For example, suppose a 64× 64 switch IC dissipates 25 W. About 100 such switches
are required to build a 1024× 1024 switch. The total power dissipated is therefore
around 25 kW. (In contrast, a 1024 × 1024 optical switch using 3D MEMS may
consume only about 3 kW and is significantly more compact overall, compared to
an equivalent electrical switch.) Cooling such a switch is a significant problem. The
other aspect has to do with the high-speed interconnect required between switch
modules. As long as the switch modules are within a single printed circuit board,
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the interconnections are not difficult. However, practical considerations of power
dissipation and board space dictate the necessity for having multiple printed circuit
boards and perhaps multiple racks of equipment. The interconnects between these
boards and racks need to operate at the line rate, which is typically 2.5 Gb/s or
higher. High-quality electrical interconnects or optical interconnects can be used for
this purpose. The drivers required for the electrical interconnects also dissipate a
significant amount of power, and the distances possible are limited, typically to 5–
6 m. Optical interconnects make use of arrayed lasers and receivers along with fiber
optic ribbon cables. These offer lower power dissipation and significantly longer
reach between boards, typically to about 100 m or greater.

3.8 Wavelength Converters

A wavelength converter is a device that converts data from one incoming wave-
length to another outgoing wavelength. Wavelength converters are useful compo-
nents in WDM networks for three major reasons. First, data may enter the network
at a wavelength that is not suitable for use within the network. For example, the
first-generation networks of Chapter 6 commonly transmit data in the 1310 nm
wavelength window, using LEDs or Fabry-Perot lasers. Neither the wavelength nor
the type of laser is compatible with WDM networks. So at the inputs and outputs of
the network, data must be converted from these wavelengths to narrow-band WDM
signals in the 1550 nm wavelength range. A wavelength converter used to perform
this function is sometimes called a transponder.

Second, wavelength converters may be needed within the network to improve the
utilization of the available wavelengths on the network links. This topic is studied in
detail in Chapter 10.

Finally, wavelength converters may be needed at boundaries between different
networks if the different networks are managed by different entities and these entities
do not coordinate the allocation of wavelengths in their networks.

Wavelength converters can be classified based on the range of wavelengths that
they can handle at their inputs and outputs. A fixed-input, fixed-output device always
takes in a fixed-input wavelength and converts it to a fixed-output wavelength. A
variable-input, fixed-output device takes in a variety of wavelengths but always
converts the input signal to a fixed-output wavelength. A fixed-input, variable-output
device does the opposite function. Finally, a variable-input, variable-output device
can convert any input wavelength to any output wavelength.

In addition to the range of wavelengths at the input and output, we also need to
consider the range of input optical powers that the converter can handle, whether the
converter is transparent to the bit rate and modulation format of the input signals,
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and whether it introduces additional noise or phase jitter to the signal. We will see
that the latter two characteristics depend on the type of regeneration used in the
converter. For all-optical wavelength converters, polarization-dependent loss should
also be kept to a minimum.

There are four fundamental ways of achieving wavelength conversion: (1) op-
toelectronic, (2) optical gating, (3) interferometric, and (4) wave mixing. The latter
three approaches are all-optical but not yet mature enough for commercial use. Op-
toelectronic converters today offer substantially better performance at lower cost
than comparable all-optical wavelength converters.

3.8.1 Optoelectronic Approach

This is perhaps the simplest, most obvious, and most practical method today to
realize wavelength conversion. As shown in Figure 3.75, the input signal is first
converted to electronic form, regenerated, and then retransmitted using a laser at
a different wavelength. This is usually a variable-input, fixed-output converter. The
receiver does not usually care about the input wavelength, as long as it is in the 1310
or 1550 nm window. The laser is usually a fixed-wavelength laser. A variable output
can be obtained by using a tunable laser.

The performance and transparency of the converter depend on the type of re-
generation used. Figure 3.75 shows the different types of regeneration possible. In
the simplest case, the receiver simply converts the incoming photons to electrons,
which get amplified by an analog RF (radio-frequency) amplifier and drive the laser.
This is called 1R regeneration. This form of conversion is truly transparent to the
modulation format (provided the appropriate receiver is used to receive the signal)
and can handle analog data as well. However, noise is added at the converter, and
the effects of nonlinearities and dispersion (see Chapter 5) are not reset.

Another alternative is to use regeneration with reshaping but without retiming,
also called 2R regeneration. This is applicable only to digital data. The signal is
reshaped by sending it through a logic gate, but not retimed. The additional phase
jitter introduced because of this process will eventually limit the number of stages
that can be cascaded.

The final alternative is to use regeneration with reshaping and retiming (3R). This
completely resets the effects of nonlinearities, fiber dispersion, and amplifier noise;
moreover, it introduces no additional noise. However, retiming is a bit-rate-specific
function, and we lose transparency. If transparency is not very important, this is a
very attractive approach. (Note that in Chapter 8 we will discuss another way of
maintaining some transparency with 3R using the so-called digital wrapper.) These
types of regenerators often include circuitry to perform performance monitoring and
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Figure 3.75 Different types of optoelectronic regeneration. (a) 1R (regeneration without reshaping
or retiming. (b) 2R (regeneration with reshaping). (c) 3R (regeneration with reshaping and retiming).
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process and modify associated management overheads associated with the signal.
We will look at some of these overheads in Sections 6.1 and 8.5.7.

3.8.2 Optical Gating

Optical gating makes use of an optical device whose characteristics change with the
intensity of an input signal. This change can be transferred to another unmodu-
lated probe signal at a different wavelength going through the device. At the output,
the probe signal contains the information that is on the input signal. Like the op-
toelectronic approach, these devices are variable-input and either fixed-output or
variable-output devices, depending on whether the probe signal is fixed or tunable.
The transparency offered by this approach is limited—only intensity-modulated sig-
nals can be converted.

The main technique using this principle is cross-gain modulation (CGM), using
a nonlinear effect in a semiconductor optical amplifier (SOA). This approach works
over a wide range of signal and probe wavelengths, as long as they are within the
amplifier gain bandwidth, which is about 100 nm. Early SOAs were polarization sen-
sitive, but by careful fabrication, it is possible to make them polarization insensitive.
SOAs also add spontaneous emission noise to the signal.

CGM makes use of the dependence of the gain of an SOA on its input power, as
shown in Figure 3.76. As the input power increases, the carriers in the gain region
of the SOA get depleted, resulting in a reduction in the amplifier gain. What makes
this interesting is that the carrier dynamics within the SOA are very fast, happening
on a picosecond time scale. Thus the gain responds in tune with the fluctuations in
input power on a bit-by-bit basis. The device can handle bit rates as high as 10 Gb/s.
If a low-power probe signal at a different wavelength is sent into the SOA, it will
experience a low gain when there is a 1 bit in the input signal and a higher gain when
there is a 0 bit. This very same effect produces crosstalk when multiple signals at
different wavelengths are amplified by a single SOA and makes the SOA relatively
unsuitable for amplifying WDM signals.

The advantage of CGM is that it is conceptually simple. However, there are
several drawbacks. The achievable extinction ratio is small (less than 10) since the
gain does not really drop to zero when there is an input 1 bit. The input signal power
must be high (around 0 dBm) so that the amplifier is saturated enough to produce a
good variation in gain. This high-powered signal must be eliminated at the amplifier
output by suitable filtering, unless the signal and probe are counterpropagating.
Moreover, as the carrier density within the SOA varies, it changes the refractive
index as well, which in turn affects the phase of the probe and creates a large
amount of pulse distortion.
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Figure 3.76 Wavelength conversion by cross-gain modulation in a semiconductor op-
tical amplifier.

3.8.3 Interferometric Techniques

The same phase-change effect that creates pulse distortion in CGM can be used
to effect wavelength conversion. As the carrier density in the amplifier varies with
the input signal, it produces a change in the refractive index, which in turn mod-
ulates the phase of the probe. Hence we use the term cross-phase modulation for
this approach. This phase modulation can be converted into intensity modulation
by using an interferometer such as a Mach-Zehnder interferometer (MZI) (see Sec-
tion 3.3.7). Figure 3.77 shows one possible configuration of a wavelength converter
using cross-phase modulation. Both arms of the MZI have exactly the same length,
with each arm incorporating an SOA. The signal is sent in at one end (A) and the
probe at the other end (B). If no signal is present, then the probe signal comes
out unmodulated. The couplers in the MZI are designed with an asymmetric cou-
pling ratio γ �= 0.5. When the signal is present, it induces a phase change in each
amplifier. The phase change induced by each amplifier on the probe is different be-
cause different amounts of signal power are present in the two amplifiers. The MZI
translates this relative phase difference between its two arms on the probe into an
intensity-modulated signal at the output.

This approach has a few interesting properties. The natural state of the MZI
(when no input signal is present) can be arranged to produce either destructive or
constructive interference on the probe signal. Therefore we can have a choice of
whether the data coming out is the same as the input data or is complementary.
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Figure 3.77 Wavelength conversion by cross-phase modulation using semiconductor optical am-
plifiers embedded inside a Mach-Zehnder interferometer.

The advantage of this approach over CGM is that much less signal power is
required to achieve a large phase shift compared to a large gain shift. In fact, a
low signal power and a high probe power can be used, making this method more
attractive than CGM. This method also produces a better extinction ratio because the
phase change can be converted into a “digital” amplitude-modulated output signal
by the interferometer. So this device provides regeneration with reshaping (2R) of
the pulses. Depending on where the MZI is operated, the probe can be modulated
with the same polarity as the input signal, or the opposite polarity. Referring to
Figure 3.77, where we plot the power coupled out at the probe wavelength versus
the power at the signal wavelength, depending on the slope of the demultiplexer, a
signal power increase can either decrease or increase the power coupled out at the
probe wavelength. Like CGM, the bit rate that can be handled is at most 10 Gb/s
and is limited by the carrier lifetime. This approach, however, requires very tight
control of the bias current of the SOA, as small changes in the bias current produce
refractive index changes that significantly affect the phase of signals passing through
the device.

We have seen that the CPM interferometric approach provides regeneration with
reshaping (2R) of the pulses. As we saw earlier, while 2R cleans up the signal shape,
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it does not eliminate phase (or equivalently timing) jitter in the signal, which would
accumulate with each such 2R stage. In order to completely clean up the signal,
including its temporal characteristics, we need regeneration with reshaping and re-
timing (3R). Figure 3.78 shows one proposal for accomplishing this in the optical
domain without resorting to electronic conversion [Chi97, Gui98]. The approach
uses a combination of CGM and CPM. We assume that a local clock is available to
sample the incoming data. This clock needs to be recovered from the data; we will
study ways of doing this in Section 12.2. The regenerator consists of three stages.
The first stage samples the signal. It makes use of CGM in an SOA. The incoming
signal is probed using two separate signals at different wavelengths. The two probe
signals are synchronized and modulated at twice the data rate of the incoming signal.
Since the clock is available, the phase of the probe signals is adjusted to sample the
input signal in the middle of the bit interval. At the output of the first stage, the two
probe signals have reduced power levels when the input signal is present and higher
power levels when the input signal is absent. In the second stage, one of the probe
signals is delayed by half a bit period with respect to the other. At the output of this
stage, the combined signal has a bit rate that matches the bit rate of the input signal
and has been regenerated and retimed. This signal is then sent through a CPM-based
interferometric converter stage, which then regenerates and reshapes the signal to
create an output signal that has been regenerated, retimed, and reshaped.

3.8.4 Wave Mixing

The four-wave mixing phenomenon that occurs because of nonlinearities in the trans-
mission medium (discussed in Section 2.5.8) can also be utilized to realize wavelength
conversion. Recall that four-wave mixing causes three waves at frequencies f1, f2,
and f3 to produce a fourth wave at the frequency f1 + f2 − f3; when f1 = f2, we
get a wave at the frequency 2f1 − f3. What is interesting about four-wave mixing
is that the resulting waves can lie in the same band as the interacting waves. As we
have seen in Section 2.5.8, in optical fibers, the generated four-wave mixing power
is quite small but can lead to crosstalk if present (see Section 5.8.4).

For the purposes of wavelength conversion, the four-wave mixing power can be
enhanced by using an SOA because of the higher intensities within the device. If we
have a signal at frequency fs and a probe at frequency fp, then four-wave mixing will
produce signals at frequencies 2fp − fs and 2fs − fp , as long as all these frequencies
lie within the amplifier bandwidth (Figure 3.79).

The main advantage of four-wave mixing is that it is truly transparent because
the effect does not depend on the modulation format (since both amplitude and
phase are preserved during the mixing process) and the bit rate. The disadvantages
are that the other waves must be filtered out at the SOA output, and the conversion
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Figure 3.79 Wavelength conversion by four-wave mixing in a semiconductor optical
amplifier.

efficiency goes down significantly as the wavelength separation between the signal
and probe is increased. We will study the conversion efficiency of four-wave mixing
in Section 5.8.4.

Summary

We have studied many different optical components in this chapter. Couplers, iso-
lators, and circulators are all commodity components. Many of the optical filters
that we studied are commercially available, with fiber gratings, thin-film multicavity
filters, and arrayed waveguide gratings used in commercial WDM systems.

Erbium-doped fiber amplifiers (EDFAs) are widely deployed and indeed served
as a key enabler for WDM. EDFA designs can incorporate multiple stages and
gain-flattening filters and provide midstage access between the multiple stages to
insert other elements such as dispersion compensating modules and wavelength
add/drop multiplexers. Distributed Raman amplifiers are being used in conjunction
with EDFAs in ultra-long-haul systems.

Semiconductor lasers are available commercially. Semiconductor DFB lasers are
used in most high-speed communication systems as well as compact semiconductor
tunable lasers. High-speed APDs and pinFET receivers are both available today.

There are a variety of technologies available to build switches. MEMS-based
optical switches are suited for wavelength selective switches with moderate or large
numbers of ports. For smaller-scale switches, most switch technologies can be ap-
plied. The switch technologies can be applied to other systems, for example, MEMS
and liquid crystal technologies are used in variable optical attenuators.

All-optical wavelength converters are still in the research laboratories, awaiting
significant cost reductions and performance improvements before they can become
practical.
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Further Reading

The book by Green [Gre93] treats many of the optical components considered in
this chapter in more detail, particularly tunable filters and lasers. See also [KK97]
for more advanced coverage of a number of components.

Most of the filters we described are now commercially available. Gratings are
described in detail in several textbooks on optics, for example, [KF86, BW99]. The
Stimax grating is described in [LL84] and [Gre93]. See [CK94, Ben96, Kas99] for
details on fiber grating fabrication and properties, and [Ven96b, Ven96a] for applica-
tions of long-period gratings. For a description of how dielectric thin-film multicavity
filters work, see [SS96] and [Kni76]. The electromagnetics background necessary to
understand their operation is provided, for example, by [RWv93]. Early papers on
the arrayed waveguide grating are [DEK91] and [VS91]. The principle behind their
operation is described in [McG98, TSN94, TOTI95, TOT96]. The integrated-optics
AOTF is described in [SBJC90, KSHS01], and its systems applications are discussed
in [Che90]. An overview of passive optical component technologies can be found in
[Tom08].

There is an extensive literature on optical amplifiers. See [BOS99, Des94] for
EDFAs, [Flo00] for a summary of L-band EDFAs, and [O’M88] for a tutorial on
SOAs. [Tie95, SMB00, FDW01] provide samples of some recent work on gain-
clamped SOAs. See [NE01, NE00] and [KK97, Chapter 7] for an overview of Raman
amplifiers.

There are several textbooks on the subject of lasers alone; see, for example,
[AD93]. Laser oscillation and photodetection are covered in detail in [Yar97].
[JQE91] is a good reference for several laser-related topics. Other good tutorials
on lasers appear in [BKLW00, LZ89, Lee91, SIA92]. Surveys of vertical cavity lasers
can be found in [Har00, Koy06]. See also [MZB97]. Most semiconductor lasers today
make use of quantum well structures. See [AY86] for a good introduction to this sub-
ject, and [SI08] for another overview and historical perspective. The mathematical
theory behind mode locking is explained in [Yar89] and [Yar65]. There is an exten-
sive discussion of various mode-locking methods for fiber lasers in [Agr95]. Lithium
niobate external modulators are well described in [Woo00] and [KK97, Chapter 9],
and electro-absorption modulators in [BKLW00] and [KK97, Chapter 4].

Currently, a significant effort is being made to realize commercially viable tunable
lasers. We refer the reader to [Col00, Har00, AB98, Gre93, KK97] for more in-depth
explorations of this subject. An early review of tunable laser approaches appeared
in [KM88]. The VCSEL-based tunable laser is described in [Vak99]. Other types
of tunable VCSELs have been demonstrated; see, for instance, [CH00, Har00]. The
sampled grating laser structure is explained in [JCC93] and superstructure grating
lasers in [Toh93]. See [WMB92, Rig95] for details on the GCSR laser. The arrayed
external grating-based laser approaches were proposed in [Soo92, ZJ94, Zir96].
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Input

3 dB coupler

Figure 3.80 A 3 dB coupler with the two outputs connected by a piece of fiber.

An overview of optical detectors and receivers can be found in [Per08].
The tutorial article by Spanke [Spa87] is a good review of large switch architec-

tures for optical switches. See also [MS88] for a good collection of papers on optical
switching and [Clo53] for the original paper on the Clos switch architecture. The
classic book by Beneš [Ben65] is the authoritative reference for the mathematical
theory of large switch architectures developed for telephony applications.

A very accessible survey of mechanical switches can be found in [Kas95, Chap-
ter 13]. Several papers [NR01, LGT98, Nei00, Ryf01, Lao99, WSF06] describe
MEMS-based switches. The inkjet-based waveguide switch is described in [Fou00].
See [WL96, PS95] for some early papers on liquid crystal switches.

Surveys and comparisons of different types of wavelength converters appear in
[Stu00, EM00, NKM98, Yoo96, ISSV96, DMJ+96, Chi97].

Problems

3.1 Consider the 3 dB 2× 2 coupler shown in Figure 3.80. Suppose we connect the two
outputs with a piece of fiber. Assume that the polarizations are preserved through
the device. A light signal is sent in on the first input. What happens? Derive the field
transfer function for the device. Assume the coupler used is a reciprocal device so
that it works exactly the same way if its inputs and outputs are reversed. Hint: This
device is called a loop mirror.

3.2 Consider a device with three ports where it is desired to send all the energy input
at ports 1 and 2 to port 3. We assume, for generality, that all ports can be used as
inputs and outputs. The scattering matrix of such a device can be written as

S =
⎛
⎝ 0 0 s13

0 0 s23
s31 s32 s33

⎞
⎠ .
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Show that a scattering matrix of this form cannot satisfy the conservation of energy
condition, (3.4). Thus it is impossible to build a device that combines all the power
from two input ports to a third port, without loss.

3.3 Consider an isolator that is a two-port device where power must be transferred from
port 1 to port 2, but no power must be transferred from port 2 to port 1. The
scattering matrix of such a device can be written as

S =
(

s11 s12
0 s22

)
.

Show that a scattering matrix of this form cannot satisfy the conservation of energy
condition, (3.4). Thus the loss occurs in the isolator because the power input at port
2 must be absorbed by it. However, the power input at port 1 can be transferred to
port 2 without loss.

3.4 In Figure 3.10, show that the path length difference between the rays diffracted at
angle θd and traversing through adjacent slits is approximately a[sin(θi) − sin(θd)]
when the grating pitch a is small compared to the distance of the source and the
imaging plane from the grating plane.

3.5 Derive the grating equation for a blazed reflection grating with blaze angle α, such
as the one shown in Figure 3.11.

3.6 Derive the amplitude distribution of the diffraction pattern of a grating with N

narrow slits spaced distance d apart. Show that we obtain diffraction maxima when
d sin θ = mλ. Discuss what happens in the limit as N →∞.

3.7 Show that the resonant frequencies fn of a Fabry-Perot cavity satisfy fn = f0+n�f ,
n integer, for some fixed f0 and �f . Thus these frequencies are spaced equally apart.
Note that the corresponding wavelengths are not spaced equally apart.

3.8 Derive the power transfer function of the Fabry-Perot filter.

3.9 Derive the expression (3.13) for the finesse of the Fabry-Perot filter. Assume that the
mirror reflectivity, R, is close to unity.

3.10 Show that the fraction of the input power that is transmitted through the Fabry-Perot
filter, over all frequencies, is (1−R)/(1+R). Note that this fraction is small for high
values of R. Thus, when all frequencies are considered, only a small fraction of the
input power is transmitted through a cavity with highly reflective facets.

3.11 Consider a cascade of two Fabry-Perot filters with cavity lengths l1 and l2, respec-
tively. Assume the mirror reflectivities of both filters equal R, and the refractive index
of their cavities is n. Neglect reflections from the second cavity to the first and vice
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versa. What is the power transfer function of the cascade? If l1/l2 = k/m, where k

and m are relatively prime integers, find an expression for the free spectral range of
the cascade. Express this FSR in terms of the FSRs of the individual filters.

3.12 Show that the transfer function of the dielectric slab filter shown in Figure G.1(b) is
identical to that of a Fabry-Perot filter with facet reflectivity

√
R = n2 − n1

n2 + n1
,

assuming n3 = n1.

3.13 Consider a stack of 2k alternating low-index (nL) and high-index (nH ) dielectric
films. Let each of these films have a quarter-wave thickness at λ0. In the notation of
Section 3.3.6, this stack can be denoted by (HL)k. Find the reflectivity of this stack as
a function of the optical wavelength λ. Thus a single-cavity dielectric thin-film filter
can be viewed as a Fabry-Perot filter with wavelength-dependent mirror reflectivities.

3.14 Derive the power transfer function of the Mach-Zehnder interferometer, assuming
only one of its two inputs is active.

3.15 Consider the Mach-Zehnder interferometer of Section 3.3.7.
(a) With the help of a block diagram, show how a 1 × n demultiplexer can be

constructed using n−1 MZIs. Assume n is a power of two. You must specify
the path length differences �L that must be used in each of the MZIs.

(b) Can you simplify your construction if only a specific one of the signals needs
to be separated from the rest of the n− 1?

3.16 Consider the Rowland circle construction shown in Figure 3.26. Show that the
differences in path lengths between a fixed-input waveguide and any two successive
arrayed waveguides is a constant. Assume that the length of the arc on which the
arrayed waveguides are located is much smaller than the diameter of the Rowland
circle. Hint: Choose a Cartesian coordinate system whose origin is the point of
tangency of the Rowland and grating circles. Now express the Euclidean distance
between an arbitrary input (output) waveguide and an arbitrary arrayed waveguide in
this coordinate system. Use the assumption stated earlier to simplify your expression.
Finally, note that the vertical spacing between the arrayed waveguides is constant.
In the notation of the book, this shows that δi = d sin θi , where d is the vertical
separation between successive arrayed waveguides, and θi is the angular separation
of input waveguide i from the central input waveguide, as measured from the origin.

3.17 Derive an expression for the FSR of an AWG for a fixed-input waveguide i and a
fixed-output waveguide j . The FSR depends on the input and output waveguides.
But show that if the arc length of the Rowland circle on which the input and output
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waveguides are located (see Figure 3.26) is small, then the FSR is approximately
constant. Use the result from Problem 3.16 that δi = d sin θi .

3.18 Consider an AWG that satisfies the condition given in Problem 3.17 for its FSR to
be approximately independent of the input and output waveguides. Given the FSR,
determine the set of wavelengths that must be selected in order for the AWG to
function as the wavelength router depicted in Figure 3.25. Assume that the angular
spacing between the input (and output) waveguides is constant. Use the result from
Problem 3.16 that δi = d sin θi.

3.19 Design an AWG that can multiplex/demultiplex 16 WDM signals spaced 100 GHz
apart in the 1.55 μm band. Your design must specify, among other things, the spacing
between the input/output waveguides, the path length difference between successive
arrayed waveguides, the radius R of the grating circle, and the FSR of the AWG.
Assume the refractive index of the input/output waveguides and the arrayed wave-
guides is 1.5. Note that the design may not be unique, and you may have to make
reasonable choices for some of the parameters, which will in turn determine the rest
of the parameters.

3.20 Show that the FWHM bandwidth of the acousto-optic filter is ≈ 0.8λ2
0/l�n.

3.21 Explain how the polarization-independent acousto-optic tunable filter illustrated in
Figure 3.28 acts as a two-input, two-output wavelength router when both its inputs
are active.

3.22 Calculate the acousto-optic interaction length that would be required for the AOTF
to have a passband width (FWHM) of 1 nm at an operating wavelength of 1.55 μm.
Assume �n = 0.07.

3.23 Consider a 16-channel WDM system where the interchannel spacing is nominally
100 GHz. Assume that one of the channels is to be selected by a filter with a 1 dB
bandwidth of 2 GHz. We consider three different filter structures for this purpose.

Fabry-Perot filter: Assume the center wavelengths of the channels do not
drift. What is the required finesse and the corresponding mirror reflectivity
of a Fabry-Perot filter that achieves a crosstalk suppression of 30 dB from
each adjacent channel? If the center wavelengths of the channels can drift
up to ±20 GHz from their nominal values, what is the required finesse and
mirror reflectivity?
Mach-Zehnder interferometer: Assume a cascade of MZIs, as shown in Fig-
ure 3.21(c), is used for this purpose and the same level of crosstalk suppres-
sion must be achieved. What is the path length difference �L and the number
of stages required, when the channel center wavelengths are fixed and when
they can drift by ±20 GHz?
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Figure 3.81 A four-channel add/drop multiplexer architecture.

AOTF: Can an AOTF be used to achieve the same level of crosstalk
suppression?

3.24 This problem compares different simple add/drop multiplexer architectures.
(a) First consider the fiber Bragg grating–based add/drop element shown in Fig-

ure 3.14(b). Suppose a 5% tap is used to couple the added signal into the
output, and the grating induces a loss of 0.5 dB for the transmitted signals
and no loss for the reflected signal. Assume that the circulator has a loss of
1 dB per pass. Carefully compute the loss seen by a channel that is dropped,
a channel that is added, and a channel that is passed through the device.
Suppose the input power per channel is −15 dBm. At what power should
the add channel be transmitted so that the powers on all the channels at the
output are the same?

(b) Suppose you had to realize an add/drop multiplexer that drops and adds
four wavelengths. One possible way to do this is to cascade four add/drop
elements of the type shown in Figure 3.14 in series. In this case, compute the
best-case and worst-case loss seen by a channel that is dropped, a channel
that is added, and a channel that is passed through the device.

(c) Another way to realize a four-channel add/drop multiplexer is shown in
Figure 3.81. Repeat the preceding exercise for this architecture. Assume that
the losses are as shown in the figure. Which of the two would you prefer
from a loss perspective?
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(d) Assume that fiber gratings cost $500 each, circulators $3000 each, filters
$1000 each, and splitters, combiners, and couplers $100 each. Which of the
two preceding architectures would you prefer from a cost point of view?

3.25 In a photodetector, why don’t the conduction band electrons absorb the incident
photons?

3.26 Consider an EDFA that is required to amplify wavelengths between 1532 nm and
1550 nm within the C-band (separated by 100 GHz).

(a) Draw a schematic of this basic EDFA, and assume the pump laser is selected
to minimize ASE. Also, be sure to prevent backward reflections at the EDFA
input/output.

(b) Draw the relevant energy bands and associated energy transitions between
these bands.

(c) How many wavelengths could be amplified within this range (and spacing)?
(d) Compute the required range in energy transitions to support the entire range

of wavelengths.
(e) Suppose we wanted to (1) add and drop a subset of these wavelengths at the

EDFA and (2) add a second stage that would be best suited for maximum
output powers. Please draw this new two-stage EDFA, with the add/drop
multiplexing function drawn as a “black box” labeled “ADM.”

(f) Now focusing on the “ADM,” assume that two fiber Bragg gratings (along
with associated circulator, splitters, and filters) are used to provide static drop
capability of the lowest two contiguous wavelengths in the spectral range. In
addition, a combiner is used to subsequently add these same wavelengths (of
course, carrying different embedded signals). Sketch the architecture for this
ADM (that is, the inside of the black box).

(g) If the effective refractive index of the ADM fiber segment is 1.5, calculate the
associated fiber Bragg grating periods.

3.27 Consider the 4× 4 switch shown in Figure 3.66 made up of 2× 2 switches. Suppose
each 2 × 2 switch has crosstalk suppression of 50 dB. What is the overall crosstalk
suppression of the 4× 4 switch? Assume for now that powers can be added and that
we do not have to worry about individual electric fields adding in phase. If we wanted
an overall crosstalk suppression of 40 dB, what should the crosstalk suppression of
each switch be?

3.28 This problem looks at the Vernier effect, which is used to obtain a filter with a large
periodicity given individual filters with smaller periodicities. Consider two periodic
filters, one with period f1 and the other with period f2, both assumed to be integers.
In other words, the first filter selects frequencies f = mf1, where m is an integer,
and the second filter selects wavelengths f = mf2. If the two filters are cascaded,
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show that the resulting filtering function is periodic, with a period given by the
least common multiple of f1 and f2. For example, if periods of the two filters are
500 GHz and 600 GHz, then the cascaded structure will be periodic with a period
of 3000 GHz.

Now suppose the period of each filter can be tuned by 10%. For the numbers
given above, the first filter’s period can be tuned to 500 ± 25 GHz and the sec-
ond filter’s to 600 ± 30 GHz. Note that the two combs overlap at a frequency of
193,000 GHz. To get an idea of the tuning range of the cascaded structure, determine
the nearest frequency to this initial frequency at which the two combs overlap when
periods of the individual filters are tuned to (1) 525 GHz and 630 GHz, (2) 475 GHz
and 630 GHz, (3) 475 GHz and 570 GHz, and (4) 525 GHz and 570 GHz.

To get an idea of how complex it is to tune this structure, also determine the
periods of each filter to obtain an overlap at 193,100 GHz.

3.29 Consider the Clos switch architecture described in Section 3.7.1. Show that if p ≥
2m− 1, the switch is strictly nonblocking.
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4
c h a p t e r

Modulation and
Demodulation

Our goal in this chapter is to understand the processes of modulation and
demodulation of digital signals. We start by discussing modulation, which is

the process of converting digital data in electronic form to an optical signal that can
be transmitted over the fiber. We then study the demodulation process, which is the
process of converting the optical signal back into electronic form and extracting the
data that was transmitted.

Mainly due to various kinds of noise that get added to the signal in the trans-
mission process, decisions about the transmitted bit (0 or 1) based on the received
signal are subject to error. In this chapter, we derive expressions for the bit error rate
introduced by the whole transmission process. Subsequently, we discuss how the bit
error rate can be reduced, for the same level of noise (more precisely, signal-to-noise
ratio) by the use of forward error-correcting codes. We also discuss clock recovery
or synchronization, which is the process of recovering the exact transmission rate at
the receiver.

With this background, in the next chapter, we will tackle transmission system
engineering, which requires careful attention to a variety of impairments that affect
system performance.

4.1 Modulation

The most commonly used modulation scheme in optical communication is on-off
keying (OOK), which is illustrated in Figure 4.1. In this modulation scheme, a 1 bit is
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Figure 4.1 On-off keying modulation of binary digital data.

encoded by the presence of a light pulse in the bit interval or by turning a light source
(laser or LED) “on.” A 0 bit is encoded (ideally) by the absence of a light pulse in the
bit interval or by turning a light source “off.” The bit interval is the interval of time
available for the transmission of a single bit. For example, at a bit rate of 1 Gb/s,
the bit interval is 1 ns. As we saw in Section 3.5.4, we can either directly modulate
the light source by turning it on or off, or use an external modulator in front of
the source to perform the same function. Using an external modulator results in less
chirp, and thus less of a penalty due to dispersion, and is the preferred approach for
high-speed transmission over long distances.

4.1.1 Signal Formats

The OOK modulation scheme can use many different signal formats. The most com-
mon signal formats are non-return-to-zero (NRZ) and return-to-zero (RZ). These
formats are illustrated in Figure 4.1. In the NRZ format, the pulse for a 1 bit occupies
the entire bit interval, and no pulse is used for a 0 bit. If there are two successive
1s, the pulse occupies two successive bit intervals. In the RZ format, the pulse for
a 1 bit occupies only a fraction of the bit interval, and no pulse is used for a 0
bit. In electronic (digital) communication, the RZ format has meant that the pulse
occupies exactly half the bit period. However, in optical communication, the term
RZ is used in a broader sense to describe the use of pulses of duration shorter than
the bit period. Thus, there are several variations of the RZ format. In some of them,
the pulse occupies a substantial fraction (say, 30%) of the bit interval. The term RZ,
without any qualification, usually refers to such systems. If, in addition, the pulses
are chirped, they are also sometimes termed dispersion-managed (DM) solitons. In
other RZ systems, the pulse occupies only a small fraction of the bit interval. The
primary example of such a system is a (conventional) soliton system.
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The major advantage of the NRZ format over the other formats is that the signal
occupies a much smaller bandwidth—about half that of the RZ format. The problem
with the NRZ format is that long strings of 1s or 0s will result in a total absence of
any transitions, making it difficult for the receiver to acquire the bit clock, a problem
we discuss in Section 4.4.8. The RZ format ameliorates this problem somewhat since
long strings of 1s (but not strings of 0s) will still produce transitions. However, the
RZ format requires a higher peak transmit power in order to maintain the same
energy per bit, and hence the same bit error rate as the NRZ format.

A problem with all these formats is the lack of DC balance. An OOK modulation
scheme is said to have DC balance if, for all sequences of data bits that may have
to be transmitted, the average transmitted power is constant. It is important for an
OOK modulation scheme to achieve DC balance because this makes it easier to set
the decision threshold at the receiver (see Section 5.2).

To ensure sufficient transitions in the signal and to provide DC balance, either
line coding or scrambling is used in the system. There are many different types of
line codes. One form of a binary block line code encodes a block of k data bits into
n > k bits that are then modulated and sent over the fiber. At the receiver, the n bits
are mapped back into the original k data bits (assuming there were no errors). Line
codes can be designed so that the encoded bit sequence is DC balanced and provides
sufficient transitions regardless of the input data bit sequence. An example of such a
line code is the (8, 10) code that is used in the Fibre Channel standard [WF83, SV96].
This code has k = 8 and n = 10. The fiber distributed data interface (FDDI) [Ros86]
uses a (4, 5) code that is significantly less complex than this (8, 10) code but does not
quite achieve DC balance; the worst-case DC imbalance is 10% [Bur86].

An alternative to using line coding is to use scrambling. Scrambling is a one-to-one
mapping of the data stream into another data stream before it is transmitted on the
link. At the transmitter, a scrambler takes the incoming bits and does an EXOR
operation with another carefully chosen sequence of bits. The latter sequence is
chosen so as to minimize the likelihood of long sequences of 1s or 0s in the transmitted
stream. The data is recovered back at the receiver by a descrambler that extracts the
data from the scrambled stream. The advantage of scrambling over line coding is
that it does not require any additional bandwidth. The disadvantages are that it does
not guarantee DC balance, nor does it guarantee a maximum length for a sequence
of 1s or 0s. However, the probability of having long run lengths or DC imbalance is
made very small by choosing the mapping so that likely input sequences with long
run lengths are mapped into sequences with a small run length. However, since the
mapping is one to one, it is possible to choose an input sequence that results in a
bad output sequence. The mapping is chosen so that only very rare input sequences
produce bad output sequences. See Problem 4.2 for an example of how scrambling
is implemented and its properties.
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In practice, the NRZ format is used in most high-speed communication systems,
ranging from speeds of 155 Mb/s to 10 Gb/s. Scrambling is widespread and used in
most communication equipment ranging from PC modems to high-speed telecom-
munications links. High-speed computer data links (for example, Fibre Channel,
which operates at 800 Mb/s, and Gigabit Ethernet, which operates at 1 Gb/s) use
line codes. See Chapter 6 for a discussion of these protocols.

The RZ format is used in certain high-bit-rate communication systems, such
as chirped RZ or DM soliton systems (see Section 2.6.1). In these systems, the
pulse occupies about half the bit interval, though this is usually not precise as in
digital/electronic communication. The use of RZ pulses also minimizes the effects
of chromatic dispersion (see Section 5.7.2). RZ modulation with pulses substan-
tially shorter than the bit interval is used in soliton communication systems (see Sec-
tion 2.6). The pulses need to be very short in such systems because they must be widely
separated (by about five times their width) in order to realize the dispersion-free
propagation properties of solitons.

4.2 Subcarrier Modulation and Multiplexing

The optical signal emitted by a laser operating in the 1310 or 1550 nm wavelength
band has a center frequency around 1014 Hz. This frequency is the optical carrier
frequency. In what we have studied so far, the data modulates this optical carrier.
In other words, with an OOK signal, the optical carrier is simply turned on or off,
depending on the bit to be transmitted.

Instead of modulating the optical carrier directly, we can have the data first mod-
ulate an electrical carrier in the microwave frequency range, typically ranging from
10 MHz to 10 GHz, as shown in Figure 4.2. The upper limit on the carrier frequency
is determined by the modulation bandwidth available from the transmitter. The mod-
ulated microwave carrier then modulates the optical transmitter. If the transmitter
is directly modulated, then changes in the microwave carrier amplitude get reflected
as changes in the transmitted optical power envelope, as shown in Figure 4.2. The
microwave carrier can itself be modulated in many different ways, including am-
plitude, phase, and frequency modulation, and both digital and analog modulation
techniques can be employed. The figure shows an example where the microwave car-
rier is amplitude modulated by a binary digital data signal. The microwave carrier is
called the subcarrier, with the optical carrier being considered the main carrier. This
form of modulation is called subcarrier modulation.

The main motivation for using subcarrier modulation is to multiplex multiple
data streams onto a single optical signal. This can be done by combining multiple
microwave carriers at different frequencies and modulating the optical transmitter
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Figure 4.2 Subcarrier modulation. The data stream first modulates a microwave carrier,
which, in turn, modulates the optical carrier.

with the combined signal. At the receiver, the signal is detected like any other signal,
and the rest of the processing, to separate the subcarriers and extract the data from
each subcarrier, is done electronically. This form of multiplexing is called subcarrier
multiplexing (SCM).

4.2.1 Clipping and Intermodulation Products

The main issue in the design of SCM systems is the trade-off between power efficiency
and signal fidelity. Consider Figure 4.2. The SCM system operates around a mean
drive current that determines the average optical power. If the mean drive current is
increased, for the same SCM waveform, the output optical power is increased. Thus,
to keep the output optical power low, the mean drive current must be kept as low as
possible. However, the fidelity of the signal depends critically on the linearity of the
laser power as a function of the drive current. If fi , fj , and fk denote microwave
subcarrier frequencies that are being used, any nonlinearity in laser’s power versus
drive current characteristic leads to signals at the frequencies fi ± fj ± fk, which
leads to crosstalk, just as in the case of four-wave mixing (see Section 2.5.8). These
spurious signals are called intermodulation products. Note that the frequencies in
the case of SCM are microwave frequencies and those in the FWM case are optical
frequencies. But the principle is the same in both cases. For a typical laser, the
power–drive current relationship is more linear if the variation in the drive current
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Figure 4.3 Clipping of a subcarrier modulated signal. When the drive current goes
below a threshold, the laser output power goes to zero and the signal is said to be
clipped.

is a smaller fraction of the average drive current. This means that we must operate
at a higher output optical power in order to keep the intermodulation products low.
SCM systems use lasers that are specially designed to be highly linear.

The microwave frequencies that are being multiplexed are usually chosen to lie
within one octave; that is, if fL is the lowest frequency and fH is the highest fre-
quency, these satisfy the condition, fH < 2fL. When this is the case, all sums and
differences of two frequencies—which constitute the second-order intermodulation
products—lie either below fL or above fH . Thus the second-order intermodula-
tion products produce no crosstalk, and the dominant crosstalk is from third-order
intermodulation products, which have much lower power.

A second source of signal distortion in SCM systems is clipping. To understand
this phenomenon, assume k sinusoids with equal (drive current) amplitude a are
being multiplexed. The maximum amplitude of the resulting signal will be ka, and
this occurs when all the k signals are in phase. Ideally, the mean operating drive
current must be chosen to be greater than ka so that the drive current is nonzero
even if all the sinusoids line up in phase. If the operating current is less than ka and all
the signals add in phase, there will be no output power for a brief period, when the
total current exceeds ka. During this period, the signal is said to be clipped. Clipping
is illustrated in Figure 4.3 for a single sinusoidal signal.

If k is large, the drive current ka may correspond to a very large optical power.
Since the sinusoids are of different frequencies. the probability that they will all add
in phase is quite small, particularly for large k. Thus SCM systems are designed to
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allow a small clipping probability (a few percent), which substantially reduces the
power requirement while introducing only a small amount of signal distortion.

4.2.2 Applications of SCM

SCM is widely used by cable operators today for transmitting multiple analog video
signals using a single optical transmitter. SCM is also being used in metropolitan-area
networks to combine the signals from various users using electronic FDM followed
by SCM. This reduces the cost of the network since each user does not require an
optical transmitter/laser. We will study these applications further in Chapter 11.

SCM is also used to combine a control data stream along with the actual data
stream. For example, most WDM systems that are deployed carry some control
information about each WDM channel along with the data that is being sent. This
control information has a low rate and modulates a microwave carrier that lies above
the data signal bandwidth. This modulated microwave carrier is called a pilot tone.
We will discuss the use of pilot tones in Chapter 8.

Often it is necessary to receive the pilot tones from all the WDM channels for
monitoring purposes, but not the data. This can be easily done if the pilot tones use
different microwave frequencies. If this is the case, and the combined WDM signal is
photodetected, the detector output will contain an electronic FDM signal consisting
of all the pilot tones from which the control information can be extracted. The
information from all the data channels will overlap with one another and be lost.

4.3 Spectral Efficiency

We saw in Chapter 2 that the ultimate bandwidth available in silica optical fiber is
about 400 nm from 1.2 μm to 1.6 μm, or about 50 THz. The natural question that
arises is, therefore, what is the total capacity at which signals can be transmitted
over optical fiber?

There are a few different ways to look at this question. The spectral efficiency of a
digital signal is defined as the ratio of the bit rate to the bandwidth used by the signal.
The spectral efficiency depends on the type of modulation and coding scheme used.
Today’s systems primarily use on-off keying of digital data and in theory can achieve
a spectral efficiency of 1 b/s/Hz. In practice, the spectral efficiency of these systems
is more like 0.4 b/s/Hz. Using this number, we see that the maximum capacity of
optical fiber is about 20 Tb/s. The spectral efficiency can be improved by using more
sophisticated modulation and coding schemes, leading to higher channel capacities
than the number above. As spectral efficiency becomes increasingly important, such
new schemes are being invented, typically based on proven electrical counterparts.
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One such scheme that we discuss in the next section is optical duobinary mod-
ulation. It can increase the spectral efficiency by a factor of about 1.5, typically,
achieving a spectral efficiency of 0.6 b/s/Hz.

4.3.1 Optical Duobinary Modulation

The fundamental idea of duobinary modulation (electrical or optical) is to de-
liberately introduce intersymbol interference (ISI) by overlapping data from adja-
cent bits. This is accomplished by adding a data sequence to a 1-bit delayed ver-
sion of itself. For example, if the (input) data sequence is (0, 0, 1, 0, 1, 0, 0, 1, 1, 0),
we would instead transmit the (output) data sequence (0, 0, 1, 0, 1, 0, 0, 1, 1, 0) +
(∗, 0, 0, 1, 0, 1, 0, 0, 1, 1) = (0, 0, 1, 1, 1, 1, 0, 1, 2, 1). Here the ∗ denotes the initial
value of the input sequence, which we assume to be zero.

Note that while the input sequence is binary and consists of 0s and 1s, the output
sequence is a ternary sequence consisting of 0s, 1s, and 2s. Mathematically, if we
denote the input sequence by x(nT ) and the output sequence by y(nT ), duobinary
modulation results if

y(nT ) = x(nT )+ x(nT − T ),

where T is the bit period. In the example above, x(nT ) = (0, 0, 1, 0, 1, 0, 0, 1, 1, 0),
1 ≤ n ≤ 10, and y(nT ) = (0, 0, 1, 1, 1, 1, 0, 1, 2, 1), 1 ≤ n ≤ 10.

Since the bits overlap with each other, how do we recover the input sequence
x(nT ) at the receiver from y(nT )? This can be done by constructing the signal z(nT ) =
y(nT ) − z(nT − T ) at the receiver. Note that here we subtract a delayed version of
z(nT ) from y(nT ), and not a delayed version of y(nT ) itself. This operation recovers
x(nT ) since z(nT ) = x(nT ), assuming we also initialize the sequence z(0) = 0. (For
readers familiar with digital filters, y(nT ) is obtained from x(nT ) by a digital filter,
and z(nT ) from y(nT ) by using the inverse of the same digital filter.) The reader
should verify this by calculating z(nT ) for the example sequence above. To see that
this holds generally, just calculate as follows:

z(nT ) = y(nT )− z(nT − T )

= y(nT )− y(nT − T )+ z(nT − 2T )

= y(nT )− y(nT − T )+ y(nT − 2T )− z(nT − 3T )

= y(nT )− y(nT − T )+ y(nT − 2T )− . . .+ (−1)n−1y(T )

= [x(nT )+ x(nT − T )]− [x(nT − T )− x(nT − 2T )]+ . . .

= x(nT ) (4.1)
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There is one problem with this scheme, however; a single transmission error will
cause all further bits to be in error, until another transmission error occurs to correct
the first one! This phenomenon is known as error propagation. To visualize error
propagation, assume a transmission error occurs in some ternary digit in the example
sequence y(nT ) above, and calculate the decoded sequence z(nT ).

The solution to the error propagation problem is to encode the actual data
to be transmitted, not by the absolute value of the input sequence x(nT ), but by
changes in the sequence x(nT ). Thus the sequence x(nT ) = (0, 0, 1, 0, 1, 0, 0, 1, 1, 0)

would correspond to the data sequence d(nT ) = (0, 0, 1, 1, 1, 1, 0, 1, 0, 1). A 1 in the
sequence d(nT ) is encoded by changing the sequence x(nT ) from a 0 to a 1, or from
a 1 to a 0. To see how differential encoding solves the problem, observe that if a
sequence of consecutive bits are all in error, their differences will still be correct,
modulo 2.

Transmission of a ternary sequence using optical intensity modulation (the gener-
alization of OOK for nonbinary sequences) will involve transmitting three different
optical powers, say, 0, P , and 2P . Such a modulation scheme will also consider-
ably complicate the demodulation process. We would like to retain the advantage
of binary signaling while employing duobinary signaling to reduce the transmission
bandwidth.

To see how this can be done, compare y(nT ) = (0, 0, 1, 1, 1, 1, 0, 1, 2, 1) and
d(nT ) = (0, 0, 1, 1, 1, 1, 0, 1, 0, 1) in our example, and observe that y(nT ) mod 2 =
d(nT )! This result holds in general, and thus we may think that we could simply map
the 2s in y(nT ) to 0s and transmit the resulting binary sequence, which could then
be detected using the standard scheme. However, such an approach would eliminate
the bandwidth advantage of duobinary signaling, as it should, because in such a
scheme the differential encoding and the duobinary encoding have done nothing
but cancel each other’s effects. The bandwidth advantage of duobinary signaling can
only be exploited by using a ternary signaling scheme. A ternary signaling alternative
to using three optical power levels is to use a combination of amplitude and phase
modulation. Such a scheme is dubbed optical AM-PSK, and most studies of optical
duobinary signaling today are based on AM-PSK.

Conceptually, the carrier is a continuous wave signal, a sinusoid, which we
can denote by a cos(ωt). The three levels of the ternary signal correspond to
−a cos(ωt) = a cos(ωt + π), 0 = 0 cos(ωt), and a cos(ωt), which we denote by
−1, 0, and +1, respectively. The actual modulation is usually accomplished using
an external modulator in the Mach-Zehnder arrangement (see Sections 3.3.7 and
3.5.4). These are the three signal levels corresponding to 0, 1, and 2, respectively,
in y(nT ). This modulation scheme is clearly a combination of amplitude and phase
modulation, hence the term AM-PSK. The AM-PSK signal retains the bandwidth ad-
vantage of duobinary signaling. However, for a direct detection receiver, the signals
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Figure 4.4 Spectrum of a baseband signal compared with the spectra of double sideband
(DSB) and single sideband (SSB) modulated signals. The spectral width of the SSB signals
is the same as that of the baseband signal, whereas the DSB signal has twice the spectral
width of the baseband signal.

±a cos(ωt) are indistinguishable so that the use of such a receiver merely identifies
2 = 0 in y(nT ) naturally performing the mod 2 operation required to recover d(nT )

from y(nT ).

4.3.2 Optical Single Sideband Modulation

Another technique for increasing the spectral efficiency is optical single sideband
(SSB) modulation. Such a scheme can improve the spectral efficiency by a factor of
2, if practical implementations capable of supporting transmission at 10 Gb/s and
above can be found. Before we can define what optical SSB modulation is, we need
to understand the concept of sidebands in a digital signal.

Consider a sinusoidal carrier signal cos(ωot). Assume this is directly modulated
by a data signal that is also a sinusoid, cos(ωdt), for simplicity. Typically, ωd 	 ωo

since ωo is an optical carrier frequency of the order of 200 THz and ωd is of the order
of 10 GHz. Direct modulation amounts to forming the product cos(ωot) cos(ωd t) =
0.5 cos((ωo + ωd)t) + 0.5 cos((ωo − ωd)t). Thus the transmitted signal contains two
sinusoids at ωo + ωd and ωo − ωd for a data signal consisting of a single sinusoid at
ωd . In general, for a digital signal with a (baseband) frequency spectrum extending
from 0 to B Hz, the modulated signal has a spectrum covering the frequency range
from ωo−B Hz to ωo+B Hz, that is, a range of 2B Hz around the carrier frequency
ωo. Each of the spectral bands of width B Hz on either side of the carrier frequency
ωo is called a sideband, and such a signal is said to be a double sideband (DSB) signal.
By appropriate filtering, we can eliminate one of these sidebands: either the lower
or the upper one. The resulting signals are called single sideband (SSB) signals. DSB
and SSB signals are illustrated in Figure 4.4.

The difficulty in implementing optical SSB modulation lies in designing the filters
to eliminate one of the sidebands—they have to be very sharp. Instead of filtering it
entirely, allowing a small part, or vestige, of one of the sidebands to remain makes
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implementation easier. Such a scheme is called vestigial sideband (VSB) modulation.
This is the modulation scheme used in television systems, and its use is currently
being explored for optical systems, mainly for analog signal transmission.

Optical SSB modulation is also being explored today either for analog signal
transmission or, equivalently, for SCM systems, which are analog systems from the
viewpoint of optical modulation.

4.3.3 Multilevel Modulation

The main technique used in digital communication to achieve spectral efficiencies
greater than 1 b/s/Hz is multilevel modulation. The simplest multilevel modulation
scheme uses M > 2 amplitude levels of a sinusoidal carrier to represent M possible
signal values. In such a scheme, each signal represents log2 M bits. However, the
bandwidth occupied by a digital communication system transmitting R such symbols
per second is nearly the same as that occupied by an R b/s digital system employing
binary signals. Therefore, the bandwidth efficiency of such a multilevel scheme is
log2 M times higher, and about log2 M b/s/Hz. To date, such multilevel schemes have
not been used in practical optical communication systems due to the complexities
of detecting such signals at high bit rates. Another potential advantage of multilevel
modulation is that the signaling rate on the channel is lower than the data rate. For
example, a 16-level modulation scheme would be able to transmit at a date rate of
40 Gb/s but at a signaling rate of 10 Gbaud; that is, each signal occupies a period
of 100 ps, and not 25 ps. This, in turn, helps mitigate the effects of dispersion and
nonlinearities.

4.3.4 Capacity Limits of Optical Fiber

An upper limit on the spectral efficiency and the channel capacity is given by Shan-
non’s theorem [Sha48]. Shannon’s theorem says that the channel capacity C for a
binary linear channel with additive noise is given by

C = B log2

(
1+ S

N

)
.

Here B is the available bandwidth and S/N is the signal-to-noise ratio. A typical
value of S/N is 100. Using this number yields a channel capacity of 350 Tb/s or
an equivalent spectral efficiency of 7 b/s/Hz. Clearly, such efficiencies can only be
achieved through the use of multilevel modulation schemes.

In practice, today’s long-haul systems operate at high power levels to overcome
fiber losses and noise introduced by optical amplifiers. At these power levels, nonlin-
ear effects come into play. These nonlinear effects can be thought of as adding addi-
tional noise, which increases as the transmitted power is increased. Therefore they in
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Figure 4.5 Block diagram showing the various functions involved in a receiver.

turn impose additional limits on channel capacity. Recent work to quantify the spec-
tral efficiency, taking into account mostly cross-phase modulation [Sta99, MS00],
shows that the achievable efficiencies are of the order of 3–5 b/s/Hz. Other nonlinear-
ities such as four-wave mixing and Raman scattering may place further limitations.
At the same time, we are seeing techniques to reduce the effects of these nonlinearities.

Another way to increase the channel capacity is by reducing the noise level in
the system. The noise figure in today’s amplifiers is limited primarily by random
spontaneous emission, and these are already close to theoretically achievable limits.
Advances in quantum mechanics [Gla00] may ultimately succeed in reducing these
noise limits.

4.4 Demodulation

The modulated signals are transmitted over the optical fiber where they undergo
attenuation and dispersion, have noise added to them from optical amplifiers, and
sustain a variety of other impairments that we will discuss in Chapter 5. At the
receiver, the transmitted data must be recovered with an acceptable bit error rate
(BER). The required BER for high-speed optical communication systems today is in
the range of 10−9 to 10−15, with a typical value of 10−12. A BER of 10−12 corresponds
to one allowed bit error for every terabit of data transmitted, on average.

Recovering the transmitted data involves a number of steps, which we will discuss
in this section. Our focus will be on the demodulation of OOK signals. Figure 4.5
shows the block diagram of a receiver. The optical signal is first converted to an
electrical current by a photodetector. This electrical current is quite weak and thus
we use a front-end amplifier to amplify it. The photodetector and front-end amplifier
were discussed in Sections 3.6.1 and 3.6.2, respectively.

The amplified electrical current is then filtered to minimize the noise outside
the bandwidth occupied by the signal. This filter is also designed to suitably shape
the pulses so that the bit error rate is minimized. This filter may also incorporate
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Figure 4.6 Eye diagram. (a) A typical received waveform along with the bit boundaries.
(b) The received waveform of (a), wrapped around itself, on the bit boundaries to generate
an eye diagram. For clarity, the waveform has been magnified by a factor of 2 relative to
(a).

additional functionality, such as minimizing the intersymbol interference due to pulse
spreading. If the filter performs this function, it is termed an equalizer. The name
denotes that the filter equalizes, or cancels, the distortion suffered by the signal.
Equalization is discussed in Section 4.4.9.

The signal must then be sampled at the midpoints of the bit intervals to decide
whether the transmitted bit in each bit interval was a 1 or a 0. This requires that the
bit boundaries be recovered at the receiver. A waveform that is periodic with period
equal to the bit interval is called a clock. This function is termed clock recovery, or
timing recovery, and is discussed in Section 4.4.8.

A widely used experimental technique to determine the goodness of the received
signal is the eye diagram. Consider the received waveform shown in Figure 4.6(a).
This is a typical shape of the received signal for NRZ modulation, after it has been
filtered by the receive filter and is about to be sampled (see Figure 4.5). The bit
boundaries are also shown on the figure. If the waveform is cut along at the bit
boundaries and the resulting pieces are superimposed on each other, we get the
resulting diagram shown in Figure 4.6(b). Such a diagram is called an eye diagram
because of its resemblance to the shape of the human eye. An eye diagram can be
easily generated experimentally using an oscilloscope to display the received signal
while it is being triggered by the (recovered) clock. The vertical opening of the eye
indicates the margin for bit errors due to noise. The horizontal opening of the eye
indicates the margin for timing errors due to an imperfectly recovered clock.

In Section 1.5, we saw that there could be different types of repeaters, specifically
2R (regeneration with reshaping) and 3R (regeneration with reshaping and retiming).
The difference between these lies primarily in the type of receiver used. A 2R receiver
does not have the timing recovery circuit shown in Figure 4.5, whereas a 3R does.
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Also a 3R receiver may use a multirate timing recovery circuit, which is capable of
recovering the clock at a variety of data rates.

4.4.1 An Ideal Receiver

In principle, the demodulation process can be quite simple. Ideally, it can be viewed as
“photon counting,” which is the viewpoint we will take in this section. In practice,
there are various impairments that are not accounted for by this model, and we
discuss them in the next section.

The receiver looks for the presence or absence of light during a bit interval. If no
light is seen, it infers that a 0 bit was transmitted, and if any light is seen, it infers
that a 1 bit was transmitted. This is called direct detection. Unfortunately, even in the
absence of other forms of noise, this will not lead to an ideal error-free system because
of the random nature of photon arrivals at the receiver. A light signal arriving with
power P can be thought of as a stream of photons arriving at average rate P/hfc .
Here, h is Planck’s constant (6.63× 10−34 J/Hz), fc is the carrier frequency, and hfc

is the energy of a single photon. This stream can be thought of as a Poisson random
process.

Note that our simple receiver does not make any errors when a 0 bit is transmit-
ted. However, when a 1 bit is transmitted, the receiver may decide that a 0 bit was
transmitted if no photons were received during that bit interval. If B denotes the bit
rate, then the probability that n photons are received during a bit interval 1/B is
given by

e−(P/hfcB)

(
P

hfcB

)n

n!
.

Thus the probability of not receiving any photons is e−(P/hfcB). Assuming equally
likely 1s and 0s, the bit error rate of this ideal receiver would be given as

BER = 1
2
e
− P

hfcB .

Let M = P/hfcB. The parameter M represents the average number of photons
received during a 1 bit. Then the bit error rate can be expressed as

BER = 1
2
e−M.

This expression represents the error rate of an ideal receiver and is called the quantum
limit. To get a bit error rate of 10−12, note that we would need an average of M = 27
photons per 1 bit.
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In practice, most receivers are not ideal, and their performance is not as good
as that of the ideal receiver because they must contend with various other forms of
noise, as we shall soon see.

4.4.2 A Practical Direct Detection Receiver

As we have seen in Section 3.6 (see Figure 3.61), the optical signal at the receiver is
first photodetected to convert it into an electrical current. The main complication in
recovering the transmitted bit is that in addition to the photocurrent due to the signal
there are usually three other additional noise currents. The first is the thermal noise
current due to the random motion of electrons that is always present at any finite
temperature. The second is the shot noise current due to the random distribution
of the electrons generated by the photodetection process even when the input light
intensity is constant. The shot noise current, unlike the thermal noise current, is not
added to the generated photocurrent but is merely a convenient representation of
the variability in the generated photocurrent as a separate component. The third
source of noise is the spontaneous emission due to optical amplifiers that may be
used between the source and the photodetector. The amplifier noise currents are
treated in Section 4.4.5 and Appendix I. In this section, we will consider only the
thermal noise and shot noise currents.

The thermal noise current in a resistor R at temperature T can be mod-
eled as a Gaussian random process with zero mean and autocorrelation function
(4kBT/R)δ(τ ). Here kB is Boltzmann’s constant and has the value 1.38× 10−23 J/◦K,
and δ(τ ) is the Dirac delta function, defined as δ(τ ) = 0, τ �= 0 and

∫∞
−∞ δ(τ )dτ = 1.

Thus the noise is white, and in a bandwidth or frequency range Be, the thermal noise
current has the variance

σ 2
thermal = (4kBT/R)Be.

This value can be expressed as I 2
t Be, where It is the parameter used to specify the

current standard deviation in units of pA/
√

Hz. Typical values are of the order of
1 pA/

√
Hz.

The electrical bandwidth of the receiver, Be, is chosen based on the bit rate of the
signal. In practice, Be varies from 1/2T to 1/T , where T is the bit period. We will
also be using the parameter Bo to denote the optical bandwidth seen by the receiver.
The optical bandwidth of the receiver itself is very large, but the value of Bo is usually
determined by filters placed in the optical path between the transmitter and receiver.
By convention, we will measure Be in baseband units and Bo in passband units.
Therefore, the minimum possible value of Bo = 2Be, to prevent signal distortion.

As we saw in the previous section, the photon arrivals are accurately modeled
by a Poisson random process. The photocurrent can thus be modeled as a stream
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of electronic charge impulses, each generated whenever a photon arrives at the pho-
todetector. For signal powers that are usually encountered in optical communication
systems, the photocurrent can be modeled as

I = Ī + is,

where Ī is a constant current, and is is a Gaussian random process with mean zero and
autocorrelation σ 2

shotδ(τ ). For pin diodes, σ 2
shot = 2eĪ . This is derived in Appendix I.

The constant current Ī = �P , where � is the responsivity of the photodetector,
which was discussed in Section 3.6. Here, we are assuming that the dark current,
which is the photocurrent that is present in the absence of an input optical signal, is
negligible. Thus the shot noise current is also white and in a bandwidth Be has the
variance

σ 2
shot = 2eĪBe. (4.2)

If we denote the load resistor of the photodetector by RL, the total current in
this resistor can be written as

I = Ī + is + it ,

where it has the variance σ 2
thermal = (4kBT/RL)Be. The shot noise and thermal noise

currents are assumed to be independent so that, if Be is the bandwidth of the receiver,
this current can be modeled as a Gaussian random process with mean Ī and variance

σ 2 = σ 2
shot + σ 2

thermal.

Note that both the shot noise and thermal noise variances are proportional to
the bandwidth Be of the receiver. Thus there is a trade-off between the bandwidth
of a receiver and its noise performance. A receiver is usually designed so as to
have just sufficient bandwidth to accommodate the desired bit rate so that its noise
performance is optimized. In most practical direct detection receivers, the variance
of the thermal noise component is much larger than the variance of the shot noise
and determines the performance of the receiver.

4.4.3 Front-End Amplifier Noise

We saw in Chapter 3 (Figure 3.61) that the photodetector is followed by a front-end
amplifier. Components within the front-end amplifier, such as the transistor, also
contribute to the thermal noise. This noise contribution is usually stated by giving
the noise figure of the front-end amplifier. The noise figure Fn is the ratio of the input
signal-to-noise ratio (SNRi) to the output signal-to-noise ratio (SNRo). Equivalently,
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the noise figure Fn of a front-end amplifier specifies the factor by which the thermal
noise present at the input of the amplifier is enhanced at its output. Thus the thermal
noise contribution of the receiver has variance

σ 2
thermal =

4kBT

RL

FnBe (4.3)

when the front-end amplifier noise contribution is included. Typical values of Fn are
3–5 dB.

4.4.4 APD Noise

As we remarked in Section 3.6.1, the avalanche gain process in avalanche photo-
diodes has the effect of increasing the noise current at its output. This increased
noise contribution arises from the random nature of the avalanche multiplicative
gain, Gm(t). This noise contribution is modeled as an increase in the shot noise
component at the output of the photodetector. If we denote the responsivity of the
APD by �APD, and the average avalanche multiplication gain by Gm, the average
photocurrent is given by Ī = �APDP = Gm�P , and the shot noise current at the
APD output has variance

σ 2
shot = 2eG2

mFA(Gm)�PBe. (4.4)

The quantity FA(Gm) is called the excess noise factor of the APD and is an increasing
function of the gain Gm. It is given by

FA(Gm) = kAGm + (1− kA)(2− 1/Gm).

The quantity kA is called the ionization coefficient ratio and is a property of the
semiconductor material used to make up the APD. It takes values in the range (0–1).
The excess noise factor is an increasing function of kA, and thus it is desirable to
keep kA small. The value of kA for silicon (which is used at 0.8 μm wavelength) is
	 1, and for InGaAs (which is used at 1.3 and 1.55 μm wavelength bands) it is 0.7.

Note that FA(1) = 1, and thus (4.4) also yields the shot noise variance for a pin

receiver if we set Gm = 1.

4.4.5 Optical Preamplifiers

As we have seen in the previous sections, the performance of simple direct detection
receivers is limited primarily by thermal noise generated inside the receiver. The
performance can be improved significantly by using an optical (pre)amplifier after
the receiver, as shown in Figure 4.7. The amplifier provides added gain to the input
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signal. Unfortunately, as we saw in Section 3.4.2, the spontaneous emission present
in the amplifier appears as noise at its output. The amplified spontaneous (ASE)
noise power at the output of the amplifier for each polarization mode is given by

PN = nsphfc(G− 1)Bo, (4.5)

where nsp is a constant called the spontaneous emission factor, G is the amplifier
gain, and Bo is the optical bandwidth. Two fundamental polarization modes are
present in a single-mode fiber, as we saw in Chapter 2. Hence the total noise power
at the output of the amplifier is 2PN .

The value of nsp depends on the level of population inversion within the amplifier.
With complete inversion nsp = 1, but it is typically higher, around 2–5 for most
amplifiers.

For convenience in the discussions to follow, we define

Pn = nsphfc.

To understand the impact of amplifier noise on the detection of the received
signal, consider the optical preamplifier system shown in Figure 4.7, used in front of
a standard pin direct detection receiver. The photodetector produces a current that
is proportional to the incident power. The signal current is given by

I = �GP, (4.6)

where P is the received optical power.
The photodetector produces a current that is proportional to the optical power.

The optical power is proportional to the square of the electric field. Thus the noise
field beats against the signal and against itself, giving rise to noise components
referred to as the signal-spontaneous beat noise and spontaneous-spontaneous beat
noise, respectively. In addition, shot noise and thermal noise components are also
present.

P
G Receiver

Preamplifier

Figure 4.7 A receiver with an optical preamplifier.
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The variances of the thermal noise, shot noise, signal-spontaneous noise, and
spontaneous-spontaneous noise currents at the receiver are, respectively,

σ 2
thermal = I 2

t Be, (4.7)

σ 2
shot = 2e�[GP + Pn(G− 1)Bo]Be, (4.8)

σ 2
sig-spont = 4�2GPPn(G− 1)Be, (4.9)

and

σ 2
spont-spont = 2�2[Pn(G− 1)]2(2Bo − Be)Be. (4.10)

These variances are derived in Appendix I. Here It is the receiver thermal noise
current. Provided the amplifier gain is reasonably large (> 10 dB), which is usu-
ally the case, the shot noise and thermal noise are negligible compared to the
signal-spontaneous and spontaneous-spontaneous beat noise. In the bit error rate
regime of interest to us (10−9 to 10−15), these noise processes can be modeled ade-
quately as Gaussian processes. The spontaneous-spontaneous beat noise can be made
very small by reducing the optical bandwidth Bo. This can be done by filtering the
amplifier noise before it reaches the receiver. In the limit, Bo can be made as small as
2Be. So the dominant noise component is usually signal-spontaneous beat noise.

The amplifier noise is commonly specified by the easily measurable parameter
known as the noise figure. Recall from Section 4.4.3 that the noise figure Fn is the
ratio of the input signal-to-noise ratio (SNRi ) to the output signal-to-noise ratio
(SNRo). At the amplifier input, assuming that only signal shot noise is present, using
(4.2) and (4.6), the SNR is given by

SNRi =
(�P)2

2�ePBe

.

At the amplifier output, assuming that the dominant noise term is the
signal-spontaneous beat noise, using (4.6) and (4.9), the SNR is given by

SNRo ≈ (�GP)2

4�2PG(G− 1)nsphfcBe

.

The noise figure of the amplifier is then

Fn = SNRi

SNRo

≈ 2nsp (4.11)

In the best case, with full population inversion, nsp = 1. Thus the best-case noise
figure is 3 dB. Practical amplifiers have a somewhat higher noise figure, typically in
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the 4–7 dB range. This derivation assumed that there are no coupling losses between
the amplifier and the input and output fibers. Having an input coupling loss degrades
the noise figure of the amplifier (see Problem 4.5).

4.4.6 Bit Error Rates

Earlier, we calculated the bit error rate of an ideal direct detection receiver. Next, we
will calculate the bit error rate of the practical receivers already considered, which
must deal with a variety of different noise impairments.

The receiver makes decisions as to which bit (0 or 1) was transmitted in each
bit interval by sampling the photocurrent. Because of the presence of noise currents,
the receiver could make a wrong decision resulting in an erroneous bit. In order to
compute this bit error rate, we must understand the process by which the receiver
makes a decision regarding the transmitted bit.

First, consider a pin receiver without an optical preamplifier. For a transmitted
1 bit, let the received optical power P = P1, and let the mean photocurrent Ī = I1.
Then I1 = �P1, and the variance of the photocurrent is

σ 2
1 = 2eI1Be + 4kBT Be/RL.

If P0 and I0 are the corresponding quantities for a 0 bit, I0 = �P0, and the variance
of the photocurrent is

σ 2
0 = 2eI0Be + 4kBT Be/RL.

For ideal OOK, P0 and I0 are zero, but we will see later (Section 5.3) that this is not
always the case in practice.

Let I1 and I0 denote the photocurrent sampled by the receiver during a 1 bit and
a 0 bit, respectively, and let σ 2

1 and σ 2
0 represent the corresponding noise variances.

The noise signals are assumed to be Gaussian. The actual variances will depend
on the type of receiver, as we saw earlier. So the bit decision problem faced by the
receiver has the following mathematical formulation. The photocurrent for a 1 bit is
a sample of a Gaussian random variable with mean I1 and variance σ1 (and similarly
for the 0 bit as well). The receiver must look at this sample and decide whether the
transmitted bit is a 0 or a 1. The possible probability density functions of the sampled
photocurrent are sketched in Figure 4.8. There are many possible decision rules that
the receiver can use; the receiver’s objective is to choose the one that minimizes the
bit error rate. This optimum decision rule can be shown to be the one that, given
the observed photocurrent I , chooses the bit (0 or 1) that was most likely to have
been transmitted. Furthermore, this optimum decision rule can be implemented as
follows. Compare the observed photocurrent to a decision threshold Ith. If I ≥ Ith,
decide that a 1 bit was transmitted; otherwise, decide that a 0 bit was transmitted.
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I

Figure 4.8 Probability density functions for the observed photocurrent.

For the case when 1 and 0 bits are equally likely (which is the only case we
consider in this book), the threshold photocurrent is given approximately by

Ith = σ0I1 + σ1I0

σ0 + σ1
. (4.12)

This value is very close but not exactly equal to the optimal value of the threshold.
The proof of this result is left as an exercise (Problem 4.7). Geometrically, Ith is the
value of I for which the two densities sketched in Figure 4.8 cross. The probability
of error when a 1 was transmitted is the probability that I < Ith and is denoted by
P [0|1]. Similarly, P [1|0] is the probability of deciding that a 1 was transmitted when
actually a 0 was transmitted and is the probability that I ≥ Ith. Both probabilities
are indicated in Figure 4.8.

Let Q(x) denote the probability that a zero mean, unit variance Gaussian random
variable exceeds the value x. Thus

Q(x) = 1√
2π

∫ ∞

x

e−y2/2 dy. (4.13)

It now follows that

P [0|1] = Q

(
I1 − Ith

σ1

)

and

P [1|0] = Q

(
Ith − I0

σ0

)
.
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Using (4.12), it can then be shown that the BER (see Problem 4.6) is given by

BER = Q

(
I1 − I0

σ0 + σ1

)
. (4.14)

The Q function can be numerically evaluated. Let γ = Q−1(BER). For a BER rate
of 10−12, we need γ ≈ 7. For a BER rate of 10−9, γ ≈ 6.

Note that it is particularly important to have a variable threshold setting in
receivers if they must operate in systems with signal-dependent noise, such as optical
amplifier noise. Many high-speed receivers do incorporate such a feature. However,
many of the simpler receivers do not have a variable threshold adjustment and set
their threshold corresponding to the average received current level, namely, (I1 +
I0)/2. This threshold setting yields a higher bit error rate given by

BER = 1
2

[
Q

(
(I1 − I0)

2σ1

)
+Q

(
(I1 − I0)

2σ0

)]
.

We can use (4.14) to evaluate the BER when the received signal powers for a 0
bit and a 1 bit and the noise statistics are known. Often, we are interested in the
inverse problem, namely, determining what it takes to achieve a specified BER. This
leads us to the notion of receiver sensitivity. The receiver sensitivity P̄sens is defined
as the minimum average optical power necessary to achieve a specified BER, usually
10−12 or better. Sometimes the receiver sensitivity is also expressed as the number of
photons required per 1 bit, M, which is given by

M = 2P̄sens

hfcB
,

where B is the bit rate.
In the notation introduced earlier, the receiver sensitivity is obtained by solving

(4.14) for the average power per bit (P0 + P1)/2 for the specified BER, say, 10−12.
Assuming P0 = 0, this can be obtained as

P̄sens = (σ0 + σ1)γ

2Gm�
. (4.15)

Here, Gm is the multiplicative gain for APD receivers and is unity for pin photo-
diodes.

First consider an APD or a pin receiver, with no optical amplifier in the system.
The thermal noise current is independent of the received optical power. However,
the shot noise variance is a function of P̄sens. Assume that no power is transmitted
for a 0 bit. Then σ 2

0 = σ 2
thermal and σ 2

1 = σ 2
thermal+σ 2

shot, where the shot noise variance
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Figure 4.9 Sensitivity plotted as a function of bit rate for typical pin, APD, and optically
preamplified receivers. The parameters used for the receivers are described in the text.

σ 2
shot must be evaluated for the received optical power P1 = 2P̄sens that corresponds

to a 1 bit. From (4.4),

σ 2
shot = 4eG2

mFA(Gm)�P̄sensBe.

Using this and solving (4.15) for the receiver sensitivity P̄sens, we get

P̄sens = γ

�

(
eBeFA(Gm)γ + σthermal

Gm

)
. (4.16)

Assume that for a bit rate of B b/s, a receiver bandwidth Be = B/2 Hz is required.
Let the front-end amplifier noise figure Fn = 3 dB and the load resistor RL = 100 �.
Then, assuming the temperature T = 300◦K, the thermal noise current variance,
from (4.3), is

σ 2
thermal =

4kBT

RL

FnBe = 1.656× 10−22B A2. (4.17)

Assuming the receiver operates in the 1.55 μm band, the quantum efficiency η = 1,
� = 1.55/1.24 = 1.25 A/W. Using these values, we can compute the sensitivity of a
pin receiver from (4.16) by setting Gm = 1. For BER = 10−12 and thus γ ≈ 7, the
receiver sensitivity of a pin diode is plotted as a function of the bit rate in Figure 4.9.
In the same figure, the sensitivity of an APD receiver with kA = 0.7 and an avalanche
multiplicative gain Gm = 10 is also plotted. It can be seen that the APD receiver has
a sensitivity advantage of about 8–10 dB over a pin receiver.
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We now derive the sensitivity of the optically preamplified receiver shown in Fig-
ure 4.7. In amplified systems, the signal-spontaneous beat noise component usually
dominates over all the other noise components, unless the optical bandwidth Bo is
large, in which case the spontaneous-spontaneous beat noise can also be significant.
Making this assumption, the bit error rate can be calculated, using (4.6), (4.9), and
(4.14), as

BER = Q

( √
GP

2
√

(G− 1)PnBe

)
. (4.18)

Let us see what receiver sensitivity can be obtained for an ideal preamplified
receiver. The receiver sensitivity is measured either in terms of the required power at
a particular bit rate or in terms of the number of photons per bit required. As before,
we can assume that Be = B/2. Assuming that the amplifier gain G is large and that
the spontaneous emission factor nsp = 1, we get

BER = Q

(√
M

2

)
.

To obtain a BER of 10−12, the argument to the Q(.) function γ must be 7. This yields
a receiver sensitivity of M = 98 photons per 1 bit. In practice, an optical filter is
used between the amplifier and the receiver to limit the optical bandwidth Bo and
thus reduce the spontaneous-spontaneous and shot noise components in the receiver.
For practical preamplified receivers, receiver sensitivities of a few hundred photons
per 1 bit are achievable. In contrast, a direct detection pinFET receiver without a
preamplifier has a sensitivity of the order of a few thousand photons per 1 bit.

Figure 4.9 also plots the receiver sensitivity for an optically preamplified receiver,
assuming a noise figure of 6 dB for the amplifier and an optical bandwidth Bo =
50 GHz that is limited by a filter in front of the amplifier. From Figure 4.9, we see
that the sensitivity of a pin receiver at a bit rate of 10 Gb/s is −21 dBm and that
of an APD receiver is −30 dBm. For 10 Gb/s operation, commercial pin receivers
with sensitivities of −18 dBm and APD receivers with sensitivities of −24 dBm are
available today. From the same figure, at 2.5 Gb/s, the sensitivities of pin and
APD receivers are −24 dBm and −34 dBm, respectively. Commercial pin and APD
receivers with nearly these sensitivities at 2.5 Gb/s are available today.

In systems with cascades of optical amplifiers, the notion of sensitivity is not very
useful because the signal reaching the receiver already has a lot of added amplifier
noise. In this case, the two parameters that are measured are the average received
signal power, P̄rec, and the received optical noise power, PASE. The optical signal-to-
noise ratio (OSNR) is defined as P̄rec/PASE. In the case of an optically preamplified
receiver, PASE = 2Pn(G − 1)Bo. A system designer needs to relate the measured
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OSNR with the bit error rate. Neglecting the receiver thermal noise and shot noise,
it can be shown using (4.6), (4.9), (4.10), and (4.14) that the argument to the Q(.)

function, γ , is related to the OSNR as follows:

γ =
2
√

Bo

Be
OSNR

1+√1+ 4OSNR
. (4.19)

Consider a typical 2.5 Gb/s system with Be = 2 GHz, with an optical filter with
bandwidth Bo = 36 GHz placed between the amplifier cascade and the receiver. For
γ = 7, this system requires an OSNR = 4.37, or 6.4 dB. However, this is usually
not sufficient because the system must deal with a variety of impairments, such
as dispersion and nonlinearities. We will study these in Chapter 5. A rough rule of
thumb used by system designers is to design the amplifier cascade to obtain an OSNR
of at least 20 dB at the receiver, so as to allow sufficient margin to deal with the other
impairments.

4.4.7 Coherent Detection

We saw earlier that simple direct detection receivers are limited by thermal noise and
do not achieve the shot noise limited sensitivities of ideal receivers. We saw that the
sensitivity could be improved significantly by using an optical preamplifier. Another
way to improve the receiver sensitivity is to use a technique called coherent detection.

The key idea behind coherent detection is to provide gain to the signal by mixing
it with another local light signal from a so-called local-oscillator laser. At the same
time, the dominant noise in the receiver becomes the shot noise due to the local
oscillator, allowing the receiver to achieve the shot noise limited sensitivity. (In fact,
a radio receiver works very much in this fashion except that it operates at radio,
rather than light, frequencies.)

A simple coherent receiver is shown in Figure 4.10. The incoming light signal is
mixed with a local-oscillator signal via a 3 dB coupler and sent to the photodetector.
(We will ignore the 3 dB splitting loss induced by the coupler since it can be eliminated
by a slightly different receiver design—see Problem 4.15.) Assume that the phase
and polarization of the two waves are perfectly matched. The power seen by the
photodetector is then

Pr(t) =
[√

2aP cos(2πfct)+
√

2PLO cos(2πfLOt)
]2

= aP + PLO + 2
√

aPPLO cos[2π(fc − fLO)t].
(4.20)

Here, P denotes the input signal power, PLO the local-oscillator power, a = 1 or 0
depending on whether a 1 or 0 bit is transmitted (for an OOK signal), and fc and
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Figure 4.10 A simple coherent receiver.

fLO represent the carrier frequencies of the signal and local-oscillator waves. We
have neglected the 2fc, 2fLO, and fc + fLO components since they will be filtered
out by the receiver. In a homodyne receiver, fc = fLO, and in a heterodyne receiver,
fc − fLO = fIF �= 0. Here, fIF is called the intermediate frequency (IF), typically a
few gigahertz.

To illustrate why coherent detection yields improved receiver sensitivities, con-
sider the case of a homodyne receiver. For a 1 bit, we have

I1 = �(P + PLO + 2
√

PPLO),

and for a 0 bit,

I0 = �PLO.

The key thing to note here is that by making the local-oscillator power PLO sufficiently
large, we can make the shot noise dominate over all the other noise components in
the receiver. Thus the noise variances are

σ 2
1 = 2eI1Be

and

σ 2
0 = 2eI0Be.

Usually, PLO is around 0 dBm and P is less than −20 dBm. So we can also neglect
P compared to PLO when computing the signal power, and both P and

√
PPLO

compared to PLO when computing the noise variance σ 2
1 . With this assumption,

using (4.14), the bit error rate is given by

BER = Q

(√
�P

2eBe

)
.
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As before, assuming Be = B/2, this expression can be rewritten as

BER = Q(
√

M),

where M is the number of photons per 1 bit as before. For a BER of 10−12, we need
the argument of the Q(.) function γ to be 7. This yields a receiver sensitivity of 49
photons per 1 bit, which is significantly better than the sensitivity of a simple direct
detection receiver.

However, coherent receivers are generally quite complex to implement and must
deal with a variety of impairments. Note that in our derivation we assumed that
the phase and polarization of the two waves match perfectly. In practice, this is not
the case. If the polarizations are orthogonal, the mixing produces no output. Thus
coherent receivers are highly sensitive to variations in the polarizations of the signal
and local-oscillator waves as well as any phase noise present in the two signals.
There are ways to get around these obstacles by designing more complicated receiver
structures [KBW96, Gre93]. However, direct detection receivers with optical pream-
plifiers, which yield comparable receiver sensitivities, provide a simpler alternative
and are widely used today.

Yet another advantage is to be gained by using coherent receivers in a multichan-
nel WDM system. Instead of using a demultiplexer or filter to select the desired signal
optically, with coherent receivers, this selection can be done in the IF domain using
electronic filters, which can be designed to have very sharp skirts. This allows very
tight channel spacings to be achieved. In addition, in a WDM system, the receiver can
be tuned between channels in the IF domain, allowing for rapid tunability between
channels, a desirable feature to support fast packet switching. However, we will
require highly wavelength-stable and controllable lasers and components to make
use of this benefit. Such improvements may result in the resurrection of coherent
receivers when WDM systems with large numbers of channels are designed in the
future.

4.4.8 Timing Recovery

The process of determining the bit boundaries is called timing recovery. The first step
is to extract the clock from the received signal. Recall that the clock is a periodic
waveform whose period is the bit interval (Section 4.4). This clock is sometimes sent
separately by the transmitter, for example, in a different frequency band. Usually,
however, the clock must be extracted from the received signal. Even if the extracted
clock has a period equal to the bit interval, it may still be out of phase with the
received signal; that is, the clock may be offset from the bit boundaries. Usually,
both the clock frequency (periodicity) and its phase are recovered simultaneously by
a single circuit, as shown in Figure 4.11.



272 Modulation and Demodulation

Nonlinearity
(squarer)

Bandpass
filter

Loop
filter

VCO
Phase
detector

Received
signal

Extracted
clock

Phase lock loop

Figure 4.11 Block diagram illustrating timing, or clock, recovery at the receiver.

If we pass the received signal through a nonlinearity, typically some circuit that
calculates the square of the received signal, it can be shown that the result contains
a spectral component at 1/T , where T is the bit period. Thus, we can filter the
result using a bandpass filter as shown in Figure 4.11 to get a waveform that is
approximately periodic with period T and that we call a timing signal. However, this
waveform will still have considerable jitter; that is, successive “periods” will have
slightly different durations. A “clean” clock with low jitter can be obtained by using
the phase lock loop (PLL) circuit shown in Figure 4.11.

A PLL consists of a voltage-controlled oscillator (VCO), a phase detector, and
a loop filter. A VCO is an oscillator whose output frequency can be controlled by
an input voltage. A phase detector produces an error signal that depends on the
difference in phase between its two inputs. Thus, if the timing signal and the output
of the VCO are input to the phase detector, it produces an error signal that is used
to adjust the output of the VCO to match the (average) frequency and phase of the
timing signal. When this adjustment is complete, the output of the VCO serves as
the clock that is used to sample the filtered signal in order to decide upon the values
of the transmitted bits. The loop filter shown in Figure 4.11 is a critical element of a
PLL and determines the residual jitter in the output of the VCO, as well as the ability
of the PLL to track changes in the frequency and phase of the timing signal.

4.4.9 Equalization

We remarked in Section 4.4 with reference to Figure 4.5 that the receive filter that is
used just prior to sampling the signal can incorporate an equalization filter to cancel
the effects of intersymbol interference due to pulse spreading. From the viewpoint of
the electrical signal that has been received, the entire optical system (including the
laser, the fiber, and the photodetector) constitutes the channel over which the signal
has been transmitted. If nonlinearities are ignored, the main distortion caused by this
channel is the dispersion-induced broadening of the (electrical) pulse. Dispersion is
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Figure 4.12 A transversal filter, a commonly used structure for equalization. The output
(equalized) signal is obtained by adding together suitably delayed versions of the input
signal, with appropriate weights.

a linear effect, and hence the effect of the channel on the pulse, due to dispersion,
can be modeled by the response of a filter with transfer function HD(f ). Hence, in
principle, by using the inverse of this filter, say, H−1

D (f ), as the equalization filter,
this effect can be canceled completely at the receiver. This is what an equalization
filter attempts to accomplish.

The effect of an equalization filter is very similar to the effect of dispersion
compensating fiber (DCF). The only difference is that in the case of DCF, the equal-
ization is in the optical domain, whereas equalization is done electrically when using
an equalization filter. As in the case of DCF, the equalization filter depends not only
on the type of fiber used but also on the fiber length.

A commonly used filter structure for equalization is shown in Figure 4.12. This
filter structure is called a transversal filter. It is essentially a tapped delay line: the
signal is delayed by various amounts and added together with individual weights.
The choice of the weights, together with the delays, determines the transfer function
of the equalization filter. The weights of the tapped delay line have to be adjusted to
provide the best possible cancellation of the dispersion-induced pulse broadening.

Electronic equalization involves a significant amount of processing that is difficult
to do at higher bit rates, such as 10 Gb/s. Thus optical techniques for dispersion
compensation, such as the use of DCF for chromatic dispersion compensation, are
currently much more widely used compared to electronic equalization.

4.5 Error Detection and Correction

An error-correcting code is a technique for reducing the bit error rate on a communi-
caton channel. It involves transmitting additional bits, called redundancy, along with
the data bits. These additional bits carry redundant information and are used by the
receiver to correct most of the errors in the data bits. This method of reducing the
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error rate by having the transmitter send redundant bits (using an error-correcting
code) is called forward error correction (FEC).

An alternative is for the transmitter to use a smaller amount of redundancy,
which the receiver can use to detect the presence of an error, but there is insufficient
redundancy to identify/correct the errors. This approach is used in telecommunica-
tion systems based on SONET and SDH to monitor the bit error rate in the received
signal. It is also widely used in data communication systems, where the receiver re-
quests the transmitter to resend the data blocks that are detected to be in error. This
technique is called automatic repeat request (ARQ).

A simple example of an error-detecting code is the bit interleaved parity (BIP)
code. A BIP-N code adds N additional bits to the transmitted data. We can use either
even or odd parity. With a BIP-N of even parity, the transmitter computes the code
as follows: The first bit of the code provides even parity over the first bit of all N-bit
sequences in the covered portion of the signal, the second bit provides even parity
over the second bits of all N-bit sequences within the specified portion, and so on.
Even parity is generated by setting the BIP-N bits so that there are an even number
of 1s in each of all N-bit sequences, including the BIP-N bit. Problem 4.16 provides
more details on this code.

A type of error-detecting code that is widely used in data communications is
the cyclic redundancy check (CRC). A CRC code is based on a computation that
resembles long division. The “divisor” of this computation is a bit string called a
“generator polynomial.” The generator polynomial actually defines the particular
CRC code, and some of these polynomials are industry standards.

A CRC code forms a codeword from a data string by adding redundant bits
so that the codeword is “divisible” by the generator polynomial. If a transmitted
codeword is not divisible, then there was a bit error in the transmission. CRC codes
can be designed to detect single bit errors, double bit errors, odd number of bit
errors, and any burst of errors that has length less than the length of the generator
polynomial.

FEC codes are more powerful than error-detecting codes because they can correct
bit errors, which reduces the bit error rate (BER). This is especially important for
optical communication systems that are expected to operate at a very low residual
BER: 10−12 or lower. Now FEC is not necessary when there are low demands on
the communication system due to relaxed channel spacing, negligible component
crosstalk, negligible effect of nonlinearities, and so on. Then all that is required
to achieve the specified BER is to increase the received power. However, in very
high-capacity WDM systems FEC becomes necessary.

One reason for using FEC instead of higher power is that fiber nonlinearities
prevent further increases in transmit power. A second reason is simply the cost–
performance trade-off. The use of an FEC enables a longer communication link
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before regeneration, since the link can now operate at a lower received power for the
same BER. The price to be paid for this is the additional processing involved, mainly
at the receiver.

Several communication systems suffer from a BER floor problem: the BER cannot
be decreased further by increasing the received power. This is because the main
impairment is not due to the various noises (thermal, shot, amplifier) but due to the
crosstalk from adjacent WDM channels. Increasing the received power increases the
crosstalk proportionately, and thus the BER cannot be decreased beyond a certain
level, called the BER floor. However, FEC can be used to decrease the BER below
this floor.

The use of an FEC code can sometimes provide an early warning for BER prob-
lems. Assume a link has a BER of 10−9 without the use of an FEC. Even though
this may be adequate in some situations, it may be better to use an FEC to push the
BER down much further, say, to 10−15 or lower. Suppose some component fails in
such a way as to cause significantly more errors, but does not fail completely. For
example, a switch may fail so as to cause significantly more crosstalk, or the output
power of a laser may decrease considerably below the specified value. If the system
is used without an FEC, the BER may immediately become unacceptable, but with
the use of an FEC, the system may be able to continue operation at a much better
BER, while alerting the network operator to the problem.

The simplest error-correcting code is a repetition code. In such a code, every bit
is repeated some number of times, say, three times. For example, a 1 is transmitted as
111 and a 0 as 000. Thus we have one data, or information bit, plus two redundant
bits of the same value. The receiver can estimate the data bit based on the value of the
majority of the three received bits. For example, the received bits 101 are interpreted
to mean that the data bit is a 1, and the received bits 100 are interpreted to mean
the data bit is a 0.

It is easy to see how the use of such a code improves the BER, if the same
energy is transmitted per bit after coding, as in the uncoded system. This amounts
to transmitting three times the power in the above example, since three coded bits
have to be transmitted for every data bit. In this case, the coded system has the same
raw BER—the BER before error correction or decoding—as the uncoded system.
However, after decoding, at least two bits in a block of three bits have to be in error
for the coded system to make a wrong decision. This substantially decreases the BER
of the coded system, as discussed in Problem 4.17. For example, the BER decreases
from 10−6 for the uncoded system to 3× 10−12 in the coded system.

However, this is not a fair assessment of the gains due to FEC, since the transmit-
ted power has to be increased by a factor of 3. This may not be possible, for example,
if nonlinearities pose a problem, or higher-power lasers are simply unavailable or too
expensive. Although such a code may have some application in the presence of BER
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floors, when there are no BER floors, using such a code may defeat the very purpose
of using an FEC code. This is because the link length can be increased even further by
simply increasing the transmit power and omitting the FEC code. Therefore, a better
measure of the performance of an FEC code has to be devised, called the coding gain.

The coding gain of an FEC code is the decrease in the receiver sensitivity that it
provides for the same BER compared to the uncoded system (for the same transmit
power). In this sense, the repetition code is useless since it has a negative coding
gain. However, codes with substantial coding gains, that is, which decrease the BER
substantially for the same transmit power as in the uncoded system, have been
designed by mathematicians and communication engineers over the last 50 years.
In the next section, we discuss a popular and powerful family of such codes called
Reed-Solomon codes.

4.5.1 Reed-Solomon Codes

A Reed-Solomon code, named after its inventors Irving Reed and Gus Solomon, does
not operate on bits but on groups of bits, which we will call symbols. For example, a
symbol could represent a group of 4 bits, or a group of 8 bits (a byte). A transmitter
using a Reed-Solomon code considers k data symbols and calculates r additional
symbols with redundant information, based on a mathematical formula: the code.
The transmitter sends the n = k + r symbols to the receiver.

If the transmitted power is kept constant, since k+r symbols have to be transmit-
ted in the same duration as k symbols, each symbol in the coded system has k/k + r

the duration, and hence k/k + r the energy, of a symbol in the uncoded system.
The receiver considers a block of n = k+ r symbols, and knowing the code used

by the transmitter, it can correctly decode the k data bits even if up to r/2 of the k+ r

symbols are in error.
Reed-Solomon codes have the restriction that if a symbol consists of m bits, the

length of the code n = 2m−1. Thus the code length n = 255 if (8-bit) bytes are used as
symbols. The number of redundant bits r can take any even value. A popular Reed-
Solomon code used in most recently deployed submarine systems has parameters
n = 255 and r = 16, and hence k = n− r = 239. In this case, 16 redundant bytes are
calculated for every block of 239 data bytes. The number of redundant bits added is
less than 7% of the data bits, and the code is capable of correcting up to 8 errored
bytes in a block of 239 bytes. This code provides a coding gain of about 6 dB. With
this coding gain, the BER can be substantially reduced, for example, from 10−5 to
10−15.

A discussion of the encoding and decoding processes involved in the use of Reed-
Solomon codes is beyond the scope of this book. A number of references to this topic
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are listed at the end of this chapter. The principle of operation can be understood
based on the following analogy with real numbers.

Assume two real numbers are to be transmitted. Consider a straight line
(a polynomial of degree 1), say, ax + b, whose two coefficients a and b rep-
resent the real numbers to be transmitted. Instead of transmitting a and b,
transmit five points on the straight line. The receiver knows that the transmit-
ted points are on a straight line and can recover the straight line, and hence
the transmitted data, even if two of the five points are in error: it just finds
a straight line that fits at least three of the five points. Similarly, if the re-
ceiver is given n points but told that they all lie on a degree k polynomial
(k < n) it can recover the polynomial, even if some of the received points
are in error: it just fits the best possible degree-k polynomial to the set of re-
ceived points.

A Reed-Solomon code works in a similar fashion except that the arithmetic is
not over real numbers, but over the finite set of symbols (groups of bits) used in the
code. For example, the finite set of symbols consists of the 256 possible 8-bit values
for 8-bit symbols. All arithmetic operations are suitably defined over this finite set of
symbols, which is called a finite field. (If we write 2 = 00000010 and 3 = 00000011,
3/2 �= 1.5 in finite field arithmetic: it is some other value in the set of symbols
[0, 255].) The n = 2m − 1 transmitted symbols can be viewed as all the possible
nonzero values of a degree-k polynomial whose coefficients lie in a finite field of size
2m. For example, the 255 transmitted values in a Reed-Solomon code with n = 255
and k = 239 can be viewed as representing the 255 nonzero values of a degree-
239 polynomial whose coefficients are 8-bit values that need to be transmitted. The
receiver can recover the degree-239 polynomial, and hence the data bits, even if up
to 8 of the 255 received values/symbols are in error. (In practice, the data bits are
not encoded as the coefficients of such a polynomial, but as the first 239 of the 255
transmitted values/symbols as discussed above.)

Forward error correction is currently used in 10 Gb/s systems and in under-
sea transmission systems. It is part of the Optical Transport Network (OTN)
standard (see Section 6.2). The two codes standardized by the ITU-T are the
(255, 239) and the (255, 223) Reed-Solomon codes. Both are popular codes used
in many communication systems, and thus chipsets that implement the encod-
ing and decoding functions for these codes are readily available. The (255, 239)

Reed-Solomon code has less than 7% redundancy (16 bytes for 239 bytes) and
can correct up to 8 errored bytes in a block of 239 bytes. The (255, 223)

Reed-Solomon code has less than 15% redundancy and can correct up to
16 errored bytes in a block of 223 bytes. These codes, as well as much
stronger ones, are used today in high-performance optical communication sys-
tems.
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4.5.2 Interleaving

Frequently, when errors occur, they occur in bursts; that is, a large number of suc-
cessive bits are in error. The Reed-Solomon codes we studied in the previous section
are capable of correcting bursts of errors too. For example, since the (255, 223) code
can correct up to 16 errored bytes, it can correct a burst of 16 × 8 = 128 bit er-
rors. To correct larger bursts with a Reed-Solomon code, we would have to increase
the redundancy. However, the technique of interleaving can be used along with the
Reed-Solomon codes to correct much larger bursts of errors, without increasing the
redundancy.

Assume an (n, k) Reed-Solomon code is used and imagine the bytes are arranged
in the following order:

1 2 3 . . . k (n− k redundant bits)
k + 1 k + 2 k + 3 . . . 2k (n− k redundant bits)
2k + 1 2k + 2 2k + 3 . . . 3k (n− k redundant bits)
. . .

Without interleaving, the bytes would be transmitted in row order; that is, the bytes
in row 1 are transmitted, followed by the bytes in row 2, and so on.

The idea of interleaving is to transmit the first d bytes in column 1, followed by
the first d bytes in column 2, and so on. Thus byte 1 would be followed by byte k+1.
When d bytes have been transmitted from all n columns, we transmit the next d

bytes in column 1 (from rows (d + 1) to 2d), followed by the next d bytes in column
2, and so on. The parameter d is called the interleaving depth.

Suppose there is a burst of b byte errors. Only �b/d� of these bytes will occur
in the same row due to interleaving. Thus, a (255, 223) Reed-Solomon code will be
able to correct any burst of b errors when interleaving to depth d is used, provided
�b/d� < 16. For example, if interleaving to depth 4 is used (d = 4), a (255, 223)

Reed-Solomon code can correct a burst of 64 consecutive errored bytes in a block of
223 bytes, though if the errors occur at random byte positions, it can correct only
16 byte errors in the same block size of 223 bytes.

Summary

Modulation is the process of converting data in electronic form to optical form for
transmission on the fiber. The simplest form of digital modulation is on-off keying,
which most systems use today. Direct modulation of the laser or LED source can
be used for transmission at low bit rates over short distances, whereas external
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modulation is needed for transmission at high bit rates over long distances. Some
form of line coding or scrambling is needed to prevent long runs of 1s or 0s in the
transmitted data stream to allow the clock to be recovered easily at the receiver and
to maintain DC balance.

Subcarrier multiplexing is a technique in which many signals are electronically
multiplexed using FDM, and the combined signal is used to modulate an optical car-
rier. Multilevel modulation schemes are more spectrally efficient than on-off keying;
optical duobinary signaling is an example of such a scheme.

A simple direct detection receiver looks at the energy received during a bit inter-
val to decide whether it is a 1 or 0 bit. The receiver sensitivity is the average power
required at the receiver to achieve a certain bit error rate. The sensitivity of a simple
direct detection receiver is determined primarily by the thermal noise in the receiver.
The sensitivity can be improved by using APDs instead of pin photodetectors or by
using an optical preamplifier. Another technique to improve the sensitivity as well as
the channel selectivity of the receiver is coherent detection. However, coherent detec-
tion is susceptible to a large number of impairments, and it requires a significantly
more complicated receiver structure to overcome these impairments. For this reason,
it is not practically implemented today.

Clock recovery is an important part of any receiver and is usually based on a
phase lock loop.

Electronic equalization is another option to cancel the pulse spreading due to
dispersion. This is accomplished by filtering the detected signal electrically to ap-
proximately invert the distortion undergone by it.

Error-correcting codes can be used to significantly lower the BER at the expense of
additional processing. The most commonly used family of codes are Reed-Solomon
codes.

Further Reading

Many books on optical communication cover modulation and detection in greater
depth than we have. See, for example, [Gre93, MK88, Agr97]. See also [BL90] for
a nice tutorial article on the subject. Subcarrier multiplexing and modulation are
treated in depth in [WOS90, OLH89, Dar87, Gre93]. Line coding, scrambling, and
bit clock recovery are covered extensively in [LM93]. Optical duobinary modulation
is discussed in several recent papers [OY98, Ono98, Fra98]. Optical SSB modulation
is discussed in [SNA97, Hui01]. An overview of modulation formats can be found in
[WE06]. For an excellent and current discussion of channel capacity and information
theory in general, we recommend the textbook by Cover and Thomas [CT91]. These
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techniques have been applied to calculate the capacity limits of optical systems in
[MS00].

The principles of signal detection are covered in the classic books by van Trees
[vT68] and Wozencraft and Jacobs [WJ90]. For a derivation of shot noise statistics,
see [Pap91]. The noise introduced by optical amplifiers has been studied extensively
in the literature. Amplifier noise statistics have been derived using quantum mechani-
cal approaches [Per73, Yam80, MYK82, Dan95] as well as semiclassical approaches
[Ols89, RH90]. There was a great deal of effort devoted to realizing coherent re-
ceivers in the 1980s, but the advent of optical amplifiers in the late 1980s and early
1990s provided a simpler alternative. See [BL90, KBW96] for a detailed treatment
of coherent receivers. Equalization is treated extensively in many books on digital
communication; see, for example, [LM93, Pro00].

The field of error-correcting codes has developed rapidly since its founding by
Hamming [Ham50] and Shannon [Sha48] more than a half-century ago. There are
many textbooks on this topic; see, for example, [McE77, LC82]. A discussion of
FEC techniques in submarine transmission systems appears in [Sab01].

Problems

4.1 A very simple line code used in early data networks is called bit stuffing. The objective
of this code is to prevent long runs of 1s or 0s but not necessarily achieve DC balance.
The encoding works as follows. Suppose the maximum number of consecutive 1s
that we are allowed in the bit stream is k. Then the encoder inserts a 0 bit whenever
it sees k consecutive 1 bits in the input sequence.

(a) Suppose the incoming data to be transmitted is 11111111111001000000 (read
left to right). What is the encoded bit stream, assuming k = 5?

(b) What is the algorithm used by the decoder to recover the data? Suppose the
received bit stream is 0111110101111100011 (read left to right). What is the
decoded bit stream?

4.2 The SONET standard uses scrambling to prevent long runs of 1s and 0s from
occurring in the transmitted bit stream. The scrambling is accomplished by a carefully
designed feedback shift register shown in Figure 4.13. The shift register consists of
flip-flops whose operation is controlled by a clock running at the bit rate and is reset
at the beginning of each frame.

(a) Suppose the incoming data to be transmitted is 11111111111001000000. As-
sume that the shift register contents are 1111111 at the beginning. What is
the scrambled output?

(b) Write a simulation program to compute the scrambled output as a function
of the input. The input is a sequence of bits generated by a pseudo-random



Problems 281

sequence with equal probabilities for a 1 and a 0. Plot the longest run length
of 1s and the longest run length of 0s observed as a function of the sequence
length for sequences up to 10 million bits long. Again assume that the shift
register contents are 1111111 at the beginning of the sequence. What do you
observe?

4.3 Consider the optical duobinary modulation scheme we discussed in Section 4.3.1. If
the data sequence is d(nT ) = 10101011010111100001, calculate (a) the differential
encoding x(nT ) of d(nT ), and (b) the duobinary encoding y(nT ) of x(nT ). Recall
that y(nT ) mod 2 = d(nT ). How can you compute the sequence y(nT ) directly from
d(nT ) without going through the two-stage differential and duobinary encoding
processes?

4.4 Consider the SNR of an APD receiver when both shot noise and thermal noise are
present. Assuming that the excess noise factor of the APD is given by FA(Gm) = Gx

m

for some x ∈ (0, 1), derive an expression for the optimum value G
opt
m of the APD gain

Gm that maximizes the SNR.

4.5 This problem deals with the noise figure of a chain of optical amplifiers and place-
ment of loss elements in the amplifier. The loss element may be an optical add/drop
multiplexer, or a gain-flattening filter, or a dispersion compensation module used to
compensate for accumulated dispersion along the link. The question is, where should
this loss element be placed—in front of the amplifier, after the amplifier, or inside the
amplifier?

(a) Consider an optical amplifier with noise figure F . Suppose we introduce a
loss element in front of it, with loss 0 < ε ≤ 1 (ε = 0 implies no loss, and
ε = 1 implies 100% loss). Show that the noise figure of the combination is
F/(1 − ε). Note that this loss element may also simply reflect the coupling
loss into the amplifier. Observe that this combination has a poor noise figure.

D DD DD D D

+

+

Scrambled data out

Data in

Figure 4.13 The feedback shift register used for scrambling in SONET.
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(b) Suppose the loss element is placed just after the amplifier. Show that the
noise figure of the combination is still F ; that is, placing a loss element after
the amplifier does not affect the noise figure. However, the price we pay in
this case is a reduction in optical output power, since the amplifier output is
attenuated by the loss element placed after it.

(c) Consider an optical amplifier chain with two amplifiers, with gains G1 and
G2, respectively, and noise figures F1 and F2, respectively, with no loss be-
tween the two amplifiers. Assuming G1 
 1, show that the noise figure of
the combined amplifier chain is

F = F1 + F2

G1
.

In other words, the noise figure of the chain is dominated by the noise figure
of the first amplifier, provided its gain is reasonably large, which is usually
the case.

(d) Now consider the case where a loss element with loss ε is introduced between
the first and second amplifier. Assuming G1,G2 
 1, and (1− ε)G1G2 
 1,
show that the resulting noise figure of the chain is given by

F = F1 + F2

(1− ε)G1
.

Observe that the loss element doesn’t affect the noise figure of the cascade
significantly as long as (1 − ε)G1 
 1, which is usually the case. This is
an important fact that is made use of in designing systems. The amplifier is
broken down into two stages, the first stage having high gain and a low noise
figure, and the loss element is inserted between the two stages. This setup
has the advantage that there is no reduction in the noise figure or the output
power.

4.6 Show that the BER for an OOK direct detection receiver is given by

BER = Q

(
I1 − I0

σ0 + σ1

)
.

4.7 Consider a binary digital communication system with received signal levels m1 and
m0 for a 1 bit and 0 bit, respectively. Let σ 2 and σ 2

0 denote the noise variances for a
1 and 0 bit, respectively. Assume that the noise is Gaussian and that a 1 and 0 bit
are equally likely. In this case, the bit error rate BER is given by

BER = 1
2
Q

(
m1 − Td

σ1

)
+ 1

2
Q

(
Td −m0

σ0

)
,
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where Td is the receiver’s decision threshold. Show that the value of Td that minimizes
the bit error rate is given by

Td =
−m1σ

2
0 +m0σ

2
1 +

√
σ 2

0 σ 2
1 (m1 −m0)2 + 2(σ 2

1 − σ 2
0 ) ln(σ1/σ0)

σ 2
1 − σ 2

0
. (4.21)

For the case of high signal-to-noise ratios, it is reasonable to assume that

(m1 −m0)
2 
 2(σ 2

1 − σ 2
0 ) ln(σ1/σ0)

σ 2
0 σ 2

1
.

In this case, (4.21) can be simplified to

Td = m0σ1 +m1σ0

σ1 + σ0
.

With m1 = RP1 and m0 = RP0, this is the same as (4.12).

4.8 Consider a pin direct detection receiver where the thermal noise is the main noise
component and its variance has the value given by (4.17). What is the receiver
sensitivity expressed in photons per 1 bit at a bit rate of 100 Mb/s and 1 Gb/s for
a bit error rate of 10−12? Assume that the operating wavelength is 1.55 μm and the
responsivity is 1.25 A/W.

4.9 Consider the receiver sensitivity, P̄rec (for an arbitrary BER, not necessarily 10−9), of
an APD receiver when both shot noise and thermal noise are present but neglecting
the dark current, for direct detection of on-off–keyed signals. Assume no power is
transmitted for a 0 bit.

(a) Derive an expression for P̄rec.
(b) Find the optimum value G

opt
m of the APD gain Gm that minimizes P̄rec.

(c) For Gm = G
opt
m , what is the (minimum) value of P̄rec?

4.10 Derive (4.18).

4.11 Plot the receiver sensitivity as a function of bit rate for an optically preamplified
receiver for three different optical bandwidths: (a) the ideal case, Bo = 2Be, (b)
Bo = 100 GHz, and (c) Bo = 30 THz, that is, an unfiltered receiver. Assume an
amplifier noise figure of 6 dB and the electrical bandwidth Be is half the bit rate, and
use the thermal noise variance given by (4.17). What do you observe as the optical
bandwidth is increased?

4.12 You are doing an experiment to measure the BER of an optically preamplified re-
ceiver. The setup consists of an optical amplifier followed by a variable attenuator
to adjust the power going into the receiver, followed by a pin receiver. You plot the
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BER versus the power going into the receiver over a wide range of received powers.
Calculate and plot this function. What do you observe regarding the slope of this
curve? Assume that Bo = 100 GHz, Be = 2 GHz, B = 2.5 Gb/s, a noise figure of
6 dB for the optical amplifier, and a noise figure of 3 dB for the front-end amplifier.

4.13 Derive (4.19).

4.14 Another form of digital modulation that can be used in conjunction with coherent
reception is phase-shift keying (PSK). Here

√
2P cos(2πfct) is received for a 1 bit

and −√2P cos(2πfct) is received for a 0 bit. Derive an expression for the bit error
rate of a PSK homodyne coherent receiver. How many photons per bit are required
to obtain a bit error rate of 10−9?

4.15 A balanced coherent receiver is shown in Figure 4.14. The input signal and local
oscillator are sent through a 3 dB coupler, and each output of the coupler is connected
to a photodetector. This 3 dB coupler is different in that it introduces an additional
phase shift of π/2 at its second input and second output. The detected current is the
difference between the currents generated by the two photodetectors. Show that this
receiver structure avoids the 3 dB penalty associated with the receiver we discussed
in Section 4.4.7. Use the transfer function for a 3 dB coupler given by (3.1).

4.16 SONET and SDH systems use an 8-bit interleaved parity (BIP-8) check code with
even parity to detect errors. The code works as follows. Let b0, b1, b2, . . . denote
the sequence of bits to be transmitted. The transmitter adds an 8-bit code sequence
c0, c1, . . . , c7, to the end of this sequence where

ci = bi ⊕ bi+8 ⊕ bi+16 + . . . .

Here ⊕ denotes an "exclusive OR" operation (0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 1 = 0).
(a) Suppose the bits to be transmitted are 010111010111101111001110. What is

the transmitted sequence with the additional parity check bits?
(b) Suppose the received sequence (including the parity check bits at the end) is

010111010111101111001110. How many bits are in error? Assume that if a
parity check indicates an error, it is caused by a single bit error in one of the
bits over which the parity is computed.

3 dB coupler

i1

i2

i i i= 1 2�
Signal

Local oscillator

Figure 4.14 A balanced coherent receiver.
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4.17 If the BER of an uncoded system is p, show that the same system has a BER of
3p2 + p3 when the repetition code (each bit is repeated three times) is used. Note
that the receiver makes its decision on the value of the transmitted bit by taking a
majority vote on the corresponding three received coded bits. Assume that the energy
per bit remains the same in both cases.
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5
c h a p t e r

Transmission System
Engineering

Our goal in this chapter is to understand how to design the physical layer of
an optical network. To this end, we will discuss the various impairments that

we must deal with, how to allocate margins for each of these impairments, how to
reduce the effect of these impairments, and finally all the trade-offs that are involved
between the different design parameters.

5.1 System Model

Figure 5.1 shows a block diagram of the various components of a unidirectional
WDM link. The transmitter consists of a set of DFB lasers, with or without external
modulators, one for each wavelength. The signals at the different wavelengths are
combined into a single fiber by means of an optical multiplexer. An optical power
amplifier may be used to increase the transmission power. After some distance along
the fiber, the signal is amplified by an optical in-line amplifier. Depending on the
distance, bit rate, and type of fiber used, the signal may also be passed through
a dispersion-compensating module, usually at each amplifier stage. At the receiving
end, the signal may be amplified by an optical preamplifier before it is passed through
a demultiplexer. Each wavelength is then received by a separate photodetector.

Throughout this chapter, we will be focusing on digital systems, although it is
possible to transmit analog signals over fiber as well. The physical layer of the system
must ensure that bits are transmitted from the source to their destination reliably.
The measures of quality are the bit error rate (BER) and the additional power budget
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Figure 5.1 Components of a WDM link.

margin provided in the system. Usually the required bit error rates are of the order
of 10−9 to 10−15, typically 10−12. The BER depends on the amount of noise as
well as other impairments that are present in the system. Unless otherwise stated,
we will assume that non-return-to-zero (NRZ) modulation is used. In some specific
cases, such as chromatic dispersion, we consider both NRZ and return-to-zero (RZ)
modulation.

The physical layer is also responsible for the link initialization and link take-
down procedures, which are necessary to prevent exposure to potentially harmful
laser radiation. This aspect is dealt with in Chapter 8.

We will look at the different components that are part of a system, including
the transmitters, receivers, optical amplifiers, wavelength multiplexers, demultiplex-
ers and switches, and the fiber itself, and we will discuss various forms of system
impairments that arise from each of these components. Table B.1 in Appendix B
summarizes the large number of parameters used in this chapter.

5.2 Power Penalty

The physical layer design must take into account the effect of a number of system
impairments as previously discussed. Usually, each impairment results in a power
penalty to the system. In the presence of an impairment, a higher signal power will
be required at the receiver in order to maintain a desired bit error rate. One way
to define the power penalty is as the increase in signal power required (in dB) to
maintain the same bit error rate in the presence of impairments. Another way to
define the power penalty is as the reduction in signal-to-noise ratio as quantified by
the value of γ (the argument to the Q(.) function as defined in Section 4.4.6) due
to a specific impairment. We will be using the latter definition since it is easier to
calculate and consistent with popular usage.
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Let P1 denote the optical power received during a 1 bit, and P0 the power
received during a 0 bit without any system impairments. The corresponding electrical
currents are given by �P1 and �P0, respectively, where � is the responsivity of the
photodetector.

Let σ1 and σ0 denote the noise standard deviations during a 1 bit and a 0 bit,
respectively. Assume that the noise is Gaussian. The bit error rate, assuming equally
likely 1s and 0s, is obtained from (4.14) as

BER = Q

(
�(P1 − P0)

σ1 + σ0

)
. (5.1)

This expression assumes that the receiver’s decision threshold is set to the optimal
value indicated by (4.12).

In the presence of impairments, let P ′1, P
′
0, σ

′
1, σ

′
0 denote the received powers and

noise standard deviations, respectively. Assuming an optimized threshold setting, the
power penalty is given by

PP = −10 log

⎛
⎜⎝
�(P ′1−P ′0)

σ ′1+σ ′0
�(P1−P0)

σ1+σ0

⎞
⎟⎠ . (5.2)

Calculating the power penalty in general for the simple AC-coupled receiver
discussed in Section 4.4.6 is somewhat more complicated, but we will see that it is
the same as the penalty for the optimized receiver for two important cases of interest.

The first case of interest is when the dominant noise component is receiver thermal
noise, for which σ0 = σ1 = σth. This is usually the case in unamplified direct detection
pin receivers. In this case, or in any situation where the noise is independent of the
signal power, the power penalty is given by

PPsig-indep = −10 log
(

P ′1 − P ′0
P1 − P0

)
(5.3)

and the best threshold setting corresponds to the setting of a simple AC-coupled
receiver.

The other case of interest is amplified systems, or systems with APD receivers.
In amplified systems, the dominant noise component is usually the amplifier signal-
spontaneous beat noise (see Section 4.4.5). In APD receivers, the dominant noise
component is the shot noise, which is enhanced because of the APD gain (see Sec-
tion 3.6.1). In amplified systems, and in systems with APD receivers, we can assume
that σ1 ∝

√
P1; that is, the noise variance depends on the signal power. Assume also

that P0 	 P1. In this case, we can assume that σ1 
 σ0. Here an optimized receiver
would set its threshold close to the 0 level, whereas the simple receiver would still
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set its threshold at the average received power and would have a somewhat higher
bit error rate. However, the power penalties turn out to be the same in both cases.
This penalty is given by

PPsig-dep = −5 log
(

P ′1
P1

)
. (5.4)

Finally, it must be kept in mind that polarization plays an important role in many
system impairments where signals interfere with each other. The worst case is usually
when the interfering signals have the same state of polarization. However, the state
of polarization of each signal varies slowly with time in a random manner, and thus
we can expect the power penalties to vary with time as well. The system must be
designed, however, to accommodate the worst case, usually identical polarizations.

System design requires careful budgeting of the power penalties for the different
impairments. Here we sketch out one way of doing such a design for a transmission
system with optical amplifiers. First we determine the ideal value of the parameter
γ (see Section 4.4.6) that is needed. For a bit error rate of 10−12 typically assumed
in high-speed transmission systems, we need γ = 7, or 20 logγ = 17 dB. This would
be the case if there were no transmission impairments leading to power penalties.
In practice, the various impairments result in power penalties that must be added
onto this ideal value of γ , as shown in Table 5.1, to obtain the required value of
γ that the system must be designed to yield. For instance, in the table, we allocate
a 1 dB power penalty for an imperfect transmitter and a 2 dB power penalty for
chromatic dispersion. (We will study these and several other impairments in the rest
of this chapter.) The required value of γ after adding all these allocations is 31 dB.
This is the value that we must obtain if we assume an ideal system to start with and
compute γ based on only optical amplifier noise accumulation. The power penalty
due to each impairment is then calculated one at a time assuming that the rest of
the system is ideal. In practice, this is an approximate method because the different
impairments may be related to each other, and we may not be able to isolate each
one by itself. For example, the power penalties due to a nonideal transmitter and
crosstalk may be related to each other, whereas chromatic dispersion may be treated
as an independent penalty.

5.3 Transmitter

The key system design parameters related to the transmitter are its output power, rise-
/fall-time, extinction ratio, modulation type, side-mode suppression ratio, relative
intensity noise (RIN), and wavelength stability and accuracy.
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Table 5.1 An example system design that allocates
power penalties for various transmission impairments.

Impairment Allocation (dB)

Ideal γ 17

Transmitter 1
Crosstalk 1
Chromatic dispersion 2
Nonlinearities 1
Polarization-dependent loss 3
Component aging 3
Margin 3

Required γ 31

The output power depends on the type of transmitter. DFB lasers put out about
1 mW (0 dBm) to 10 mW (10 dBm) of power. An optical power amplifier can be
used to boost the power, typically to as much as 50 mW (17 dBm). The upper
limits on power are dictated by nonlinearities (Section 5.8) and safety considerations
(Section 8.7).

The extinction ratio is defined as the ratio of the power transmitted when sending
a 1 bit, P1, to the power transmitted when sending a 0 bit, P0. Assuming that we
are limited to an average transmitted power P , we would like to have P1 = 2P and
P0 = 0. This would correspond to an extinction ratio r = ∞. Practical transmitters,
however, have extinction ratios between 10 and 20. With an extinction ratio r, we
have

P0 = 2P

r + 1

and

P1 = 2rP

r + 1
.

Reducing the extinction ratio reduces the difference between the 1 and 0 levels at the
receiver and thus produces a penalty. The power penalty due to a nonideal extinction
ratio in systems limited by signal-independent noise is obtained from (5.3) as

PPsig-indep = −10 log
r − 1
r + 1

.
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Note that on the one hand this penalty represents the decrease in signal-to-noise
ratio performance of a system with a nonideal extinction ratio relative to a system
with infinite extinction ratio, assuming the same average transmitted power for both
systems. On the other hand, if we assume that the two systems have the same peak
transmit power, that is, the same power for a 1 bit, then the penalty can be calculated
to be

PPsig-indep = −10 log
r − 1

r
.

Lasers tend to be physically limited by peak transmit power. Most nonlinear effects
also set a limit on the peak transmit power. However, eye safety regulation limits (see
Section 8.7.1), are stated in terms of average power. The formula to be used depends
on which factor actually limits the power for a particular system.

The penalty is higher when the system is limited by signal-dependent noise, which
is typically the case in amplified systems (Section 4.4.5)—see Problem 5.10. This is
due to the increased amount of noise present at the 0 level. Other forms of signal-
dependent noise may arise in the system, such as laser relative intensity noise, which
refers to intensity fluctuations in the laser output caused by reflections from fiber
splices and connectors in the link.

The laser at the transmitter may be modulated directly, or a separate external
modulator can be used. Direct modulation is cheaper but results in a broader spectral
width due to chirp (Section 2.4). This will result in an added power penalty due to
chromatic dispersion (see Section 2.4). Broader spectral width may also result in
penalties when the signal is passed through optical filters, such as WDM muxes and
demuxes. This penalty can be reduced by reducing the extinction ratio, which, in
turn, reduces the chirp and, hence, the spectral width.

Wavelength stability of the transmitter is an important issue and is addressed in
Sections 5.9 and 5.12.8.

5.4 Receiver

The key system parameters associated with a receiver are its sensitivity and overload
parameter. The sensitivity is the average optical power required to achieve a certain
bit error rate at a particular bit rate. It is usually measured at a bit error rate of
10−12 using a pseudorandom 223 − 1 bit sequence. The overload parameter is the
maximum input power that the receiver can accept. Typical sensitivities of different
types of receivers for a set of bit rates are shown in Table 5.2; a more detailed
evaluation can be found in Section 4.4.6. APD receivers have higher sensitivities
than pinFET receivers and are typically used in high-bit-rate systems operating at
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Table 5.2 Typical sensitivities of different types of receivers in the
1.55 μm wavelength band. These receivers also operate in the 1.3 μm
band, but the sensitivity may not be as good at 1.3 μm.

Bit Rate Type Sensitivity Overload Parameter

155 Mb/s pinFET −36 dBm −7 dBm
622 Mb/s pinFET −32 dBm −7 dBm

2.5 Gb/s pinFET −23 dBm −3 dBm
2.5 Gb/s APD −34 dBm −8 dBm

10 Gb/s pinFET −18 dBm −1 dBm
10 Gb/s APD −24 dBm −6 dBm
40 Gb/s pinFET −7 dBm 3 dBm

and above 2.5 Gb/s. However, a pinFET receiver with an optical preamplifier has a
sensitivity that is comparable to an APD receiver. The overload parameter defines
the dynamic range of the receiver and can be as high as 0 dBm for 2.5 Gb/s receivers,
regardless of the specific receiver type.

5.5 Optical Amplifiers

Optical amplifiers have become an essential component in transmission systems and
networks to compensate for system losses. The most common optical amplifier today
is the erbium-doped fiber amplifier (EDFA) operating in the C-band. L-band EDFAs
and Raman amplifiers are also used. EDFAs are used in almost all amplified WDM
systems, whereas Raman amplifiers are used in addition to EDFAs in many ultra-
long-haul systems. These amplifiers are described in Section 3.4. In this section, we
will focus mainly on EDFAs.

The EDFA has a gain bandwidth of about 35 nm in the 1.55 μm wavelength
region. The great advantage of EDFAs is that they are capable of simultaneously
amplifying many WDM channels. EDFAs spawned a new generation of transmission
systems, and almost all optical fiber transmission systems installed over the last few
years use EDFAs instead of repeaters. The newer L-band EDFAs are being installed
today to increase the available bandwidth, and hence the number of wavelengths, in
a single fiber.

Amplifiers are used in three different configurations, as shown in Figure 5.2.
An optical preamplifier is used just in front of a receiver to improve its sensitivity.
A power amplifier is used after a transmitter to increase the output power. A line
amplifier is typically used in the middle of the link to compensate for link losses. The
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design of the amplifier depends on the configuration. A power amplifier is designed to
provide the maximum possible output power. A preamplifier is designed to provide
high gain and the highest possible sensitivity, that is, the least amount of additional
noise. A line amplifier is designed to provide a combination of all of these.

Unfortunately, the amplifier is not a perfect device. There are several major
imperfections that system designers need to worry about when using amplifiers in a
system. First, an amplifier introduces noise, in addition to providing gain. Second,
the gain of the amplifier depends on the total input power. For high input powers,
the EDFA tends to saturate and the gain drops. This can cause undesirable power
transients in networks. Finally, although EDFAs are a particularly attractive choice
for WDM systems, their gain is not flat over the entire passband. Thus some channels
see more gain than others. This problem gets worse when a number of amplifiers are
cascaded.

We have studied optically preamplified receivers in Section 4.4.5. In this sec-
tion, we will study the effect of gain saturation, gain nonflatness, noise, and power
transients in systems with cascades of optical amplifiers.

5.5.1 Gain Saturation in EDFAs

An important consideration in designing amplified systems is the saturation of the
EDFA. Depending on the pump power and the amplifier design itself, the output
power of the amplifier is limited. As a result, when the input signal power is increased,
the amplifier gain drops. This behavior can be captured approximately by the fol-
lowing equation:

G = 1+ P sat

Pin
ln

Gmax

G
. (5.5)

Here, Gmax is the unsaturated gain, and G the saturated gain of the amplifier, P sat is
the amplifier’s internal saturation power, and Pin is the input signal power. Figure 5.3
plots the amplifier gain as a function of the input signal power for a typical EDFA.

Transmitter

Power amplifier Line amplifier Preamplifier

Receiver

Figure 5.2 Power amplifiers, line amplifiers, and preamplifiers.
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Figure 5.3 Gain saturation in an optical amplifier. Unsaturated gain Gmax = 30 dB and
saturation power P sat = 10 dBm.

For low input powers, the amplifier gain is at its unsaturated value, and at very high
input powers, G→ 1 and the output power Pout = Pin. The output saturation power
P sat

out is defined to be the output power at which the amplifier gain has dropped by 3
dB. Using (5.5) and the fact that Pout = GPin, and assuming that G 
 1, the output
saturation power is given by

P sat
out ≈ P sat ln 2.

The saturation power is a function of the pump power and other amplifier param-
eters. It is quite common to have output saturation powers on the order of 10 to
100 mW (10 to 20 dBm).

There is no fundamental problem in operating an EDFA in saturation, and power
amplifiers usually do operate in saturation. The only thing to keep in mind is that
the saturated gain will be less than the unsaturated gain.

5.5.2 Gain Equalization in EDFAs

The flatness of the EDFA passband becomes a critical issue in WDM systems with
cascaded amplifiers. The amplifier gain is not exactly the same at each wavelength.
Small variations in gain between channels in a stage can cause large variations in the
power difference between channels at the output of the chain. For example, if the
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gain variation between the worst channel and the best channel is 1 dB at each stage,
after 10 stages it will be 10 dB, and the worst channel will have a much poorer signal-
to-noise ratio than the best channel. This effect is shown in Figure 5.4(a). Building
amplifiers with flat gain spectra is therefore very important (see Section 3.4.3) and
is the best way to solve this problem. In practice, it is possible to design EDFAs to
be inherently flat in the 1545–1560 nm wavelength region, and this is where many
early WDM systems operate. However, systems with a larger number of channels
will need to use the 1530–1545 nm wavelength range, where the gain of the EDFA
is not flat.

The gain spectrum of L-band EDFAs is relatively flat over the L-band from about
1565 nm to about 1625 nm so that gain flattening over this band is not a significant
issue.

At the system level, a few approaches have been proposed to overcome this lack of
gain flatness. The first approach is to use preequalization, or preemphasis, as shown
in Figure 5.4(b). Based on the overall gain shape of the cascade, the transmitted power
per channel can be set such that the channels that see low gain are launched with
higher powers. The goal of preequalization is to ensure that all channels are received
with approximately the same signal-to-noise ratios at the receiver and fall within the
receiver’s dynamic range. However, the amount of equalization that can be done is
limited, and other techniques may be needed to provide further equalization. Also
this technique is difficult to implement in a network, as opposed to a point-to-point
link.

The second approach is to introduce equalization at each amplifier stage, as
shown in Figure 5.4(c). After each stage, the channel powers are equalized. This
equalization can be done in many ways. One way is to demultiplex the channels,
attenuate each channel differently, and then multiplex them back together. This
approach involves using a considerable amount of hardware. It adds wavelength
tolerance penalties due to the added muxes and demuxes (see Section 5.6.6). For these
reasons, such an approach is impractical. Another approach is to use a multichannel
filter, such as an acousto-optic tunable filter (AOTF). In an AOTF, each channel can
be attenuated differently by applying a set of RF signals with different frequencies.
Each RF signal controls the attenuation of a particular center wavelength, and by
controlling the RF powers of each signal, it is possible to equalize the channel powers.
However, an AOTF requires a large amount of RF drive power (on the order of 1 W)
to equalize more than a few (2–4) channels. Both approaches introduce several
decibels of additional loss and some power penalties due to crosstalk. The preferred
solution today is to add an optical filter within the amplifier with a carefully designed
passband to compensate for the gain spectrum of the amplifier so as to obtain a flat
spectrum at its output. Both dielectric thin-film filters (Section 3.3.6) and long-period
fiber gratings (Section 3.3.4) are good candidates for this purpose.
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(a)

(b)

Equalizer

(c)

Figure 5.4 Effect of unequal amplifier gains at different wavelengths. (a) A set of chan-
nels with equal powers at the input to a cascaded system of amplifiers will have vastly
different powers and signal-to-noise ratios at the output. (b) This effect can be reduced
by preequalizing the channel powers. (c) Another way to reduce this effect is to introduce
equalization at each amplifier stage. The equalization can be done using a filter inside the
amplifier as well.

5.5.3 Amplifier Cascades

Consider a system of total length L with amplifiers spaced l km apart (see Figure 5.5).
The loss between two stages is e−αl, where α is the fiber attenuation. Each amplifier
adds some spontaneous emission noise. Thus the optical signal-to-noise ratio, OSNR
(see Section 4.4.6 for the definition), gradually degrades along the chain.

The amplifier gain must be at least large enough to compensate for the loss
between amplifier stages; otherwise, the signal (and hence the OSNR) will degrade
rapidly with the number of stages. Consider what happens when we choose the
unsaturated amplifier gain to be larger than the loss between stages. For the first few
stages, the total input power (signal plus noise from the previous stages) to a stage
increases with the number of stages. Consequently, the amplifiers begin to saturate
and their gains drop. Farther along the chain, a spatial steady-state condition is
reached where the amplifier output power and gain remains the same from stage to
stage. These values, P out and G, respectively, can be computed by observing that

(P oute
−αl)G+ 2PnBo(G− 1) = P out. (5.6)



300 Transmission System Engineering

l l

L

Figure 5.5 A system with cascaded optical amplifiers.

Here P oute
−αl is the total input power to the amplifier stage, and the second term,

from (4.5), is the spontaneous emission noise added at this stage. Also from (5.5) we
must have

G = 1+ P sat

P oute−αl
ln

Gmax

G
. (5.7)

Equations (5.6) and (5.7) can be solved simultaneously to compute the values of P out
and G (Problem 5.11). Observe from (5.6) that Ge−αl < 1; that is, the steady-state
gain will be slightly smaller than the loss between stages, due to the added noise at
each stage. Thus in designing a cascade, we must try to choose the saturated gain G

to be as close to the loss between stages as possible.
Let us consider a simplified model of an amplifier cascade where we assume the

saturated gain G = eαl. With L/l amplifiers in the system, the total noise power at
the output, using (4.5), is

P tot
noise = 2PnBo(G− 1)L/l = 2PnBo(e

αl − 1)L/l. (5.8)

Given a desired OSNR, the launched power P must satisfy

P ≥ (OSNR)P tot
noise = (OSNR)2PnBo(e

αl − 1)L/l.

Figure 5.6 plots the required power P versus amplifier spacing l. If we don’t worry
about nonlinearities, we would try to maximize l subject to limitations on transmit
power and amplifier output power. The story changes in the presence of nonlineari-
ties, as we will see in Section 5.8.

5.5.4 Amplifier Spacing Penalty

In the preceding section, we saw that in an amplifier cascade the gain of each amplifier
must approximately compensate for the span loss (the loss between two amplifier
stages in the cascade). For a given span length, say, 80 km, this determines the gain of
the amplifiers in the cascade. For example, for a span length of l = 80 km and a fiber
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Figure 5.6 Power versus amplifier spacing. Required OSNR = 50, nsp = 2, Bo =
20 GHz, α = 0.22 dB/km, and the total link length L = 1000 km.

loss of α(dB) = 0.25 dB/km, we get an amplifier gain G = 20 dB. If the amplifier
gain is smaller, we must choose a smaller span length. In this section, we will study
the effect of the span length, or, equivalently, the amplifier gain G, on the noise at the
output of an amplifier cascade. This will enable us to then discuss quantitatively the
penalty reduction we can obtain by the use of distributed amplifiers, in particular,
distributed Raman amplifiers.

The ASE noise power at the output of a cascade of L/l amplifiers is given by
(5.8). Rewriting this in terms of G, using l = (ln G)/α, we get

P tot
noise = 2LPnBoα(G− 1)/ ln G. (5.9)

Ideally, the minimum noise power is achieved in an amplifier cascade with perfectly
distributed gain, that is, G = 1 (and N = ∞ but N ln G = αL). The “power penalty”
for using lumped amplifiers with gain G > 1, instead of an ideal distributed amplifier,
is given by the factor

PPlumped = G− 1
ln G

,

which is unity for G = 1. For G = 20 dB, PPlumped = 13.3 dB, while for G = 10 dB,
PPlumped = 5.9 dB. Thus, assuming α = 0.25 dB/km, the total ASE noise in an
amplifier cascade can be reduced by more than 7 dB by reducing the amplifier spacing
to 40 km from 80 km.
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The reduction in ASE must be balanced against the increased system cost re-
sulting from reducing the amplifier spacing, since twice the number of amplifier
locations (huts) will be required when the amplifier spacing is halved from 80 km to
40 km. However, distributed amplification can reduce the ASE significantly without
increasing the number of amplifier locations.

When a distributed amplifier is used, the amplification occurs continuously as
the signal propagates in the fiber. The primary example of such an amplifier is the
Raman amplifier we studied in Section 3.4.4.

Since system design engineers are accustomed to assuming lumped amplifiers, the
increased ASE due to lumped amplification compared to distributed amplification
is not viewed as a power penalty. Rather, the distributed amplifier is considered to
have an equivalent (lower) noise figure, relative to a lumped amplifier, with the same
total gain. For even moderate gains, this equivalent noise figure for the distributed
amplifier can be negative! In our example above, we saw that the power penalty for
using lumped amplifiers with gain G = 20 dB was 13.3 dB. A distributed amplifier
with an actual noise figure (2nsp) of 3.3 dB that provides the same total gain can also
be viewed as having an effective noise figure of 3.3− 13.3 = −10 dB. This is because
the accumulated ASE due to the use of such a distributed amplifier is the same as
that of a lumped amplifier with a noise figure of −10 dB.

5.5.5 Power Transients and Automatic Gain Control

Power transients are an important effect to consider in WDM links and networks
with a number of EDFAs in cascade. If some of the channels fail, the gain of each
amplifier will increase because of the reduction in input power to the amplifier. In
the worst case, W − 1 out of the W channels could fail, as shown in Figure 5.7. The
surviving channels will then see more gain and will then arrive at their receivers with
higher power. Similarly, the gain seen by existing channels will depend on what other
channels are present. Thus setting up or taking down a new channel may affect the
power levels in other channels. These factors drive the need for providing automatic
gain control (AGC) in the system to keep the output power per channel at each
amplifier constant, regardless of the input power.

With only one EDFA in the cascade, the increase in power due to channel outages
occurs rather slowly, in about 100 μs. However, with multiple amplifiers in the
chain, the increase in power is much more rapid, with a rise-time of a few to tens
of microseconds, and can result in temporary outages in the surviving channels. To
prevent this, the AGC system must work very fast, within a few microseconds, to
prevent these power transients from occurring.

Several types of AGC systems have been proposed. A simple AGC circuit mon-
itors the signal power into the amplifier and adjusts the pump power to vary the
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Figure 5.7 Illustrating the impact of failures in a network with optical amplifiers. In
this example, λ8, which is the only wavelength being added at the node, sees all the gain
of the amplifier upon failure of the link preceding the node.

gain if the input signal power changes. The response time of this method is limited
ultimately by the lifetime of the electrons from the third energy level to the second
energy level in erbium (see Section 3.4.3), which is around 1 μs.

Another interesting AGC circuit uses an optical feedback loop, as shown in
Figure 5.8. A portion of the amplifier output is tapped off, filtered by a bandpass
filter, and fed back into the amplifier. The gain of the loop is carefully controlled
by using an attenuator in the loop. This feedback loop causes the amplifier to lase
at the wavelength passed by the filter in the loop. This has the effect of clamping
the amplifier gain seen by other wavelengths to a fixed value, regardless of the input
signal power. Moreover, it is usually sufficient to have this loop in the first amplifier
in the cascade. This is because the output lasing power at the loop wavelength
becomes higher as the input signal power decreases, and acts as a compensating
signal to amplifiers farther down the cascade. Therefore, amplifiers farther down the
cascade do not see a significant variation in the input power. Because of the additional
couplers required for the AGC at the input and output, the amplifier noise figure is
slightly increased and its output power is reduced.

Yet another approach is to introduce an additional wavelength on the link to
act as a compensating wavelength. This wavelength is introduced at the beginning
of the link and tapped off at the end of the link. The power on this wavelength is
increased to compensate for any decrease in power seen at the input to the link. This
method requires an additional laser and is not as cost-effective as the other ones. It
can compensate for only a few channels.

5.5.6 Lasing Loops

In systems with amplifiers, if we are not careful, we may end up with closed fiber loops
that may lase. In our designs so far, we have tried to make the amplifier gain almost
exactly compensate for the span losses encountered. If for some reason a closed fiber
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Figure 5.8 Optical automatic gain control circuit for an optical amplifier.

loop is encountered with amplifiers in the loop, and the total gain in the loop is
comparable to the total loss in the loop, the loop may begin to lase. The effect here is
similar to the optical automatic gain control circuit that we discussed in Section 5.5.5,
but in this case lasing loops can cause power to be taken away from live channels and
distributed to the channel that is lasing—a highly undesirable attribute. Note that
this phenomenon may occur even if the loop is closed only for a single wavelength
and not closed for the other wavelengths. Lasing loops are particularly significant
problems in ring networks (which are inherently closed loops!) with optical add/drop
multiplexers. In this case, even the amplified spontaneous emission traveling around
the ring may be sufficient to cause the ring to lase.

We can deal with lasing loops in a few different ways. The preferred safe method
is to ensure that the amplifier gain is always slightly lower than the loss being
compensated for. The trade-off is that this would result in a small degradation of the
signal-to-noise ratio. Another possibility is to ensure that closed loops never occur
during operation of the system. For example, we could break a ring at a certain
point and terminate all the wavelengths. Note, however, that it may not be sufficient
to ensure loop freedom just under normal operation. We would not want a service
person making a wrong fiber connection in the field to take down the entire network.
Therefore we need to make sure that loops aren’t created even in the presence of
human errors—not an easy problem to solve.

5.6 Crosstalk

Crosstalk is the general term given to the effect of other signals on the desired sig-
nal. Almost every component in a WDM system introduces crosstalk of some form
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or another. The components include filters, wavelength multiplexers/demultiplexers,
switches, semiconductor optical amplifiers, and the fiber itself (by way of nonlin-
earities). Two forms of crosstalk arise in WDM systems: interchannel crosstalk and
intrachannel crosstalk. The first case is when the crosstalk signal is at a wave-
length sufficiently different from the desired signal’s wavelength that the difference
is larger than the receiver’s electrical bandwidth. This form of crosstalk is called
interchannel crosstalk. Interchannel crosstalk can also occur through more indirect
interactions, for example, if one channel affects the gain seen by another channel,
as with nonlinearities (Section 5.8). The second case is when the crosstalk signal is
at the same wavelength as that of the desired signal or sufficiently close to it that
the difference in wavelengths is within the receiver’s electrical bandwidth. This form
of crosstalk is called intrachannel crosstalk or, sometimes, coherent crosstalk. Intra-
channel crosstalk effects can be much more severe than interchannel crosstalk, as we
will see. In both cases, crosstalk results in a power penalty.

5.6.1 Intrachannel Crosstalk

Intrachannel crosstalk arises in transmission links due to reflections. This is usually
not a major problem in such links since these reflections can be controlled. However,
intrachannel crosstalk can be a major problem in networks. One source of this arises
from cascading a wavelength demultiplexer (demux) with a wavelength multiplexer
(mux), as shown in Figure 5.9(a). The demux ideally separates the incoming wave-
lengths to different output fibers. In reality, however, a portion of the signal at one
wavelength, say, λi , leaks into the adjacent channel λi+1 because of nonideal suppres-
sion within the demux. When the wavelengths are combined again into a single fiber
by the mux, a small portion of the λi that leaked into the λi+1 channel will also leak
back into the common fiber at the output. Although both signals contain the same
data, they are not in phase with each other, due to different delays they encounter.
This causes intrachannel crosstalk. Another source of this type of crosstalk arises
from optical switches, as shown in Figure 5.9(b), due to the nonideal isolation of
one switch port from the other. In this case, the signals contain different data.

The crosstalk penalty is highest when the state of polarization (SOP) of the
crosstalk signal is the same as the SOP of the desired signal. In practice, the SOPs
vary slowly with time in a system using standard single-mode fiber (nonpolarization
preserving). Similarly, the crosstalk penalty is highest when the crosstalk signal is
exactly out of phase with the desired signal. The phase relationship between the two
signals can vary over time due to several factors, including temperature variations.
We must, however, design the system to work even if the two SOPs happen to match
and the signals are exactly out of phase. Thus, for the calculations in this section, we
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Figure 5.9 Sources of intrachannel crosstalk. (a) A cascaded wavelength demultiplexer and a mul-
tiplexer, and (b) an optical switch.

will assume that the SOPs are the same and compute the penalty when the signals
are out of phase, which is the worst-case scenario.

The power penalty due to intrachannel crosstalk can be determined as follows.
Let P denote the average received signal power and εP the average received crosstalk
power from a single other crosstalk channel. Assume that the signal and crosstalk
are at the same optical wavelength. The electric field at the receiver can be written as

E(t) =
√

2Pds(t) cos[2πfct + φs(t)]+
√

2εPdx(t) cos[2πfct + φx(t)].

Here, ds(t) = {0, 1}, depending on whether a 0 or 1 is being sent in the desired
channel; dx(t) = {0, 1}, depending on whether a 0 or 1 is being sent in the crosstalk
channel; fc is the frequency of the optical carrier; and φs(t) and φx(t) are the ran-
dom phases of the signal and crosstalk channels, respectively. It is assumed that all
channels have an ideal extinction ratio of ∞.

The photodetector produces a current that is proportional to the received power
within its receiver bandwidth. This received power is given by

Pr = Pds(t)+ εPdx(t)+ 2
√

εPds(t)dx(t) cos[φs(t)− φx(t)]. (5.10)

The worst case above is when cos(.) = −1. We also have two cases to consider
depending on whether ds and dx are signals from the same source taking different
paths (e.g., Figure 5.9(a), or result from different sources (e.g., Figure 5.9(b) at the
same wavelength. In the rest of this discussion we will assume ds and dx are from
different sources.
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Assuming ε 	 1, we can neglect the ε term compared to the
√

ε term, when
ds(t) = 1 (though not when ds(t) = 0). Using this, we get the worst-case received
power during a 1 bit as

Pr(1) = P(1 − 2
√

ε)

and the worst-case received power during a 0 bit as

Pr(0) = εP.

First consider the case where the detection is limited by receiver thermal noise, which
is independent of the received power. Using (5.3), the power penalty for this case is

PPsig-indep = −10 log(1− 2
√

ε). (5.11)

In amplified systems, or in systems with APD receivers, the dominant noise compo-
nent is signal dependent (see Section 5.2). Then σ1 ∝

√
P , P ′0 = εP , σ ′0 ∝

√
εP ,

P ′1 = P(1−2
√

ε), and σ ′1 ∝
√

P ′1. Using (5.2), the power penalty in this case becomes

PPsig-dep = −10 log(1− 2
√

ε). (5.12)

This happens to be the same as (5.11) though the derivations are quite different—see
Problem 5.12. If there are N interfering channels, each with average received power
εiP , then ε in (5.11) and (5.12) is given by

√
ε =∑N

i=1
√

εi (see Problem 5.13).
Figure 5.10 shows the crosstalk penalties plotted against the crosstalk level for

intrachannel and interchannel crosstalk, which we will consider next. If we allow
a 1 dB penalty with signal-independent noise, then the intrachannel crosstalk level
should be 20 dB below the desired signal.

5.6.2 Interchannel Crosstalk

Interchannel crosstalk can arise from a variety of sources. A simple example is
an optical filter or demultiplexer that selects one channel and imperfectly rejects the
others, as shown in Figure 5.11(a). Another example is in an optical switch, switching
different wavelengths (shown in Figure 5.11(b)), where the crosstalk arises because
of imperfect isolation between the switch ports.

Estimating the power penalty due to interchannel crosstalk is fairly straightfor-
ward. If the wavelength spacing between the desired signal and the crosstalk signal
is large compared to the receiver bandwidth, (5.10) can be written as

Pr = Pds(t)+ εPdx(t).

Therefore, in the worst case, we have

Pr(1) = P,
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Figure 5.10 Intrachannel and interchannel crosstalk power penalties that are limited
by thermal noise are shown as a function of crosstalk level, 10 log ε.
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Figure 5.11 Sources of interchannel crosstalk. (a) An optical demultiplexer, and (b) an optical
switch with inputs at different wavelengths.

and

Pr(0) = εP.

Using (5.3), the power penalty for the thermal noise limited case is given by

PPsig-indep = −10 log(1− ε). (5.13)
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For systems dominated by signal-dependent noise, deriving the power penalty is as
follows. First, observe that the worst case is whenever a 0 is sent on the desired
channel then a 1 is sent on the crosstalk channel, and whenever a 1 is sent on the
desired channel then a 0 is sent on the crosstalk channel. Then P0 = 0, σ1 
 σ0,
P1 = P , σ1 ∝

√
P , P ′0 = εP , σ ′0 ∝

√
εP , P ′1 = P , and σ ′1 ∝

√
P . Then (5.2) becomes

PPsig-dep = −10 log(1−√ε). (5.14)

If there are N interfering channels, each with average received power εiP , then ε in
(5.13) and (5.14) is given by ε =∑N

i=1 εi (see Problem 5.13).
Consider an unamplified WDM system with a filter receiving the desired channel

and rejecting the others. The main crosstalk component usually comes from the two
adjacent channels, and the crosstalk from the other channels is usually negligible.
Assuming a 0.5 dB crosstalk penalty requirement, the adjacent channel suppression
must be greater than 12.6 dB.

5.6.3 Crosstalk in Networks

Crosstalk suppression becomes particularly important in networks, where a signal
propagates through many nodes and accumulates crosstalk from different elements
at each node. Examples of such elements are muxes/demuxes and switches. In order
to obtain an approximate idea of the crosstalk requirements, suppose that a signal
accumulates crosstalk from N sources, each with crosstalk level εs . This neglects
the fact that some interfering channels may have higher powers than the desired
channel. Networks are very likely to contain amplifiers and to be limited by signal-
spontaneous beat noise. Figure 5.12 plots the power penalties calculated from (5.12)
and (5.14). For example, if we have 10 interfering equal-power crosstalk elements,
each producing intrachannel crosstalk, then we must have a crosstalk suppression of
below 40 dB in each element, in order to have an overall penalty of less than 1 dB.

5.6.4 Bidirectional Systems

In a bidirectional transmission system, data is transmitted in both directions over a
single fiber, as shown in Figure 5.13. Additional crosstalk mechanisms arise in these
systems. Although the laws of physics do not prevent the same wavelength from
being used for both directions of transmissions, this is not a good idea in practice
because of reflections. A back-reflection from a point close to the transmitter at one
end, say, end A, will send a lot of power back into A’s receiver, creating a large
amount of crosstalk. In fact, the reflected power into A may be larger than the signal
power received from the other end B. Reflections within the end equipment can
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Figure 5.12 Signal-spontaneous noise limited intrachannel and interchannel crosstalk
penalties as a function of crosstalk level 10 log εs in a network. The parameter N denotes
the number of crosstalk elements, all assumed to produce crosstalk at equal powers.

A B
λi

λj

Figure 5.13 A bidirectional transmission system.

be carefully controlled, but it is more difficult to restrict reflections from the fiber
link itself. For this reason, bidirectional systems typically use different wavelengths
in different directions. The two directions can be separated at the ends either by
using an optical circulator or a WDM mux/demux, as in Figure 5.14. (If the same
wavelength must be used in both directions, one alternative that is sometimes used
in short-distance access networks is to use time division multiplexing where only one
end transmits at a time.)

If a WDM mux/demux is used to handle both directions of transmission, crosstalk
can also arise because a signal at a transmitted wavelength is reflected within the mux
into a port that is used to receive a signal from the other end, as in Figure 5.14(a).
The mux/demux used should have adequate crosstalk suppression to ensure that this
is not a problem. Similarly, if an optical circulator is used, crosstalk can arise because
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Figure 5.14 Separating the two directions in a bidirectional system: (a) using a wave-
length multiplexer/demultiplexer, and (b) using an optical circulator. Both methods can
introduce crosstalk, as shown by dashed lines in the figure.

of imperfect isolation in the circulator, as shown in Figure 5.14(b). We have to be
careful about these effects when designing bidirectional optical amplifiers as well.

5.6.5 Crosstalk Reduction

The simplest (and preferred) approach to crosstalk reduction is to improve the
crosstalk suppression at the device level; in other words, let the device designer
worry about it. The network designer calculates and specifies the crosstalk suppres-
sion required for each device based on the number of such cascaded devices in the
network and the allowable penalty due to crosstalk. However, there are a few ar-
chitectural approaches to reducing specific forms of crosstalk, particularly crosstalk
arising in optical switches.

The first approach is to use spatial dilation, which is illustrated in Figure 5.15.
Figure 5.15(a) shows a 2×2 optical switch with crosstalk ε. To improve the crosstalk
suppression, we can dilate the switch, as shown in Figure 5.15(b), by adding some
unused ports to it. Now the crosstalk is reduced to ε2. The drawbacks of dilation are
that it cannot be achieved without a significant increase in the number of switches.
Usually, the number of switches is doubled.

Another approach to reduce switch crosstalk in a WDM network is to use wave-
length dilation in the switches. This is particularly useful if a single switch is to handle
multiple wavelengths, such as the acousto-optic tunable filter of Section 3.3.9. To
reduce the interchannel crosstalk, you can use two switches instead of one, as shown
in Figure 5.16. The first switch handles the odd-numbered channels, and the second
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Figure 5.15 Using spatial dilation to reduce switch crosstalk. (a) A simple 2×2 switch.
(b) A dilated version of a 2× 2 switch.
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Figure 5.16 Using wavelength dilation to reduce switch crosstalk. MZI denotes a
Mach-Zehnder interferometer that separates the channels into two groups or combines
them.

the even-numbered channels. This effectively doubles the channel spacing as far as
crosstalk is concerned. Again the cost is that twice as many switches are required.
In the extreme case of wavelength dilation, we can have a separate switch for each
wavelength.

The previous methods have dealt mainly with switch crosstalk. A simple method
to reduce crosstalk in the mux/demux of Figure 5.9 is to add an additional filter
for each wavelength between the demux and mux stages. The extra filter stage pro-
duces an additional level of isolation and improves the overall crosstalk performance
dramatically, but of course adds to the cost of the unit.
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Figure 5.17 Bandwidth narrowing due to cascading of two filters.
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Figure 5.18 Wavelength misalignment between two mux/demuxes.

5.6.6 Cascaded Filters

Networks are likely to have several mux/demuxes or filters cascaded. When two
mux/demuxes or filters are cascaded, the overall passband is much smaller than
the passbands of the individual filters. Figure 5.17 shows this effect. The required
wavelength stability and accuracy in these systems therefore goes up with the number
of cascaded stages.

A related problem arises from the accuracy of wavelength registration in these
mux/demuxes. If the center wavelengths of two units in a cascade are not identical
(see Figure 5.18), the overall loss through the cascade for the desired signal will
be higher, and the crosstalk from the adjacent channels could also be higher. If we
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are concerned only with one channel, we could align the center wavelengths exactly
by temperature-tuning the individual mux/demuxes. However, other channels could
become even more misaligned in the process (tuning one channel tunes the others
as well). In addition, the lasers themselves will have a tolerance regarding their
center wavelength. In a cascaded system, wavelength inaccuracies cause additional
power penalties due to added signal loss and crosstalk (see Problems 5.19 and
5.20).

5.7 Dispersion

Dispersion is the name given to any effect wherein different components of the
transmitted signal travel at different velocities in the fiber, arriving at different times
at the receiver. A signal pulse launched into a fiber arrives smeared at the other end
as a consequence of this effect. This smearing causes intersymbol interference, which
in turn leads to power penalties. Dispersion is a cumulative effect: the longer the
link, the greater the amount of dispersion.

Several forms of dispersion arise in optical communication systems. The impor-
tant ones are intermodal dispersion, polarization-mode dispersion, and chromatic
dispersion. Of these, we have already studied intermodal dispersion and chromatic
dispersion in Chapter 2 and quantified the limitations that they impose on the link
length and/or bit rate.

Intermodal dispersion arises only in multimode fiber, where the different modes
travel with different velocities. Intermodal dispersion was discussed in Section 2.2.
The link length in a multimode system is usually limited by intermodal dispersion
and not by the loss. Clearly, intermodal dispersion is not a problem with single-mode
fiber.

Polarization-mode dispersion (PMD) arises because the fiber core is not perfectly
circular, particularly in older installations. Thus different polarizations of the signal
travel with different group velocities. PMD is proving to be a serious impediment in
very high-speed systems operating at 10 Gb/s bit rates and beyond. We discuss PMD
in Section 5.7.4.

The main form of dispersion that we are concerned with is chromatic dispersion,
which has a profound impact on the design of single-mode transmission systems (so
much so that we often use the term dispersion to mean “chromatic dispersion”).
Chromatic dispersion arises because different frequency components of a pulse (and
also signals at different wavelengths) travel with different group velocities in the fiber
and thus arrive at different times at the other end. We discussed the origin of chro-
matic dispersion in Section 2.4. Chromatic dispersion is a characteristic of the fiber,
and different fibers have different chromatic dispersion profiles. We discussed the
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chromatic dispersion profiles of many different fibers in Section 2.5.9. As with other
kinds of dispersion, the accumulated chromatic dispersion increases with the link
length. Chromatic dispersion and the system limitations imposed by it are discussed
in detail in the next two sections.

5.7.1 Chromatic Dispersion Limits: NRZ Modulation

In this section, we discuss the chromatic dispersion penalty for NRZ modulated
signals. We will consider RZ modulated signals in Section 5.7.2.

The transmission limitations imposed by chromatic dispersion can be modeled
by assuming that the pulse spreading due to chromatic dispersion should be less than
a fraction ε of the bit period, for a given chromatic dispersion penalty. This fraction
has been specified by both ITU (G.957) and Telcordia (GR-253). For a penalty of
1 dB, ε = 0.306, and for a penalty of 2 dB, ε = 0.491. If D is the fiber chromatic
dispersion at the operating wavelength, B the bit rate, �λ the spectral width of the
transmitted signal, and L the length of the link, this limitation can be expressed as

|D|LB(�λ) < ε. (5.15)

D is usually specified in units of ps/nm-km. Here, the ps refers to the time spread
of the pulse, the nm is the spectral width of the pulse, and km corresponds to
the link length. For standard single-mode fiber, the typical value of D in the C-
band is 17 ps/nm-km. For this value of D, λ = 1.55 μm, and ε = 0.491 (2 dB
penalty), (5.15) yields the condition BL < 29 (Gb/s)-km, assuming �λ = 1 nm. This
limit is plotted in Figure 5.19. Thus even at a bit rate of 1 Gb/s, the link length is
limited to < 29 km, which is a severe limitation. This illustrates the importance of
(1) using nearly monochromatic sources, for example, DFB lasers, for high-speed
optical communication systems, and (2) devising methods of overcoming chromatic
dispersion.

Narrow Source Spectral Width

We now consider the case of using sources with narrow spectral widths. Even for
such a source, the spectral width of the transmitted signal depends on whether it is
directly modulated or whether an external modulator is used. SLM DFB lasers have
unmodulated spectral widths of typically less than 50 MHz. Directly modulating a
DFB laser would ideally cause its spectral width to correspond to the modulation
bandwidth (for example, about 2.5 GHz for a 2.5 Gb/s on-off modulated signal). In
practice, however, the spectral width can increase owing to chirp. As the modulation
current (and thus optical power) varies, it is accompanied by changes in carrier
density within the laser cavity, which, in turn, changes the refractive index of the
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Figure 5.19 Chromatic dispersion limits on the distance and bit rate for transmission
over standard single-mode fiber with a chromatic dispersion value of D = 17 ps/nm-km. A
chromatic dispersion penalty of 2 dB has been assumed in the NRZ case; this implies that
the rms width of the dispersion-broadened pulse must lie within a fraction 0.491 of the
bit period. For sources with narrow spectral width, the spectral width of the modulated
signal in GHz is assumed to be equal to the bit rate in Gb/s. For RZ transmission, the
rms output pulse width is assumed to be less than the bit interval.

cavity, causing frequency variations in its output. The magnitude of the effect depends
on the variation in current (or power), but it is not uncommon to observe spectral
widths over 10 GHz as a consequence of chirp. Chirp can be reduced by decreasing
the extinction ratio. The spectral width can also be increased because of back-
reflections from connectors, splices, and other elements in the optical path. To prevent
this effect, high-speed lasers are typically packaged with built-in isolators.

For externally modulated sources, the spectral width is proportional to the bit
rate. Assuming the spectral width is approximately equal to the bit rate, a 10 Gb/s
externally modulated signal has a spectral width of 10 GHz, which is a practical
number today. At 1.55 μm, this corresponds to a spectral width of 0.083 nm, using
the relation �λ = (c/f 2)|�f | = (λ2/c)|�f |. Substituting �λ = (λ2/c)B in (5.15),
we get

|D|LB2λ2/c < ε,

or

Bλ
√
|D|L/c <

√
ε. (5.16)
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For D = 17 ps/nm-km, λ = 1.55 μm, and ε = 0.491 (2 dB penalty), (5.16) yields the
condition B2L < 3607 (Gb/s)2-km. This limit is also plotted in Figure 5.19.

Note that the chromatic dispersion limitations are much more relaxed for narrow
spectral width sources. This explains the widepsread use of narrow spectral width
SLM lasers for high-bit-rate communication. In addition, external modulators are
used for long-distance transmission (more than a few hundred kilometers) at 2.5 Gb/s
and in most 10 Gb/s systems.

5.7.2 Chromatic Dispersion Limits: RZ Modulation

In this section, we derive the system limitations imposed by chromatic dispersion for
unchirped Gaussian pulses, which are used in RZ modulated systems. The results
can be extended in a straightforward manner to chirped Gaussian pulses.

Consider a fiber of length L. From (2.13), the width of the output pulse is given
by

TL =
√

T 2
0 +

(
β2L

T0

)2
.

This is the half-width of the pulse at the 1/e-intensity point. A different, and more
commonly used, measure of the width of a pulse is its root-mean square (rms) width
T rms. For a pulse, A(t), this is defined as

T rms =
√√√√∫∞

−∞ t2|A(t)|2 dt∫∞
−∞ |A(t)|2 dt

. (5.17)

We leave it as an exercise (Problem 2.10) to show that for Gaussian pulses whose
half-width at the 1/e-intensity point is T0,

T rms = T0/
√

2.

If we are communicating at a bit rate of B bits/s, the bit period is 1/B s. We
will assume that satisfactory communication is possible only if the width of the
pulse as measured by its rms width T rms is less than the bit period. (Satisfactory
communication may be possible even if the output pulse width is larger than the bit
period, with an associated power penalty, as in the case of NRZ systems.) Therefore,
T rms

L = TL/
√

2 < 1/B or

BTL <
√

2.

Through this condition, chromatic dispersion sets a limit on the length of the com-
munication link we can use at bit rate B without dispersion compensation. TL is
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a function of T0 and can be minimized by choosing T0 suitably. We leave it as an
exercise (Problem 5.22) to show that the optimum choice of T0 is

T
opt
0 =

√
β2L,

and for this choice of T0, the optimum value of TL is

T
opt
L =

√
2|β2|L.

The physical reason there is an optimum pulse width is as follows. If the pulse
is made too narrow in time, it will have a wide spectral width and hence greater
dispersion and more spreading. However, if the pulse occupies a large fraction of
the bit interval, it has less room to spread. The optimum pulse width arises from a
trade-off between these two factors. For this optimum choice of T0, the condition
BTL <

√
2 becomes

B
√

2|β2|L <
√

2. (5.18)

Usually, the value of β2 is specified indirectly through the dispersion parameter D,
which is related to β2 by the equation

D = −2πc

λ2 β2. (5.19)

Thus (5.18) can be written as

Bλ

√
|D|L
2πc

< 1. (5.20)

For D = 17 ps/nm-km, (5.20) yields the condition B2L < 46152 (Gb/s)2-km. This
limit is plotted in Figure 5.19. Note that this limit is higher than the limit for NRZ
modulation when the spectral width is determined by the modulation bandwidth
(for example, for external modulation of an SLM laser). However, for both RZ and
NRZ transmission, the bit rate B scales as 1/

√
L.

Note that we derived the dispersion limits for unchirped pulses. The situation is
much less favorable in the presence of frequency chirp. A typical value of the chirp
parameter κ of a directly modulated semiconductor laser at 1.55 μm is −6, and β2 is
also negative so that monotone pulse broadening occurs. We leave it as an exercise
to the reader (Problem 5.31) to calculate the chromatic dispersion limit with this
value of κ and compare it to the dispersion limit for an unchirped pulse at a bit rate
of 2.5 Gb/s.

If the chirp has the right sign however, it can interact with dispersion to cause
pulse compression, as we saw in Section 2.4. Chirped RZ pulses can be used to take
advantage of this effect.
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Large Source Spectral Width

We derived (2.13) for the width of the output pulse by assuming a nearly monochro-
matic source, such as a DFB laser. In practice, this assumption is not satisfied for
many sources such as MLM Fabry-Perot lasers. This formula must be modified to
account for the finite spectral width of the optical source. Assume that the frequency
spectrum of the source is given by

F(ω) = B0W0e
−(ω−ω0)2/2W 2

0 .

Thus the spectrum of the source has a Gaussian profile around the center frequency
ω0, and W0 is a measure of the frequency spread or bandwidth of the pulse. The
rms spectral width W rms, which is defined in a fashion similar to that of the rms
temporal width in (5.17), is given by W rms = W0/

√
2. As in the case of Gaussian

pulses, the assumption of a Gaussian profile is chiefly for mathematical convenience;
however, the results derived hold qualitatively for other source spectral profiles.
From this spectrum, in the limit as W0 → 0, we obtain a monochromatic source at
frequency ω0. Equation (2.13) for the width of the output pulse is obtained under
the assumption W0 << 1/T0. If this assumption does not hold, it must be modified
to read

Tz

T0
=

√√√√(
1+ κβ2z

T 2
0

)2

+ (1+W 2
0 T 2

0 )

(
β2z

T 2
0

)2

. (5.21)

From this formula, we can derive the limitation imposed by chromatic dispersion on
the bit rate B and the link length L. We have already examined this limitation for
the case W0 	 1/T0. We now consider the case W0 
 1/T0 and again neglect chirp.

Consider a fiber of length L. With these assumptions, from (5.21), the width of
the output pulse is given by

TL =
√

T 2
0 + (W0β2L)2.

In this case, since the spectral width of the pulse is dominated by the spectral width
of the source and not by the temporal width of the pulse (W0 
 1/T0), we can make
T0 much smaller than the bit period 1/B provided the condition W0 
 1/T0 is still
satisfied. For such short input pulses, we can approximate TL by

TL = W0|β2|L.

Therefore, the condition BTL <
√

2 translates to

BLβ2W
rms < 1.
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The key difference from the case of small source spectral width is that the bit
rate B scales linearly with L. This is similar to the case of NRZ modulation using a
source with a large spectral width, independent of the bit rate. As in the case of NRZ
modulation, chromatic dispersion is much more of a problem when using sources
with nonnegligible spectral widths.

In fact, the two conditions (for NRZ and RZ) are nearly the same. To see this,
express the spectral width of the source in wavelength units rather than in angular
frequency units. A spectral width of W in radial frequency units corresponds to a
spectral width in wavelength units of (�λ) = −2πcW/λ2. Using this and the relation
D = −2πcβ2/λ

2, the chromatic dispersion limit BLβ2W
rms < 1 becomes

BL|D|(�λ) < 1 (5.22)

which is the same as (5.15) with ε = 1.
As we have seen, the parameter β2 is the key to group velocity or chromatic

dispersion. For a given pulse, the magnitude of β2 governs the extent of pulse broad-
ening due to chromatic dispersion and determines the system limitations. β2 can be
minimized by appropriate design of the fiber as discussed in Section 2.4.2.

5.7.3 Dispersion Compensation

Dispersion management is a very important part of designing WDM transmission
systems, since dispersion affects the penalties due to various types of fiber nonlinear-
ities, as we will see in Section 5.8. We can use several techniques to reduce the impact
of chromatic dispersion: (1) external modulation in conjunction with DFB lasers, (2)
fiber with small chromatic dispersion, and (3) chromatic dispersion compensation.
The first alternative is commonly used today in high-speed systems. New builds over
the past few years have used nonzero-dispersion-shifted fibers (NZ-DSF) that have
a small chromatic dispersion value in the C-band. Dispersion compensation can be
employed when external modulation alone is not sufficient to reduce the chromatic
dispersion penalty on the installed fiber type. We now discuss this option.

Along with the development of different fiber types, researchers have also
developed various methods of compensating for chromatic dispersion. The two
most popular methods use dispersion compensating fibers and chirped fiber Bragg
gratings.

Dispersion Compensating Fibers

Special chromatic dispersion compensating fibers (DCFs) have been developed that
provide negative chromatic dispersion in the 1550 nm wavelength range. For ex-
ample, DCFs that can provide total chromatic dispersion of between −340 and
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Figure 5.20 The chromatic dispersion map in a WDM link employing chromatic dis-
persion compensating fiber. (a) The (local) chromatic dispersion at each point along the
fiber. (b) The accumulated chromatic dispersion from the beginning of the link up to each
point along the fiber.

−1360 ps/nm are commercially available. An 80 km length of standard single-
mode fiber has an accumulated or total chromatic dispersion, at 17 ps/nm-km, of
17 × 80 = 1360 ps/nm. Thus a DCF with −1360 ps/nm can compensate for this
accumulated chromatic dispersion, to yield a net zero chromatic dispersion. Between
amplifier spans is standard single-mode fiber, but at each amplifier location, disper-
sion compensating fiber having a negative chromatic dispersion is introduced. The
chromatic dispersion map—the variation of accumulated chromatic dispersion with
distance—of such a system is shown in Figure 5.20. Even though the chromatic dis-
persion of the fibers used is high, because of the alternating signs of the chromatic
dispersion, this approach leads to a small value of the accumulated chromatic dis-
persion so that we need not worry about penalties induced by chromatic dispersion.

One disadvantage of this approach is the added loss introduced in the system by
the DCF. For instance the −1360 ps/nm DCF has a loss of 9 dB. Thus a commonly
used measure for evaluating a DCF is the figure of merit (FOM), which is defined
as the ratio of the absolute amount of chromatic dispersion per unit wavelength to
the loss introduced by the DCF. The FOM is measured in ps/nm-dB, and the higher
the FOM, the more efficient the fiber is at compensating for chromatic dispersion.
The FOM for the DCF in the preceding example is thus 150 ps/nm-dB. DCF with a
chromatic dispersion of −100 ps/nm-km and a loss of 0.5 dB/km is now available.
The FOM of this fiber is 200. There is intensive research under way to develop DCFs
with higher FOMs.

The FOM as defined here does not fully characterize the efficiency of the DCF
because it does not take into account the added nonlinearities introduced by the DCF
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due to its smaller effective area. A modified FOM that does take this into account
has been proposed in [FTCV96].

The preceding discussion has focused on standard single-mode fiber that has
a large chromatic dispersion in the C-band, about 17 ps/nm-km. In systems that
use NZ-DSF, the chromatic dispersion accumulates much more slowly, since this
fiber has a chromatic dispersion in the C-band of only 2–4 ps/nm-km. Thus these
systems need a much smaller amount of chromatic dispersion compensating fiber.
In many newly designed submarine systems, NZ-DSF with a small but negative
chromatic dispersion is used. The use of negative chromatic dispersion fibers permits
higher transmit powers to be used since modulation instability is not an issue (see
Section 2.5.9). In this case, the accumulated chromatic dispersion is negative and
can be compensated with standard single-mode fiber. This avoids the use of special
chromatic dispersion compensating fibers, with their higher losses and susceptibility
to nonlinear effects. The use of standard single-mode fiber for chromatic dispersion
compensation also reduces the cabling loss due to bending. Terrestrial systems do not
adopt this approach since the use of negative chromatic dispersion fiber precludes
the system from being upgraded to use the L-band since the chromatic dispersion
zero for these fibers lies in the L-band. This is not an issue for submarine systems
since these systems are not upgradable once they have been deployed.

Chirped Fiber Bragg Gratings

The fiber Bragg grating that we studied in Section 3.3.4 is a versatile device that
can be used to compensate for chromatic dispersion. Such a device is shown in
Figure 5.21. The grating itself is linearly chirped in that the period of the grating
varies linearly with position, as shown in Figure 5.21. This makes the grating reflect
different wavelengths (or frequencies) at different points along its length. Effectively,
a chirped Bragg grating introduces different delays at different frequencies.

In a regular fiber, chromatic dispersion introduces larger delays for the lower-
frequency components in a pulse. To compensate for this effect, we can design
chirped gratings that do exactly the opposite—namely, introduce larger delays for
the higher-frequency components, in other words, compress the pulses. The delay as
a function of frequency is plotted in Figure 5.21 for a sample grating.

Ideally, we want a grating that introduces a large amount of chromatic dispersion
over a wide bandwidth so that it can compensate for the fiber chromatic dispersion
over a large length as well as a wide range of wavelengths. In practice, the total length
of the grating is limited by the size of the phase masks available. Until recently, this
length used to be a few tens of centimeters. With a 10-cm-long grating, the maximum
delay that can be introduced is 1 ns. This delay corresponds to the product of the
chromatic dispersion introduced by the grating and the bandwidth over which it



5.7 Dispersion 323

1 2

3

Fiber Bragg grating

Lower frequencies

Higher frequencies

Input

Output

R
ef

ra
ct

iv
e

in
d
ex

Position

D
el

ay

Frequency

Figure 5.21 Chirped fiber Bragg grating for chromatic dispersion compensation.
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Figure 5.22 Chirped fiber Bragg gratings for compensating three wavelengths in a
WDM system.

is introduced. With such a grating, we introduce large chromatic dispersion over
a small bandwidth, for example, 1000 ps/nm over a 1 nm bandwidth, or small
chromatic dispersion over a wide bandwidth, for example, 100 ps/nm over a 10 nm
bandwidth. Note that 100 km of standard single-mode fiber causes a total chromatic
dispersion of 1700 ps/nm. When such chirped gratings are used to compensate for
a few hundred kilometers of fiber chromatic dispersion, they must be very narrow
band; in other words, we would need to use a different grating for each wavelength,
as shown in Figure 5.22.

Chirped gratings are therefore ideally suited to compensate for individual wave-
lengths rather than multiple wavelengths. In contrast, DCF is better suited to compen-
sate over a wide range of wavelengths. However, compared to chirped gratings, DCF
introduces higher loss and additional penalties because of increased nonlinearities.
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Recently, very long gratings, about 2 m in length, have been demonstrated
[Bre01]. These gratings have been shown to compensate for the accumulated chro-
matic dispersion, over the entire C-band, after transmission over 40 km of standard
single-mode fiber. Such a grating may prove to be a strong competitor to DCF.

Dispersion Slope Compensation

One problem with WDM systems is that since the chromatic dispersion varies for
each channel (due to the nonzero slope of the chromatic dispersion profile), it may
not be possible to compensate for the entire system using a common chromatic
dispersion compensating fiber. A typical spread of the total chromatic dispersion,
before and after compensation with DCF, across several WDM channels, is shown
in Figure 5.23. This spread can be compensated by another stage of chromatic
dispersion slope compensation where an appropriate length of fiber whose chro-
matic dispersion slope is opposite to that of the residual chromatic dispersion is
used.

As we remarked in Section 2.5.9, it is difficult to fabricate positive chromatic
dispersion fiber with negative slope (today), so that this technique can only be used
for systems employing positive dispersion, positive slope fiber for transmission (and
negative dispersion, negative slope fiber for dispersion, and dispersion slope, com-
pensation). Thus, in submarine systems that use negative dispersion, positive slope
fiber, dispersion slope compensation using dispersion compensating fiber is not possi-
ble. Moreover, if such systems employ large effective area fiber to mitigate nonlinear
effects, the spread in chromatic dispersion slopes is enhanced, since large effective
area fibers have larger dispersion slopes. One way to minimize the chromatic dis-
persion slope spread is to use a hybrid fiber design. In such a design, each span of,
say, 50 km uses two kinds of fiber: large effective area fiber (with a consequent large
dispersion slope) in the first half of the span and a reduced slope fiber in the second
half. Since nonlinear effects are significant only at the high power levels that occur
in the first half of the span, the use of large effective area fiber in this half mitigates
these effects, as effectively as using large effective area fiber for the whole span. The
use of reduced slope fiber in the second half reduces (but does not eliminate) the
overall spread in dispersion slope across channels (compared to using large effective
area fiber in the whole span).

A second method of dispersion slope compensation is to provide the appropriate
chromatic dispersion compensation for each channel separately at the receiver after
the channels are demultiplexed. Although individual channels can be compensated
using appropriately different lengths of DCF, chirped fiber gratings (see Section 5.7.3)
are commonly used to compensate individual channels since they are much more
compact.
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Figure 5.23 Variation of total chromatic dispersion in a WDM system across different
channels, after chromatic dispersion compensation with a DCF.

A third method of overcoming the dispersion slope problem is termed mid-span
spectral inversion (MSSI). Roughly speaking, in this method, the spectrum of the
pulse is inverted in the middle of the span; that is, the shorter and longer wavelengths
of the pulse are interchanged. Recall that a pulse that is nominally at some frequency
has a finite (nonzero) spectral width. Here we are referring to the different spectral
components, or wavelengths, of a single pulse, and not the different wavelength
channels in the system. This process is called phase conjugation, and it reverses the
sign of the chromatic dispersion in the two halves of the span. Even if the chromatic
dispersion values of different channels are equal, the chromatic dispersion in the two
halves of the span cancels for each channel. Currently, the two other techniques,
namely, chromatic dispersion compensating fiber and chirped fiber gratings, appear
to be more suitable for commercial deployment.

5.7.4 Polarization-Mode Dispersion (PMD)

The origin of PMD lies in the fact that different polarizations travel with different
group velocities because of the ellipticity of the fiber core; we discussed this in
Section 2.3.3. Moreover, the distribution of signal energy over the different state of
polarizations (SOPs) changes slowly with time, for example, because of changes in
the ambient temperature. This causes the PMD penalty to vary with time as well. In
addition to the fiber itself, PMD can arise from individual components used in the
network.

The time-averaged differential time delay between the two orthogonal SOPs on
a link is known to obey the relation [KK97a, Chapter 6]

〈�τ 〉 = DPMD
√

L,
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where 〈�τ 〉 is called the differential group delay (DGD), L is the link length, and
DPMD is the fiber PMD parameter, measured in ps/

√
km. The PMD for typical fiber

lies between 0.5 and 2 ps/
√

km. However, carefully constructed new links can have
PMD as low as 0.1 ps/

√
km.

In reality, the SOPs vary slowly with time, and the actual DGD �τ is a random
variable. It is commonly assumed to have a Maxwellian probability density function
(see Appendix H). This means that the square of the DGD is modeled by a more
familiar distribution—the exponential distribution. The larger the DGD, the larger
is the power penalty due to PMD. Thus, the power penalty due to PMD is also time
varying, and it turns out that it is proportional to �τ 2 and thus obeys an exponential
distribution (see Problem 5.23). If the power penalty due to PMD is large, it is termed
a PMD outage and the link has effectively failed. For a DGD of 0.3T , where T is
the bit duration, the power penalty is approximately 0.5 dB for a receiver limited
by thermal noise and 1 dB for a receiver with signal-dependent noise (ITU standard
G.691).

Using the Maxwellian distribution, the probability that the actual delay will be
greater than three times the average delay is about 4×10−5 (see Appendix H). Given
our earlier reasoning, this means that in order to restrict the PMD outage probability
(PMD≥ 1 dB) to 4×10−5, we must have the average DGD to be less than 0.1T ; that is,

〈�τ 〉 = DPMD
√

L < 0.1T . (5.23)

This limit is plotted in Figure 5.24. Observe that for a bad fiber with PMD of
2 ps/

√
km, the limit is only 25 km. This is an extreme case, but it points out that

PMD can impose a significant limitation.
Note that we have not said anything about the distribution of the length of time

for which there is a PMD outage. In the above example, the DGD may exceed three
times the average delay, and we may have one PMD outage with an average duration
of one day once every 70 years, or one with an average duration of one minute every
17 days. This depends on the fiber cable in question, and typical outages last for a
few minutes. Thus an outage probability of 4 × 10−5 can also be interpreted as a
cumulative outage of about 20 minutes per year.

The limitations due to intermodal dispersion, chromatic dispersion, and PMD
are compared in Figure 5.25.

PMD gives rise to intersymbol interference (ISI) due to pulse spreading, just as
all other forms of dispersion. The traditional (electronic) technique for overcoming
ISI in digital systems is equalization, discussed in Section 4.4.9. Equalization to
compensate for PMD can be carried out in the electronic domain and is discussed in
[WK92, YS06]. However, electronic equalization becomes more difficult at very high
bit rates of 40 Gb/s and beyond. At such high bit rates, optical PMD compensation
must be used.
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Figure 5.24 Limitations on the simultaneously achievable bit rates and distances im-
posed by PMD.

Figure 5.25 Limitations on the simultaneously achievable bit rates and distances im-
posed by intermodal dispersion, chromatic dispersion with a source spectral width of
1 nm, chromatic dispersion with spectral width proportional to the modulation band-
width, and PMD with DPMD = 0.5. NRZ modulation transmission over standard single-
mode fiber with a chromatic dispersion value of 17 ps/nm-km is assumed.
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To understand how PMD can be compensated optically, recall that PMD arises
due to the fiber birefringence and is illustrated in Figure 2.7. The transmitted pulse
consists of a “fast” and a “slow” polarization component. The principle of PMD
compensation is to split the received signal into its fast and slow polarization compo-
nents and to delay the fast component so that the DGD between the two components
is compensated. Since the DGD varies in time, the delay that must be introduced in
the fast component to compensate for PMD must be estimated in real time from the
properties of the link.

The PMD effect we have discussed so far must strictly be called first-order
polarization-mode dispersion. First-order PMD is a consequence of the fact that
the two orthogonal polarization modes in optical fiber travel at slightly different
speeds, which leads to a differential time delay between these two modes. However,
this differential time delay itself is frequency dependent and varies over the band-
width of the transmitted pulse. This effect is called second-order PMD. Second-order
PMD is an effect that is similar to chromatic dispersion and thus can lead to pulse
spreading.

PMD also depends on whether RZ or NRZ modulation is used; the discussion
so far pertains to NRZ modulation. For RZ modulation, the use of short pulses
enables more PMD to be tolerated since the output pulse has more room to spread—
similar to the case of chromatic dispersion. However, second-order PMD depends
on the spectral width of the pulse; narrower pulses have larger spectral widths. This
is similar to the case of chromatic dispersion (Section 5.7.2). Again, as in the case
of chromatic dispersion, there is an optimum input pulse width for RZ modulation
that minimizes the output pulse width [SKA00, SKA01].

In addition to PMD, some other polarization-dependent effects influence system
performance. One of these effects arises from the fact that many components have a
polarization-dependent loss (PDL); that is, the loss through the component depends
on the state of polarization. These losses accumulate in a system with many com-
ponents in the transmission path. Again, since the state of polarization fluctuates
with time, the signal-to-noise ratio at the end of the path will also fluctuate with
time, and careful attention needs to be paid to maintain the total PDL on the path
to within acceptable limits. An example is a simple angled-facet connector used in
some systems to reduce reflections. This connector can have a PDL of about 0.1 dB,
but hundreds of such connectors can be present in the transmission path.

5.8 Fiber Nonlinearities

As long as the optical power within an optical fiber is small, the fiber can be treated
as a linear medium; that is, the loss and refractive index of the fiber are independent
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of the signal power. However, when power levels get fairly high in the system, we
have to worry about the impact of nonlinear effects, which arise because, in reality,
both the loss (gain) and refractive index depend on the optical power in the fiber.
Nonlinearities can place significant limitations on high-speed systems as well as
WDM systems.

As discussed in Chapter 2, nonlinearities can be classified into two categories. The
first occurs because of scattering effects in the fiber medium due to the interaction
of light waves with phonons (molecular vibrations) in the silica medium. The two
main effects in this category are stimulated Brillouin scattering (SBS) and stimulated
Raman scattering (SRS). The second set of effects occurs because of the dependence
of refractive index on the optical power. This category includes four-wave mixing
(FWM), self-phase modulation (SPM), and cross-phase modulation (CPM). In Chap-
ter 2, we looked at the origins of all these effects. Here we will examine the limitations
that all these nonlinearities place on system designers.

Except for SPM and CPM, all these effects provide gains to some channels at the
expense of depleting power from other channels. SPM and CPM, on the other hand,
affect only the phase of signals and can cause spectral broadening, which in turn,
leads to increased chromatic dispersion penalties.

5.8.1 Effective Length in Amplified Systems

We discussed the notion of the effective length of a fiber span in Section 2.5.1.
In systems with optical amplifiers, the signal gets amplified at each amplifier stage
without resetting the effects due to nonlinearities from the previous span. Thus the
effective length in such a system is the sum of the effective lengths of each span.
In a link of length L with amplifiers spaced l km apart, the effective length is
approximately given by

Le =
1− e−αl

α

L

l
. (5.24)

Figure 5.26 shows the effective length plotted against the actual length of the trans-
mission link for unamplified and amplified systems. The figure indicates that, in
order to reduce the effective length, it is better to have fewer amplifiers spaced fur-
ther apart. However, what matters in terms of the system effects of nonlinearities
is not just the effective length; it is the product of the launched power P and the
effective length Le. Figure 5.6 showed how P varies with the amplifier spacing l.
Now we are interested in finding out how PLe grows with the amplifier spacing
l. This is shown in Figure 5.27. The figure shows that the effect of nonlinearities
can be reduced by reducing the amplifier spacing. Although this may make it easier
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Figure 5.26 Effective transmission length as a function of link length, l.
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Figure 5.27 Relative value of PLe versus amplifier spacing. The ordinate is the value
relative to an amplifier spacing of 1 km. α = 0.22 dB/km.

to design the amplifiers (they need lower gain), we will also need more amplifiers,
resulting in an increase in system cost.

The effect of a scattering nonlinearity depends on PLe and thus increases with
an increase in the input power and the link length. The longer the link, the greater
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is the amount of power that is coupled out from the signal (pump) into the Stokes
wave. For a given link length, an approximate measure of the power level at which
the effect of a nonlinearity starts becoming significant is the threshold power. For
a given fiber length, the threshold power of a scattering nonlinearity is defined as
the incident optical power per channel into the fiber at which the pump and Stokes
powers at the fiber output are equal. In amplified systems, the threshold power is
reduced because of the increase in the effective length. This makes amplified systems
more susceptible to impairments due to nonlinearities.

5.8.2 Stimulated Brillouin Scattering

The calculation of the threshold power for SBS Pth is quite involved, and we simply
state the following approximation for it from [Smi72]:

Pth ≈ 21bAe

gBLe

.

Here, Ae and Le are the effective area and length of the fiber, respectively (see
Section 2.5.1), gB ≈ 4 × 10−11 m/W is called the Brillouin gain coefficient, and the
value of b lies between 1 and 2 depending on the relative polarizations of the pump
and Stokes waves. Assuming the worst-case value of b = 1, Ae = 50 μm2, and
Le = 20 km, we get Pth = 1.3 mW. Since this is a low value, some care must be taken
in the design of optical communication systems to reduce the SBS penalty.

The preceding expression assumes that the pump signal has a very narrow spectral
width and lies within the narrow 20 MHz gain bandwidth of SBS. The threshold
power is considerably increased if the signal has a broad spectral width, and thus
much of the pump power lies outside the 20 MHz gain bandwidth of SBS. An
approximate expression that incorporates this effect is given by

Pth ≈ 21bAe

gBLe

(
1+ �fsource

�fB

)
,

where �fsource is the spectral width of the source. With �fsource = 200 MHz, and
still assuming b = 1, the SBS threshold increases to Pth = 14.4 mW.

The SBS penalty can be reduced in several ways:

1. Keep the power per channel to much below the SBS threshold. The trade-off is
that in a long-haul system, we may have to reduce the amplifier spacing.

2. Since the gain bandwidth of SBS is very small, its effect can be decreased by
increasing the spectral width of the source. This can be done by directly modu-
lating the laser, which causes the spectral width to increase because of chirp. This
may cause a significant chromatic dispersion penalty. The chromatic dispersion
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penalty can, however, be reduced by suitable chromatic dispersion management,
as we will see later. Another approach is to dither the laser slightly in frequency,
say, at 200 MHz, which does not cause as high a penalty because of chromatic
dispersion but increases the SBS threshold power by an order of magnitude, as
we saw earlier. This approach is commonly employed in high-bit-rate systems
transmitting at high powers. Regardless of the bit rate, the use of an external
modulator along with a narrow spectral width source increases the SBS threshold
by only a small factor (between 2 and 4) for amplitude-modulated systems. This
is because a good fraction of the power is still contained in the optical carrier for
such systems.

3. Use phase modulation schemes rather than amplitude modulation schemes. This
reduces the power present in the optical carrier, thus reducing the SBS penalty.
In this case, the spectral width of the source can be taken to be proportional to
the bit rate. However, this may not be a practical option in most systems.

5.8.3 Stimulated Raman Scattering

We saw in Section 2.5 that if two or more signals at different wavelengths are injected
into a fiber, SRS causes power to be transferred from the shorter-wavelength chan-
nels to the longer-wavelength channels (see Figure 2.16). Channels up to 150 THz
(125 nm) apart are coupled due to SRS, with the peak coupling occurring at a
separation of about 13 THz. Coupling occurs for both copropagating and counter-
propagating waves.

Coupling occurs between two channels only if both channels are sending 1 bits
(that is, power is present in both channels). Thus the SRS penalty is reduced when
chromatic dispersion is present because the signals in the different channels travel at
different velocities, reducing the probability of overlap between pulses at different
wavelengths at any point in the fiber. This is the same pulse walk-off phenomenon
that we discussed in the case of CPM in Section 2.5.7. Typically, chromatic dispersion
reduces the SRS effect by a factor of 2.

To calculate the effect of SRS in a multichannel system, following [Chr84], we
approximate the Raman gain shape as a triangle, where the Raman gain coefficient
as a function of wavelength spacing �λ is given by

g(�λ) =
{

gR
�λ
�λc

, if 0 ≤ �λ ≤ �λc,

0 otherwise.

Here �λc = 125 nm, and gR ≈ 6× 10−14 m/W (at 1.55 μm) is the peak Raman gain
coefficient.



5.8 Fiber Nonlinearities 333

Consider a system with W equally spaced channels 0, 1, . . . ,W − 1, with �λs

denoting the channel spacing. Assume that all the channels fall within the Raman
gain bandwidth; that is, the system bandwidth � = (W − 1)�λs ≤ �λc. This is
the case of practical interest given that the Raman gain bandwidth is 125 nm and
the channels within a WDM system must usually be spaced within a 30 nm band
dictated by the bandwidth of optical amplifiers. The worst affected channel is the
channel corresponding to the lowest wavelength, channel 0, when there is a 1 bit
in all the channels. Assume that the transmitted power is the same on all channels.
Assume further that there is no interaction between the other channels, and the
powers of the other channels remain the same (this approximation yields very small
estimation errors). Assume also that the polarizations are scrambled. This is the case
in practical systems. In systems that use polarization-maintaining fiber, the Raman
interaction is enhanced, and the equation that follows does not have the factor of
2 in the denominator. The fraction of the power coupled from the worst affected
channel, channel 0, to channel i is given approximately by [Buc95]

Po(i) = gR
i�λs

�λc

PLe

2Ae

.

This expression can be derived starting from the coupled wave equations for SRS
that are similar in form to (2.14) and (2.15); see [Buc95] for details and [Zir98]
for an alternative derivation with fewer assumptions. So the fraction of the power
coupled out of channel 0 to all the other channels is

Po =
W−1∑
i=1

Po(i) = gR�λsPLe

2�λcAe

W(W − 1)

2
. (5.25)

The power penalty for this channel is then

−10 log(1− Po).

In order to keep the penalty below 0.5 dB, we must have Po < 0.1, or, from (5.25),

WP(W − 1)�λsLe < 40,000 mW-nm-km.

Observe that the total system bandwidth is � = (W−1)�λs and the total transmitted
power is Ptot = WP . Thus the result can be restated as

Ptot�Le < 40,000 mW-nm-km.

The preceding formula was derived assuming that no chromatic dispersion is present
in the system. With chromatic dispersion present, the right-hand side can be relaxed
to approximately 80,000 mW-nm-km.
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Figure 5.28 Limitation on the maximum transmit power per channel imposed by stim-
ulated Raman scattering. The channel spacing is assumed to be 0.8 nm, and amplifiers
are assumed to be spaced 80 km apart.

If the channel spacing is fixed, the power that can be launched decreases with
W as 1/W 2. For example, in a 32-wavelength system with channels spaced 0.8 nm
(100 GHz) apart, and Le = 20 km, P ≤ 2.5 mW. Figure 5.28 plots the maximum
allowed transmit power per channel as a function of the link length.The limit plotted
here corresponds to Ptot�Le < 80,000 mW-nm-km.

Although SRS is not a significant problem in systems with a small number of
channels due to the relatively high threshold power, it can pose a serious problem
in systems with a large number of wavelengths. To alleviate the effects of SRS, we
can (1) keep the channels spaced as closely together as possible and/or (2) keep
the power levels below the threshold, which will require us to reduce the distance
between amplifiers.

5.8.4 Four-Wave Mixing

We saw in Section 2.5 that the nonlinear polarization causes three signals at frequen-
cies ωi , ωj , and ωk to interact to produce signals at frequencies ωi ±ωj ±ωk. Among
these signals, the most troublesome one is the signal corresponding to

ωijk = ωi + ωj − ωk, i �= k, j �= k. (5.26)

Depending on the individual frequencies, this beat signal may lie on or very close
to one of the individual channels in frequency, resulting in significant crosstalk to
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Figure 5.29 Four-wave mixing terms caused by the beating of three equally spaced
channels at frequencies ω1, ω2, and ω3.

that channel. In a multichannel system with W channels, this effect results in a large
number (W(W − 1)2) of interfering signals corresponding to i, j, k varying from 1 to
W in (5.26). In a system with three channels, for example, 12 interfering terms are
produced, as shown in Figure 5.29.

Interestingly, the effect of four-wave mixing depends on the phase relationship
between the interacting signals. If all the interfering signals travel with the same
group velocity, as would be the case if there were no chromatic dispersion, the effect
is reinforced. On the other hand, with chromatic dispersion present, the different
signals travel with different group velocities. Thus the different waves alternately
overlap in and out of phase, and the net effect is to reduce the mixing efficiency. The
velocity difference is greater when the channels are spaced farther apart (in systems
with chromatic dispersion).

To quantify the power penalty due to four-wave mixing, we will use the results of
the analysis from [SBW87, SNIA90, TCF+95, OSYZ95]. We start with (2.37) from
Section 2.5.8:

Pijk =
(

ωijkn̄dijk

3cAe

)2
PiPjPkL

2.

This equation assumes a link of length L without any loss and chromatic dispersion.
Here Pi , Pj , and Pk denote the powers of the mixing waves and Pijk the power of
the resulting new wave, n̄ is the nonlinear refractive index (3.0× 10−8 μm2/W), and
dijk is the so-called degeneracy factor.

In a real system, both loss and chromatic dispersion are present. To take the
loss into account, we replace L with the effective length Le, which is given by
(5.24) for a system of length L with amplifiers spaced l km apart. The presence of
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chromatic dispersion reduces the efficiency of the mixing. We can model this by
assuming a parameter ηijk , which represents the efficiency of mixing of the three
waves at frequencies ωi , ωj , and ωk. Taking these two into account, we can modify
the preceding equation to

Pijk = ηijk

(
ωijkn̄dijk

3cAe

)2
PiPjPkL

2
e .

For on-off keying (OOK) signals, this represents the worst-case power at frequency
ωijk , assuming a 1 bit has been transmitted simultaneously on frequencies ωi , ωj ,
and ωk.

The efficiency ηijk goes down as the phase mismatch �β between the interfering
signals increases. From [SBW87], we obtain the efficiency as

ηijk = α2

α2 + (�β)2

[
1+ 4e−αl sin2(�βl/2)

(1− e−αl)2

]
.

Here, �β is the difference in propagation constants between the different waves,
and D is the chromatic dispersion. Note that the efficiency has a component that
varies periodically with the length as the interfering waves go in and out of phase.
In our examples, we will assume the maximum value for this component. The phase
mismatch can be calculated as

�β = βi + βj − βk − βijk,

where βr represents the propagation constant at wavelength λr .
Four-wave mixing manifests itself as intrachannel crosstalk. The total crosstalk

power for a given channel ωc is given as
∑

ωi+ωj−ωk=ωc
Pijk . Assume the amplifier

gains are chosen to match the link loss so that the output power per channel is the
same as the input power. The crosstalk penalty can therefore be calculated from
(5.12).

Assume that the channels are equally spaced and transmitted with equal power,
and the maximum allowable penalty due to FWM is 1 dB. Then if the transmitted
power in each channel is P , the maximum FWM power in any channel must be
< εP , where ε can be calculated to be 0.034 for a 1 dB penalty using (5.12).
Since the generated FWM power increases with link length, this sets a limit on the
transmit power per channel as a function of the link length. This limit is plotted in
Figure 5.30 for both standard single-mode fiber (SMF) and dispersion-shifted fiber
(DSF) for three cases: (1) 8 channels spaced 100 GHz apart, (2) 32 channels spaced
100 GHz apart, and (3) 32 channels spaced 50 GHz apart. For SMF the chromatic
dispersion parameter is taken to be D = 17 ps/nm-km, and for DSF the chromatic
dispersion zero is assumed to lie in the middle of the transmitted band of channels.
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Figure 5.30 Limitation on the maximum transmit power per channel imposed by four-
wave mixing for systems operating over standard single-mode fiber and dispersionshifted
fiber. For standard single-mode fiber, D is assumed to be 17 ps/nm-km, and for dispersion-
shifted fiber, the chromatic dispersion zero is assumed to lie in the middle of the trans-
mitted band of channels. The amplifiers are assumed to be spaced 80 km apart.

The slope of the chromatic dispersion curve, dD/dλ, is taken to be 0.055 ps/nm-km2.
We leave it as an exercise (Problem 5.28) to compute the power limits in the case of
NZ-DSF.

In Figure 5.30, first note that the limit is significantly worse in the case of
dispersion-shifted fiber than it is for standard fiber. This is because the four-wave
mixing efficiencies are much higher in dispersion-shifted fiber due to the low value
of the chromatic dispersion. Second, the power limit gets worse with an increas-
ing number of channels, as can be seen by comparing the limits for 8-channel and
32-channel systems for the same 100 GHz spacing. This effect is due to the much
larger number of four-wave mixing terms that are generated when the number of
channels is increased. In the case of dispersion-shifted fiber, this difference due to
the number of four-wave mixing terms is imperceptible since, even though there
are many more terms for the 32-channel case, the same 8 channels around the dis-
persion zero as in the 8-channel case contribute almost all the four-wave mixing
power. The four-wave mixing power contribution from the other channels is small
because there is much more chromatic dispersion at these wavelengths. Finally, the
power limit decreases significantly if the channel spacing is reduced, as can be seen
by comparing the curves for the two 32-channel systems with channel spacings of
100 GHz and 50 GHz. This decrease in the allowable transmit power arises because
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the four-wave mixing efficiency increases with a decrease in the channel spacing
since the phase mismatch �β is reduced. (For SMF, though the efficiencies at both
50 GHz and 100 GHz are small, the efficiency is much higher at 50 GHz than at
100 GHz.)

Four-wave mixing is a severe problem in WDM systems using dispersion-shifted
fiber but does not usually pose a major problem in systems using standard fiber. In
fact, it motivated the development of NZ-DSF fiber (see Section 5.7). In general, the
following actions alleviate the penalty due to four-wave mixing:

1. Unequal channel spacing: The positions of the channels can be chosen carefully
so that the beat terms do not overlap with the data channels inside the receiver
bandwidth. This may be possible for a small number of channels in some cases
but needs careful computation of the exact channel positions.

2. Increased channel spacing: This increases the group velocity mismatch between
channels. This has the drawback of increasing the overall system bandwidth,
requiring the optical amplifiers to be flat over a wider bandwidth, and increases
the penalty due to SRS.

3. Using higher wavelengths beyond 1560 nm with DSF: Even with DSF, a signifi-
cant amount of chromatic dispersion is present in this range, which reduces the
effect of four-wave mixing. The newly developed L-band amplifiers can be used
for long-distance transmission over DSF.

4. As with other nonlinearities, reducing transmitter power and the amplifier spac-
ing will decrease the penalty.

5. If the wavelengths can be demultiplexed and multiplexed in the middle of the
transmission path, we can introduce different delays for each wavelength. This
randomizes the phase relationship between the different wavelengths. Effectively,
the FWM powers introduced before and after this point are summed instead of
the electric fields being added in phase, resulting in a smaller FWM penalty.

5.8.5 Self-/Cross-Phase Modulation

As we saw in Section 2.5, SPM and CPM also arise out of the intensity dependence
of the refractive index. Fluctuations in optical power of the signal causes changes in
the phase of the signal. This induces additional chirp, which in turn, leads to higher
chromatic dispersion penalties. In practice, SPM can be a significant consideration in
designing systems at 10 Gb/s and higher, and leads to a restriction that the maximum
power per channel should not exceed a few milliwatts. CPM does not usually pose
a problem in WDM systems unless the channel spacings are extremely tight (a few
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tens of gigahertz). In this section, we will study the system limitations imposed by
SPM.

The combined effects of SPM-induced chirp and dispersion can be studied by
numerically solving (E.15). For simplicity, we consider the following approximate
expression for the width TL of an initially unchirped Gaussian pulse after it has
propagated a distance L:

TL

T0
=
√

1+
√

2
Le

LNL

L

LD

+
(

1+ 4
3
√

3
L2

e

LNL
2

)
L2

L2
D

. (5.27)

This expression is derived in [PAP86] starting from (E.15) and is also discussed in
[Agr95]. Note the similarity of this expression to the broadening factor for chirped
Gaussian pulses in (2.13); Le/LNL in (5.27) serves the role of the chirp factor in
(2.13).

Consider a 10 Gb/s system operating over standard single-mode fiber at 1.55 μm.
Since β2 < 0 and the SPM-induced chirp is positive, from Figure 2.11 we expect
that pulses will initially undergo compression and subsequently broaden. Since the
SPM-induced chirp increases with the transmitted power, we expect both the extent
of initial compression and the rate of subsequent broadening to increase with the
transmitted power. This is indeed the case, as can be seen from Figure 5.31, where
we use (5.27) to plot the evolution of the pulse width as a function of the link length,
taking into account the chirp induced by SPM. We consider an initially unchirped
Gaussian pulse of width (half-width at 1/e-intensity point) 50 ps, which is half the
bit period. Three different transmitted powers, 1 mW, 10 mW, and 20 mW, are
considered. As expected, for a transmit power of 20 mW, the pulse compresses more
initially but subsequently broadens more rapidly so that the pulse width exceeds
that of a system operating at 10 mW or even 1 mW. The optimal transmit power
therefore depends on the link length and the amount of dispersion present. For
standard single-mode fiber in the 1.55 μm band, the optimal power is limited to the
2–10 mW range for link lengths on the order of 100 km and is a real limit today
for 10 Gb/s systems. We can use higher transmit powers to optimize other system
parameters such as the signal-to-noise ratio (SNR) but at the cost of increasing the
pulse broadening due to the combined effects of SPM and dispersion.

The system limits imposed by SPM can be calculated from (5.27) just as we did
in Figure 5.31. We can derive an expression for the power penalty due to SPM,
following the same approach as we did for chromatic dispersion. This is detailed in
Problem 5.26. Since SPM can be beneficial due to the initial pulse compression it can
cause, the SPM penalty can be negative. This occurs when the pulse at the end of the
link is narrower due to the chirping caused by SPM than it would be in the presence
of chromatic dispersion alone.
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Figure 5.31 Evolution of pulse width as a function of the link length L for transmitted
powers of 1 mW, 10 mW, and 20 mW, taking into account the chirp induced by SPM.
A 10 Gb/s system operating over standard single-mode fiber at 1.55 μm with an initial
pulse width of 50 ps is considered.

In amplified systems, as we saw in Section 5.5, two things happen: the effective
length Le is multiplied by the number of amplifier spans as the amplifier resets the
power after each span, and in general, higher output powers are possible. Both of
these serve to exacerbate the effects of nonlinearities.

In WDM systems, CPM aids the SPM-induced intensity dependence of the re-
fractive index. Thus in WDM systems, these effects may become important even
at lower power levels, particularly when dispersion-shifted fiber is used so that the
dispersion-induced walk-off effects on CPM are minimized.

5.8.6 Role of Chromatic Dispersion Management

As we have seen, chromatic dispersion plays a key role in reducing the effects of non-
linearities, particularly four-wave mixing. However, chromatic dispersion by itself
produces penalties due to pulse smearing, which leads to intersymbol interference.
The important thing to note is that we can engineer systems with zero total chro-
matic dispersion but with chromatic dispersion present at all points along the link,
as shown in Figure 5.20. This approach leads to reduced penalties due to nonlinear-
ities, but the total chromatic dispersion is small so that we need not worry about
dispersion-induced penalties.
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5.9 Wavelength Stabilization

Luckily for us, it turns out that the wavelength drift due to temperature variations
of some of the key components used in WDM systems is quite small. Typical mul-
tiplexers and demultiplexers made of silica/silicon have temperature coefficients of
0.01 nm/◦C, whereas DFB lasers have a temperature coefficient of 0.1 nm/◦C. Some
of the other devices that we studied in Chapter 3 have even lower temperature
coefficients.

The DFB laser source used in most systems is a key element that must be kept
wavelength stabilized. In practice, it may be sufficient to maintain the temperature
of the laser fairly constant to within ±0.1◦C, which would stabilize the laser to
within ±0.01 nm/◦C. The laser comes packaged with a thermistor and a thermo-
electric (TE) cooler. The temperature can be sensed by monitoring the resistance of
the thermistor and can be kept constant by adjusting the drive current of the TE
cooler. However, the laser wavelength can also change because of aging effects over
a long period. Laser manufacturers usually specify this parameter, typically around
±0.1 nm. If this presents a problem, an external feedback loop may be required to
stabilize the laser. A small portion of the laser output can be tapped off and sent to
a wavelength discriminating element, such as an optical filter, called a wavelength
locker. The output of the wavelength locker can be monitored to establish the laser
wavelength, which can then be controlled by adjusting the laser temperature.

Depending on the temperature range needed (typically −10 to 60◦C for equip-
ment in telco central offices), it may be necessary to temperature-control the
multiplexer/demultiplexer as well. For example, even if the multiplexer and de-
multiplexer are exactly aligned at, say, 25◦C, the ambient temperature at the two
ends of the link could be different by 70◦C, assuming the given numbers. Assuming a
temperature coefficient of 0.01 nm/◦C, we would get a 0.7 nm difference between the
center wavelengths of the multiplexer and demultiplexer, which is clearly intolerable
if the interchannel spacing is only 0.8 nm (100 GHz). One problem with tempera-
ture control is that it reduces the reliability of the overall component because the TE
cooler is often the least reliable component.

An additional factor to be considered is the dependence of laser wavelength on
its drive current, typically between 100 MHz/mA and 1 GHz/mA. A laser is typically
operated in one of two modes, constant output power or constant drive current, and
the drive circuitry incorporates feedback to maintain these parameters at constant
values. Keeping the drive current constant ensures that the laser wavelength does
not shift because of current changes. However, as the laser ages, it will require more
drive current to produce the same output power, so the output power may decrease
with time. On the other hand, keeping the power constant may require the drive
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current to be increased as the laser ages, inducing a small wavelength shift. With
typical channel spacings of 100 GHz or thereabouts, this is not a problem, but with
tighter channel spacings, it may be desirable to operate the laser in constant current
mode and tolerate the penalty (if any) due to the reduced output power.

5.10 Design of Soliton Systems

Although much of our discussion in this chapter applies to the design of soliton
systems as well, there are a few special considerations in the design of these systems,
which we now briefly discuss.

We discussed the fundamentals of soliton propagation in Section 2.6. Soliton
pulses balance the effects of chromatic dispersion and the nonlinear refractive index
of the fiber, to preserve their shapes during propagation. In order for this balance to
occur, the soliton pulses must have not only a specific shape but also a specific energy.
Due to the inevitable fiber attenuation, the pulse energies are reduced, and thus the
ideal soliton energy cannot be preserved. A theoretical solution to this problem is
the use of dispersion-tapered fibers, where the chromatic dispersion of the fiber is
varied suitably so that the balance between chromatic dispersion and nonlinearity is
preserved in the face of fiber loss.

In practice, soliton propagation occurs reasonably well even in the case of systems
with periodic amplification. However, the ASE added by these amplifiers causes a few
detrimental effects. The first effect is that the ASE changes the energies of the pulses
and causes bit errors. This effect is similar to the effect in NRZ systems, although
the quantitative details are somewhat different.

Although solitons have a specific shape, they are resilient to changes in shape. For
example, if a pulse with a slightly different energy is launched, it reshapes itself into
a soliton component with the right shape and a nonsoliton component. When ASE
is added, the effect is to change the pulse shape, but the solitons reshape themselves
to the right shape.

A second effect of the ASE noise that is specific to soliton systems is that the
ASE noise causes random changes to the center frequencies of the soliton pulses. For
soliton propagation, per se, this would not be a problem because solitons can alter
their frequency without affecting their shape and energy. (This is the key to their
ability to propagate long distances without pulse spreading.) To see why this is the
case, consider the soliton pulse shape given by

U(ξ, τ ) = eiξ/2sechτ. (5.28)
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Here, the distance ξ and time τ are measured in terms of the chromatic dispersion
length of the fiber and the pulse width, respectively. The pulse

U(ξ, τ +�ξ)ei(�t+�2ξ/2 (5.29)

is also a soliton for any frequency shift �, and thus solitons can alter their frequency
without affecting their shape and energy.

Because of the chromatic dispersion of the fiber, however, changes in pulse fre-
quencies are converted into changes in the pulse arrival times, that is, timing jitter.
This jitter is called Gordon-Haus jitter, in honor of its discoverers, and is a significant
problem for soliton communication systems.

A potential solution to this timing jitter problem is the addition of a bandpass
filter whose center frequency is close to that of the launched soliton pulse. In the
presence of these filters, the solitons change their center frequencies to match the
passband of the filters. For this reason, these filters are called guiding filters. This has
the effect of keeping the soliton pulse frequencies stable, and hence minimizing the
timing jitter. This phenomenon is similar to the solitons reshaping themselves when
their shape is perturbed by the added ASE.

The problem with the above solution is that the ASE noise accumulates within
the passband of the chain of filters. As a result, the transmission length of the
system, before the timing jitter becomes unacceptable, is only moderately improved
compared to a system that does not use these filters. The solution to this problem
is to change the center frequencies of the filters progressively along the link length.
For example, if the filters are used every 20 km, each filter can be designed to have
a center frequency that is 0.2 GHz higher than the previous one. Over a distance
of 1000 km, this corresponds to a change of 10 GHz. The soliton pulses track the
center frequencies of the filters, but the accumulation of ASE noise is lessened. This
technique of using sliding-frequency guiding filters significantly minimizes timing
jitter and makes transoceanic soliton transmission practical.

5.11 Design of Dispersion-Managed Soliton Systems

There are a few drawbacks associated with conventional soliton systems. First, soli-
ton systems require fiber with a very low value of anomalous chromatic dispersion,
typically, D < 0.2 ps/nm-km. This rules out the possibility of using solitons over the
existing fiber infrastructure, which primarily uses SMF or NZ-DSF, since these fibers
have much higher values of dispersion. Second, solitons require amplifier spacings
on the order of 20–25 km—much closer than what is typically used in practical
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WDM systems. Finally, cross-phase modulation (CPM) in WDM systems using con-
ventional solitons causes soliton-soliton collisions, resulting in timing jitter. For these
reasons, soliton systems have not been widely deployed.

The use of chirped RZ pulses (see Section 2.6.1), also called dispersion-managed
(DM) solitons, overcomes all three problems associated with soliton transmission.
First, these pulses can be used over a dispersion-managed fiber plant consisting of
fiber spans with large local chromatic dispersion, but with opposite signs such that
the total, or average, chromatic dispersion is small. This is typical of most fiber plants
used today for 10 Gb/s transmission since they consist of SMF or NZ-DSF spans with
dispersion compensation. Thus, no special fiber is required. Second, DM solitons
require amplification only every 60–80 km, which is compatible with the amplifier
spacings in today’s WDM systems. Finally, the effect of CPM is vastly reduced because
of the large local chromatic dispersion and thus there is no timing jitter problem. For
the same reason, the Gordon-Haus jitter is also reduced, and the sliding-frequency
guiding filters used in conventional soliton systems are not required.

In a dispersion-managed system, the spans between amplifiers consist of fibers
with alternating chromatic dispersions, as shown in Figure 5.32. Each fiber could
have a fairly high chromatic dispersion, but the total chromatic dispersion is small.
For example, each span in a dispersion-managed system could consist of a
50 km anomalous chromatic dispersion segment with a chromatic dispersion of
17 ps/nm-km, followed by a 30 km normal chromatic dispersion segment with a
chromatic dispersion of −25 ps/nm-km. The total chromatic dispersion over the
span is 50 × 17 − 30 × 25 = 100 ps/km. The average chromatic dispersion is
100/80 = 1.25 ps/nm-km, which is anomalous. A dispersion-managed system could
have an average span dispersion that is normal or anomalous. In the same example,
if the normal fiber had a chromatic dispersion of −30 ps/nm-km, the average span
dispersion would have been −50/80 = −0.625 ps/nm-km, which is normal.

When NRZ pulses are used, the average chromatic dispersion can be anomalous
or normal, without having a significant impact on system performance. However,
in a DM soliton system, the average chromatic dispersion must be designed to be
anomalous in order to maintain the shape of the DM solitons. This is similar to
the case of conventional solitons, but with the crucial difference that the chromatic
dispersion need not be uniformly low and anomalous.

An important aspect of the design of DM soliton systems is the choice of the
peak transmit power and the average chromatic dispersion. Both should lie within
a certain range in order to achieve low BER operation. This range can be plotted as
a contour in a plot of peak transmit power versus average chromatic dispersion, as
shown in Figure 5.33. In this figure, we show a typical contour for achieving a BER
of 10−12 (or γ = 7) in a 5160 km system with 80 km spans. For values of the transmit
power and average chromatic dispersion lying within this contour, the desired BER
is achieved or exceeded. In the same plot, the contour for a 2580 km NRZ system
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Figure 5.32 A typical dispersion-managed span consisting of a segment of fiber
with anomalous chromatic dispersion followed by a segment with normal chromatic
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Figure 5.33 Typical contours of constant BER for a DM soliton and an NRZ modulated
10 Gb/s system. (After [Nak00].)

with 80 km spans is also shown. In both NRZ and DM soliton systems, the allowed
transmit power has both a lower bound, determined by OSNR requirements, and an
upper bound determined by fiber nonlinear effects. From Figure 5.33, note that not
only is the DM soliton system capable of achieving regeneration-free transmission
for twice the distance as the NRZ system, it is also able to tolerate a much wider
range of variation in the transmit power and the average chromatic dispersion.
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Figure 5.34 Performance of 10 Gb/s DM soliton systems compared with NRZ and
(unchirped) RZ modulated systems. (After [Nak00].)

Another important factor influencing the performance of DM soliton systems
is the peak-to-peak variation of the chromatic dispersion from the average over
the span. In Figure 5.33, the peak-to-peak variation was chosen to be small
(1.6 ps/nm-km), and thus both the anomalous and normal segments had very low
chromatic dispersion. However, the achievable regeneration-free transmission dis-
tance is quite sensitive to the excess chromatic dispersion, relative to the average
chromatic dispersion on the span, because of the delicate balancing of the chromatic
dispersion against the nonlinearities in the fiber that occurs for soliton-like pulses.
Figure 5.34 plots the maximum distance between regenerators as a function of the
excess anomalous chromatic dispersion on the span, while maintaining a fixed value
of the average chromatic dispersion, for DM solitons as well as NRZ and (unchirped)
RZ systems. The excess anomalous chromatic dispersion is the excess of the chro-
matic dispersion in the anomalous segment over and above the average chromatic
dispersion on the link, as indicated in Figure 5.32. Here we assume that the 80 km
spans consist of a 50 km anomalous segment and a 30 km normal segment. The
NRZ and RZ systems are assumed to be fully dispersion compensated so that the
average chromatic dispersion on these spans is zero. For the DM soliton system, the
average chromatic dispersion is 0.1 ps/nm-km, which is slightly anomalous. Since
the average chromatic dispersion is zero for the NRZ and RZ systems, and quite
small in the DM soliton case, the abscissa in Figure 5.34 is effectively the chromatic
dispersion of the anomalous segment.



5.12 Overall Design Considerations 347

Note from Figure 5.34 that the NRZ system is not sensitive to the excess local
chromatic dispersion. This is because the NRZ system essentially operates in the
linear regime. Note also that the DM soliton system can achieve considerably higher
transmission distances than NRZ and RZ systems for all values of the excess anoma-
lous chromatic dispersion. Thus, DM soliton systems are superior to these systems
over virtually all kinds of dispersion-managed fiber spans.

We saw in Section 5.7.4 that (unchirped) RZ systems have a smaller PMD penalty
than NRZ systems. Chirped RZ, or DM soliton systems, have an even smaller PMD
penalty and thus are more suitable for transmission rates of 40 Gb/s and above, from
the PMD perspective as well.

5.12 Overall Design Considerations

We have seen that there is an interplay of many different effects that influence the
system design parameters. We will summarize some of these effects in this section. In
addition, two key issues in this regard, (1) the trade-off between higher bit rates per
channel versus more channels, and (2) whether to use bidirectional or unidirectional
systems, will be discussed in Chapter 13.

5.12.1 Fiber Type

Among the many issues facing system designers is what type of fiber should be
deployed in new installations. This very much depends on the type of system that
is going to be deployed. For single-channel systems operating at very high bit rates
(10 Gb/s and above) over long distances, DSF is the best choice. However, DSF
makes it much harder to use WDM for upgrading the link capacity in the future,
primarily due to four-wave mixing, and thus is not a practical choice for most links.
For WDM systems, the choice of fiber type depends on the distance and bit rate per
channel. DSF is clearly a bad choice. If the system is not chromatic dispersion limited,
then standard single-mode fiber is the best choice because such a system is least
susceptible to degradation from nonlinearities. As the distance and bit rate increase
in future upgrades, the system will eventually become chromatic dispersion limited
(for example, over 600 km at 2.5 Gb/s), and chromatic dispersion compensation must
be incorporated into the system. For WDM systems operating at high bit rates over
long distances, NZ-DSF provides a good alternative to using standard single-mode
fiber with dispersion compensation.

If the residual dispersion slope after chromatic dispersion compensation is the
main problem, you can use reduced slope fiber, such as Lucent’s TrueWave RS fiber.
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On the other hand, if nonlinearities are the significant problem, large effective area
fiber, such as Corning’s LEAF, can be used. For terrestrial systems, NZ-DSF fiber
with positive dispersion in the 1.55 μm band can be used in order to be able to
upgrade the system to use the L-band wavelengths. For submarine systems, NZ-DSF
with negative dispersion fiber can be used in order to avoid modulation instability.

The following are some transmission numbers. Using carefully dispersion-
managed fiber spans, transmission of 120 channels, each running at 20 Gb/s over a
distance of 6200 km, has been demonstrated [VPM01]. This experiment used only
C-band EDFAs. Using both the C-band and the L-band, and combining distributed
Raman amplification with EDFAs, transmission of 77 42.7 Gb/s channels over 1200
km has been demonstrated [Zhu01]. Over short distances, about 100 km, and using
all three bands (S-band, C-band, and L-band), transmission of over 250 40 Gb/s
channels has been demonstrated [Fuk01, Big01].

5.12.2 Transmit Power and Amplifier Spacing

The upper limit on the transmitted power per channel P is determined by the satura-
tion power of the optical amplifiers, the effect of nonlinearities, and safety consider-
ations. From a cost point of view, we would like to maximize the distance l between
amplifier stages, so as to minimize the number of amplifiers. The transmitted power
per channel, P , and the total link length L, along with the amplifier noise figure
and receiver sensitivity, determine the maximum value of l possible. In addition, as
l increases, the penalty due to nonlinearities also increases, which by itself may play
a role in limiting the value of l.

The amplifier spacing in existing systems must also conform to the repeater hut
spacing, typically about 80 km, though this is not an issue for new installations.

5.12.3 Chromatic Dispersion Compensation

In systems that have to operate over standard single-mode fiber, chromatic dispersion
must be compensated frequently along the link, since the total chromatic dispersion
usually cannot be allowed to accumulate beyond a few thousand ps/nm. Systems em-
ploying NZ-DSF can span longer lengths before chromatic dispersion compensation
is required. In addition to chromatic dispersion compensation, chromatic dispersion
slope also needs to be compensated. The ultimate limits of link lengths before the
wavelengths need to be demultiplexed and compensated individually are set by the
variation in dispersion slope since dispersion slope cannot usually be compensated
exactly for all the channels. The use of reduced slope fiber increases this length. By
careful span engineering using a large effective area fiber followed by a carefully
tailored dispersion compensating fiber, to minimize the dispersion slope, transmis-
sion of 120 WDM channels at 20 Gb/s each over 6200 km has been demonstrated
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[Cai01]. Using similar techniques, transmission of 101 WDM channels at 10 Gb/s
each over 9000 km has also been demonstrated [Bak01].

5.12.4 Modulation

Most systems in use today employ NRZ modulation. However, chirped RZ modula-
tion is being considered for ultra-long-haul systems, operating at 10 Gb/s and above.
The main motivation for chirped RZ systems is that by the appropriate combination
of chirping and chromatic dispersion compensation, such systems achieve very long,
regeneration-free transmission. The penalties due to PMD are also lower for RZ
modulation than they are for NRZ modulation.

Within NRZ systems, direct modulation is less expensive but leads to chirping,
which in turn increases the chromatic dispersion penalties. External modulation is
required in chromatic dispersion–limited systems, particularly 10 Gb/s systems. To-
day, most long-haul systems use external modulation. Metro WDM systems usually
employ direct modulation up to bit rates of 2.5 Gb/s to keep costs low, and try to
achieve distances of 100–200 km before reaching the chromatic dispersion limit.

Prechirping can be used to increase the link lengths by taking advantage of the
pulse compression effects that occur when positively (negatively) chirped pulses are
used in positive (negative) dispersion fiber.

5.12.5 Nonlinearities

Nonlinear effects can be minimized by using lower transmit powers. The use of a
large effective area fiber allows the use of higher transmit powers, and hence longer
links, in the presence of nonlinearities. The trade-off is the higher dispersion slope
of these fibers.

Some nonlinear effects can actually be beneficial. For example, SPM can some-
times lead to longer link lengths since the positive chirping due to SPM over positive
dispersion fiber leads to pulse compression.

5.12.6 Interchannel Spacing and Number of Wavelengths

Another design choice is the interchannel spacing. On the one hand, we would like
to make the spacing as large as possible, since it makes it easier to multiplex and
demultiplex the channels and relaxes the requirements on component wavelength
stability. Larger interchannel spacing also reduces the four-wave mixing penalty if
that is an issue (for example, in systems with dispersion-shifted fiber). It also allows
future upgrades to higher bit rates per channel, which may not be feasible with very
tight channel spacings. For example, today’s systems operate with 100 GHz channel
spacing with bit rates per channel up to 10 Gb/s. Such a system can be upgraded
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by introducing additional wavelengths between two successive wavelengths leading
to 50 GHz channel spacing. Alternatively, the channel spacing can be maintained
at 100 GHz and the bit rate per channel increased to 40 Gb/s. If the initial channel
spacing is reduced to 50 GHz, it becomes much harder to upgrade the system to
operate the channels at 40 Gb/s.

On the other hand, we would like to have as many channels as possible within
the limited amplifier gain bandwidth, which argues for having a channel spacing as
tight as possible. For a given number of channels, it is easier to flatten the amplifier
gain profile over a smaller total bandwidth. Moreover, the smaller the total system
bandwidth, the lesser the penalty due to stimulated Raman scattering (although this
is not a limiting factor unless the number of channels is fairly large).

Other factors also limit the number of wavelengths that can be supported in the
system. The total amplifier output power that can be obtained is limited typically to
20–25 dBm, and this power must be shared among all the channels in the system. So
as the number of wavelengths increases, the power per channel decreases, and this
limits the total system span. Another limiting factor is the stability and wavelength
selectivity of the multiplexers and demultiplexers.

Two other techniques are worthy of mention in the context of designing high
channel count systems. The first is the interleaving of wavelengths transmitted in the
two directions. Thus, if λE

i and λW
i denote the wavelengths to be transmitted in the

east and west directions, we transmit λE
1 , λW

2 , λE
3 , . . . on one fiber, and λW

1 , λE
2 , λW

3 , . . .

on the other fiber. This technique effectively doubles the spacing between the wave-
lengths as far as the nonlinear interactions are concerned.

The second technique is similar but is applicable when both the C-band and
L-band are used. In this case, the nonlinear interactions between the signals in the
two bands can be avoided by transmitting the signals in one band in one direction
over the fiber, and the signals in the other band in the other direction. If this is done,
the nonlinear interactions effectively “see” only one of the bands.

Taking all this into consideration, 160-channel systems operating at 10 Gb/s per
channel, with 50 GHz spacings, have been designed and are commercially available
today. Even larger numbers of channels can be obtained by reducing the channel
spacing and improving the stability and selectivity of the wavelength multiplexers
and demultiplexers.

5.12.7 All-Optical Networks

All-optical networks consist of optical fiber links between nodes with all-optical
switching and routing of signals at the nodes, without electronic regeneration. The
various aspects of system design that we studied in this chapter apply to point-to-
point links as well as all-optical networks, and we have attempted to consider several
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factors that affect networks more than point-to-point links. Designing networks is
significantly harder than designing point-to-point links for the following reasons:

The reach required for all-optical networks is considerably more than the reach
required for point-to-point links, since lightpaths must traverse multiple links. In
addition, loss, chromatic dispersion, and nonlinearities do not get reset at each
node.

The network is more susceptible to crosstalk, which is accumulated at each node
along the path.

Misalignment of multiplexers and demultiplexers along the path is more of a
problem in networks than in links.

Because of bandwidth narrowing of cascaded multiplexers and demultiplexers,
the requirements on laser wavelength stability and accuracy are much higher
than in point-to-point links.

The system designer must deal with the variation of signal powers and signal-to-
noise ratios among different lightpaths traveling through different numbers of
nodes and having different path lengths. This can make system design particularly
difficult. A common approach used to solve this problem is to equalize the powers
of each channel at each node individually. Thus, at each node the powers in all the
channels are set to a common value. This ensures that all lightpaths reach their
receivers with the same power, regardless of their origin or their path through
the network.

Rapid dynamic equalization of the amplifier gains will be needed to compensate
for fluctuations in optical power as lightpaths are taken down or set up, or in the
event of failures.

5.12.8 Wavelength Planning

The International Telecommunications Union (ITU) has been active in trying to
standardize a set of wavelengths for use in WDM networks. This is necessary to
ensure eventual interoperability between systems from different vendors (although
this is very far away). An important reason for setting these standards is to allow
component vendors to manufacture to a fixed standard, which allows volume cost
reductions, as opposed to producing custom designs for different system vendors.

The first decision to be made is whether to standardize channels at equal wave-
length spacing or at equal frequency spacing. At λ = 1550 nm, c = 3 × 108 m/s,
a 1 nm wavelength spacing corresponds to approximately 120 GHz of frequency
spacing. Equal frequency spacing results in somewhat unequal wavelength spacing.
Certain components used in the network, such as AWGs and Mach-Zehnder filters,
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193.1 THz

50 GHz 50 GHz

Figure 5.35 Wavelength grid selected by the ITU.

naturally accept channels at equal frequency spacings, whereas other components,
including other forms of gratings, accept channels more naturally at equal wave-
length spacings. There is no major technical reason to favor one or the other. The
ITU has picked equal frequency spacing for their standard, and this is specified in
ITU G.692. The channels are to be placed in a 50 GHz grid (0.4 nm wavelength
spacing) with a nominal center frequency of 193.1 THz (1552.52 nm) in the middle
of the 1.55 μm fiber and EDFA passband, as shown in Figure 5.35. For systems
with channel spacings of 100 GHz or more, the frequencies are to be placed on a
100 GHz grid, with the same reference frequency of 193.1 THz. This latter grid was
the first standard, before the 50 GHz grid was introduced.

The choice of the 50 GHz frequency spacing is based on what is feasible with
today’s technology in terms of mux/demux resolutions, frequency stability of lasers
and mux/demuxes, and so on. As the technology improves, and systems with more
channels become practical, the grid spacing may have to be reduced. Moreover, in
systems that must operate over dispersion-shifted fiber, it may be desirable to have
unequal channel spacings to alleviate the effects of four-wave mixing. This will also
require a finer grid spacing since all these unequal spacings must be accommodated
within the same total bandwidth, which in turn necessitates a finer grid. For example,
a system using the channels 193.1, 193.2, 193.3, and 193.4 THz is spaced on a 100
GHz grid, and the channel spacings are all equal to 100 GHz. If the channel spacings
are made unequal and are, say, 50, 100, and 150 GHz, we can use the channels
193.1, 193.15, 193.25, and 193.4 THz. This system occupies the same bandwidth
from 193.1 to 193.4 THz as the equally spaced system, but the channels are on a 50
GHz grid instead of a 100 GHz grid. (If we do not place the channels on this finer 50
GHz grid but still use a 100 GHz grid, we will end up using more total bandwidth
to achieve the unequal channel spacing; see Problem 5.27.) In fact, to tackle the
unequal spacing requirement due to four-wave mixing on dispersion-shifted fibers,



Summary 353

ITU allows such systems to have some wavelengths that are on a 25 GHz grid; see
ITU G.692 for details.

That being said, a much more difficult decision is to pick a standard set of wave-
lengths for use in 4-, 8-, 16-, and 32-wavelength systems to ensure interoperability.
This is because different manufacturers have different optimized channel configu-
rations and different upgrade plans to go from a system with a small number of
channels to a system with a larger number of channels. As of this writing, ITU is
standardizing (ITU G.959) the set of 16 wavelengths starting with 192.1 THz, and
spaced 200 GHz apart, for multichannel interfaces between WDM equipment.

It is not enough to specify the nominal center frequencies of the channels alone. A
maximum deviation must also be specified because of manufacturing tolerances and
aging over the system’s lifetime. The deviation should not be too large; otherwise, we
would get significant penalties due to crosstalk, additional loss, chirp, and the like.
The deviation is a function of the interchannel spacing, �f . For �f ≥ 200 GHz, the
ITU has specifed that the deviation should be no more than ±�f/5 GHz.

5.12.9 Transparency

Among the advantages touted for WDM systems is the fact that they are transparent
to bit rate, protocol, and modulation formats. It is true to a large extent that a
wavelength can carry arbitrary data protocols. Providing transparency to bit rate
and modulation formats is much more difficult. For instance, analog transmission
requires much higher signal-to-noise ratios and linearity in the system than digital
transmission and is much more susceptible to impairments. A WDM system can be
designed to operate at a maximum bit rate per channel and can support all bit rates
below that maximum. We cannot assume that the system is transparent to increases
in the maximum bit rate. The maximum bit rate affects the choice of amplifier
spacings, filter bandwidths, and dispersion management, among other parameters.
Thus the system must be designed up front to support the maximum possible bit
rate.

Summary

This chapter was devoted to studying the effects of various impairments on the design
of the new generation of WDM and high-speed TDM transmission systems and net-
works. Although impairments due to amplifier cascades, dispersion, nonlinearities,
and crosstalk may not be significant in lower-capacity systems, they play significant
roles in the new generation of systems, particularly in networks, as opposed to point-
to-point links. We learned how to compute the penalty due to each impairment and



354 Transmission System Engineering

budget for the penalty in the overall system design. We also studied how to reduce
the penalty due to each impairment. Transmission system design requires careful at-
tention to each impairment because requirements on penalties usually translate into
specifications on the components that the system is built out of, which in turn trans-
late to system cost. Design considerations for transmission systems are summarized
in the last section of this chapter.

Further Reading

We recommend the recent books by Kaminow and Koch [KK97a, KK97b] for an in-
depth coverage of the advanced aspects of lightwave system design. For authoritative
treatments of EDFAs, see [BOS99, Des94]. Gain equalization of amplifiers is an
important problem, and several approaches have been proposed [Des94]. Amplifier
cascades are discussed in several papers; see, for example, [Ols89, RL93, MM98].
Amplifier power transients are discussed in [Zys96, LZNA98]. The optical feedback
loop for automatic gain control (AGC) illustrated in Figure 5.8 was first described
in [Zir91].

Crosstalk is analyzed extensively in several papers. Intrachannel crosstalk is
considered in [ZCC+96, GEE94, TOT96]. Interchannel crosstalk is analyzed in
[ZCC+96, HH90]. Dilation in switches is discussed in [Jac96, PN87].

Chromatic dispersion and intermodal dispersion are treated at length in the afore-
mentioned books. The different types of single-mode fiber have been standardized;
see ITU G.652, ITU G.653, and ITU G.655. Polarization-mode dispersion is stud-
ied in [PTCF91, CDdM90, BA94, ZO94]; see also [KK97a, Chapter 6]. For recent
work on PMD compensation, see [Kar01, PL01]. PMD compensation is analyzed in
[SKA00], and the effects of PMD on NRZ and RZ pulses are compared in [SKA01].

Good surveys of fiber nonlinearities appear in [Chr90, Agr95, Buc95, SNIA90].
See also [TCF+95, FTC95, SBW87, Chr84, OSYZ95].

The standards bodies have given a lot of thought in defining the system param-
eters for WDM systems. The 50 GHz wavelength grid is specified in ITU G.692.
It is instructive to read this and other related standards: ITU G.691, ITU G.681,
ITU G.692, Telcordia GR-253, Telcordia GR-192, and Telcordia GR-2918, which
provide values for most of the system parameters used in this chapter.

For a discussion of the design issues in achieving 40 Gb/s WDM transmission,
see [Nel01]. The design of transoceanic WDM systems is discussed in [Gol00]. Our
treatment of the design of DM soliton systems is based on [Nak00]. The Differen-
tial Phase Shift Keying (DPSK) modulation scheme discussed in [MLS+06] allows
40 Gb/s WDM transmission to be deployed on networks designed for 10 Gb/s WDM
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transmission and, at the time of this writing, is increasingly being deployed in long-
haul networks.

Problems

5.1 In an experiment designed to measure the attenuation coefficient α of optical fiber,
the output power from an optical source is coupled onto a length of the fiber and
measured at the other end. If a 10-km-long spool of fiber is used, the received optical
power is −20 dBm. Under identical conditions but with a 20-km-long spool of fiber
(instead of the 10-km-long spool), the received optical power is −23 dBm. What is
the value of α (in dB/km)? If the source-fiber coupling loss is 3 dB, the fiber-detector
coupling loss is 1 dB, and there are no other losses, what is the output power of the
source (expressed in mW)?

5.2 The following problems relate to simple link designs. Assume that the bit rate on
the link is 1 Gb/s, the dispersion at 1.55 μm is 17 ps/nm-km, and the attenuation is
0.25 dB/km, and at 1.3 μm, the dispersion is 0 and the attenuation is 0.5 dB/km. (Ne-
glect all losses except the attenuation loss in the fiber.) Assume that NRZ modulation
is used.

(a) You have a transmitter that operates at a wavelength of 1.55 μm, has a spec-
tral width of 1 nm, and an output power of 0.5 mW. The receiver requires
−30 dBm of input power in order to achieve the desired bit error rate. What
is the length of the longest link that you can build?

(b) You have another transmitter that operates at a wavelength of 1.3 μm, has
a spectral width of 2 nm, and an output power of 1 mW. Assume the same
receiver as before. What is the length of the longest link that you can build?

(c) You have the same 1.3 μm transmitter as before, and you must achieve an
SNR of 30 dB using an APD receiver with a responsivity of 8 A/W, a gain of
10, an excess noise factor of 5 dB, negligible dark current, a load resistance of
50 �, and an amplifier noise figure of 3 dB. Assume that a receiver bandwidth
of B/2 Hz is sufficient to support a bit rate of B b/s. What is the length of
the longest link you can build?

(d) Using the same 1.3 μm transmitter as before, you must achieve an SNR of
20 dB using a pin receiver with a responsivity of 0.8 A/W, a load resistance
of 300 �, and an amplifier noise figure of 5 dB. Assume that a receiver
bandwidth of B/2 Hz is sufficient to support a bit rate of B b/s. What is the
length of the longest link you can build?

5.3 Compute the dispersion-limited transmission distance for links with standard single-
mode fiber at 1550 nm as a function of the bit rate (100 Mb/s, 1 Gb/s, and 10 Gb/s)
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for the following transmitters: (a) a Fabry-Perot laser with a spectral width of 10 nm,
(b) a directly modulated DFB laser with a spectral width of 0.1 nm, and (c) an
externally modulated DFB laser with a spectral width of 0.01 nm. Assume that the
modulation bandwidth equals the bit rate and the dispersion penalty is 2 dB. Assume
that NRZ modulation is used.

5.4 Repeat Problem 5.3 for NZ-DSF assuming a dispersion parameter of 5 ps/nm-km.

5.5 Consider a length L of step-index multimode fiber having a core diameter of 50 μm
and a cladding diameter of 200 μm. The refractive indices of the core and cladding
are 1.50 and 1.49, respectively. A fixed-wavelength, 1310 nm DFB laser (operating
at 0 dBm) is used at one end of the fiber to serve as a 155.52 Mb/s transmitter source.
At the far end, a photodetector is used as a receiver. Assume that NRZ modulation
is used.

(a) Draw and label a diagram that illustrates the above configuration.
(b) What would be the corrugation period of the DFB laser at this wavelength?
(c) Compute the numerical aperture for this fiber.
(d) What would be the maximum acceptable fiber length when operating at this

bit rate?
(e) Assuming an attenuation of 0.40 dB/km, what would be the output power

(in dBm) at the receive end of the fiber?
(f) Assuming a perfectly efficient photodetector, what would be the resulting

photocurrent?
(g) If we instead used single-mode fiber for this application, what would be the

new requirement on its core diameter?
Note that this problem requires you to understand the material in Chapters 2, 3, and
4 as well.

5.6 Consider a passive WDM link of length L, consisting of single-mode fiber into which
five wavelengths are launched through an optical combiner such that the aggregate
launch power at its output is 5 mW. These five wavelengths are centered on the
193.1 THz ITU grid, with uniform 100 GHz interchannel spacing. The transmitters
all use directly modulated DFB lasers with a spectral width of 0.1 nm. Each channel is
transporting a SONET OC-48 (2.5 Gb/s) signal. At the end of this link, the channels
are optically demultiplexed and are each received by a direct detection pin receiver.
For this problem, neglect all losses and crosstalk associated with the WDM mux and
demux. Assume that NRZ modulation is used.

(a) Draw and label a diagram illustrating this configuration.
(b) Calculate the wavelengths (in nm, to two decimal places) associated with

these five channels.
(c) Calculate the average launch power per channel at the output of the WDM

combiner.
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(d) Assuming αdB = 0.25 dB/km, D = 17 ps/nm-km, and DPMD = 0.5 ps/
√

km,
calculate the worst-case dispersion, PMD, and loss limits for this link.

(e) What is the maximum value of L meeting all of these requirements?

5.7 Consider a point-to-point link connecting two nodes separated by 60 km. This link
was constructed with standard single-mode fiber, and a 2.5 Gb/s system is deployed
over the link. The transmitter uses a directly modulated 1310 nm DFB laser. The
receiver uses perfectly efficient pin photodiodes, and we will assume, for this problem,
that they can be modeled as ideal receivers. The bit error rate requirement for this
system is 10−12. Assume αdB = 0.4 dB/km and that NRZ modulation is used.

(a) Draw and label a diagram illustrating this configuration.
(b) Is this system loss limited or dispersion limited? Briefly explain your rea-

soning.
(c) What is the required receiver sensitivity (in mW and dBm)?
(d) What would be the resulting photocurrent?
(e) What would be the required launch power (in dBm)?

5.8 The link of Problem 5.7 is at full capacity, and we must design a solution that will
enable capacity expansion and accommodate further growth. After considering the
options, we determine that the most cost-effective solution is to add a 1550 nm point-
to-point system over the existing set of fibers, thereby realizing a two-wavelength
(1310 nm/1550 nm) passive WDM configuration. Assume that 3 dB couplers are
used to combine the two signals just after the transmitters and separate the two
signals just before the receivers. The next step is to determine what bit rate can
be supported by this 1550 nm system. Assume that the 1550 nm transmitter uses a
directly modulated DFB laser (with spectral width of 0.1 nm). At 1550 nm, assume
αdB = 0.25 dB/km, D = 17 ps/nm-km, and DPMD = 1 ps/

√
km.

(a) Draw and label a diagram illustrating this new configuration.
(b) What is the launch power now required for the original 2.5 Gb/s 1310 nm

system to maintain the same level of receiver performance?
(c) If we assume an ideal receiver with the same 10−12 bit error rate performance

for the 1550 nm system, determine the associated receiver sensitivities for
both 2.5 Gb/s and 10 Gb/s signals.

(d) Calculate bit rate limits based on loss, dispersion, and PMD for the new
system.

(e) Can 10 Gb/s be suitably transported by this new system? Briefly explain your
reasoning.

(f) For the 2.5 Gb/s and 10 Gb/s (if it is possible) line rates, calculate the required
launch power to successfully transport the signal.

5.9 Derive Equation (5.4).



358 Transmission System Engineering

5.10 Show that the extinction ratio penalty in amplified systems limited by signal-
spontaneous beat noise and spontaneous-spontaneous beat noise is

PP = −10 log

(
r − 1
r + 1

√
r + 1√
r + 1

)
.

Assume that other noise terms are negligible.

5.11 Consider the amplifier chain discussed in Section 5.5.3. Using Equations (5.6) and
(5.7), compute the steady-state values of P out and G in a long chain of amplifiers.
Assume Gmax = 35 dB, l = 120 km, α = 0.25 dB/km, nsp = 2, P sat = 10 mW, and
Bo = 50 GHz. How do these values compare against the unsaturated gain Gmax and
the output saturation power of the amplifier P sat

out? Plot the evolution of the signal
power and optical signal-to-noise ratio as a function of distance along the link.

5.12 Derive Equation 5.12. How does this equation change when the desired and crosstalk
signals result from the same source (ds = dx)?

5.13 Derive Equations (5.11), (5.12), (5.13), and (5.14) when there are N interfering
signals rather than just one.

5.14 Why is Equation (5.24) an approximation? Derive a precise form of this equation.

5.15 Consider the WDM link shown in Figure 5.1. Each multiplexer and demultiplexer in-
troduces crosstalk from adjacent channels that is C dB below the desired channel.

(a) Compute the crosstalk at the output when N such stages are cascaded.
(b) What must C be so that the overall crosstalk penalty after five stages is less

than 1 dB?

5.16 Consider a WDM system with W channels, each with average power P and extinction
ratio P1/P0 = r. Derive the interchannel crosstalk power penalty in (5.13) for this
system compared to a system with ideal extinction and no crosstalk. What should
the crosstalk level be for a maximum 1 dB penalty if the extinction ratio is 10 dB?

5.17 Consider the WDM network node shown in Figure 5.36. Assume the node has two
inputs and two outputs. The multiplexers/demultiplexers are ideal (no crosstalk),
but each switch has a crosstalk level C dB below the desired channel. Assume that
in the worst case, crosstalk in each stage adds coherently to the signal.

(a) Compute the crosstalk level after N nodes.
(b) What must C be so that the overall crosstalk penalty after five nodes is less

than 1 dB?

5.18 Consider the WDM network node shown in Figure 5.36. Assume the node has
two inputs and two outputs. The mux/demuxes have adjacent channel crosstalk



Problems 359

Switch

Mux

� � �1 2, , . . . , W

� � �1 2, , . . . , W

� � �1 2, , . . . , W

� � �1 2, , . . . , W

� � �1 2, , . . . , W

� � �1 2, , . . . , W

�1

�	

�W

Demux

..
. ..

.

..
.

Figure 5.36 A node in a WDM network for Problems 5.17–5.20.

suppressions of−25 dB, and crosstalk from other channels is negligible. The switches
have a crosstalk specification of −40 dB. How many nodes can be cascaded in a
network without incurring more than a 1 dB penalty due to crosstalk? Consider
only intrachannel crosstalk from the switches and the multiplexers/demultiplexers.

5.19 Consider a WDM system with N nodes, each node being the one shown in Fig-
ure 5.36. The center wavelength λ′c for each channel in a mux/demux has an ac-
curacy of ±�λ nm around the nominal center wavelength λc. Assume a Gaussian
passband shape for each channel in a mux; that is, the ratio of output power to input
power, called the transmittance, is given by

TR(λ) = e
− (λ−λ′c)2

2σ2 ,

where σ is a measure of the channel bandwidth and λ′c is the center wavelength. This
passband shape is typical for an arrayed waveguide grating.

(a) Plot the worst-case and best-case peak transmittance in decibels as a function
of the number of nodes N for σ = 0.2 nm, �λ = 0.05 nm. Assume that the
laser is centered exactly at λc.

(b) What should �λ be if we must have a worst-case transmittance of 3 dB after
10 nodes?

5.20 Consider a system with the same parameters as in Problem 5.19. Suppose the WDM
channels are spaced 0.8 nm apart. Consider only crosstalk from the two adjacent
channels. Compute the interchannel crosstalk power relative to the signal power in
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decibels, as a function of N, assuming all channels are at equal power and exactly
centered. Compute the crosstalk also for the case where the desired channel is exactly
centered at λi , but the adjacent channels are centered at λi−1 +�λ and λi+1 −�λ.

5.21 Consider the simple add/drop element shown in Figure 3.14(b). Suppose we use
another circulator instead of the coupler shown in the figure to add the wavelength.
This eliminates the loss due to the coupler. Let the input power on the wavelength
to be dropped be −30 dBm and the transmitted power on the added wavelength
be 0 dBm. Suppose the grating has a reflectivity of 99%. Compute the intrachannel
crosstalk power arising from (a) leakage of the added wavelength into the dropped
wavelength and (b) leakage of the dropped wavelength into the added wavelength.
Assume that each circulator has a loss of 1 dB. Will the element work?

5.22 Show that the optimum choice of the pulse width of an unchirped Gaussian pulse
(with narrow spectral width) that minimizes the pulse-broadening effects of chro-
matic dispersion over a fiber of length L is

T
opt
0 =

√
β2L.

5.23 If 0 ≤ ε ≤ 1 is the power-splitting ratio between the two polarization components, the
random power penalty in decibels due to PMD is related to the random differential
time delay as

PP(dB) = α
�τ 2

T 2 ε(1− ε),

where T is the bit period and α is a constant depending on the pulse shape and takes
values in the range 12–25 for commonly studied pulse shapes [KK97a, Chapter 6].
Note that we have already taken logarithms in the above equation. Thus the random
variable PP is a function of the random variables �τ and ε. Assuming a Maxwellian
distribution for �τ with mean 〈�τ 〉 and a uniform distribution for ε, show that
PP has an exponential distribution. What is the mean value of PP? What is the
probability that PP ≥ 1 dB?

5.24 Neglecting the depletion of the pump wave, solve (2.14) and (2.15) to obtain the
evolution of the SBS pump and Stokes waves.

5.25 Compute the SBS threshold power for the following systems: (a) a single-channel
system using a Fabry-Perot laser with 10 lines, each line having a modulated line
width of 1 GHz, (b) a multichannel system with a DFB laser having a modulated line
width of 1 GHz, and (c) same as (b) except that the line width is 10 GHz.

5.26 Consider (5.27) as expressing TL, the pulse width after a distance L, in terms of the
initial pulse width T0.
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(a) As in the case of chromatic dispersion, there is an optimum initial pulse width
(for a given link length L). Find an expression for this optimum initial pulse
width.

(b) Assuming a pulse with this optimum width is used, find the maximum link
length for a power penalty of 1 dB. Note that this power penalty is due to
both SPM and chromatic dispersion.

(c) Assume that a pulse of the same initial width is used but that the link has no
SPM but only chromatic dispersion. Using (2.13), calculate the pulse width
at the end of the link and hence the penalty due to chromatic dispersion.

The remainder of the 1 dB penalty is due to SPM. Note that the SPM penalty can
be negative for some combinations of link, dispersion, and nonlinear lengths. This
occurs when the initial pulse compression due to the chirping caused by SPM results
in a narrower pulse at the end of the link, compared to the case when SPM is absent
and only chromatic dispersion is present.

5.27 You are required to design a four-wavelength transmission system operating over
dispersion-shifted fiber. The four wavelengths are to be placed in a band from
193.1 THz to 194.1 THz. The possible slots are spaced 100 GHz apart in this band.
Pick the four wavelengths carefully so that no four-wave mixing component falls on
any of the chosen wavelengths.

5.28 Compute and plot the four-wave mixing limit on the transmit power per channel
for a WDM system operating over NZ-DSF. Assume that the channels are equally
spaced and transmitted with equal power, and the maximum allowable penalty due
to FWM is 1 dB. For the fiber, assume the dispersion parameter D = 3 ps/nm-km in
the middle of the transmitted band of channels, and the slope of the dispersion curve
is dD/dλ = 0.055 ps/nm-km2. Consider the same three cases as in Figure 5.30: (a) 8
channels spaced 100 GHz apart, (b) 32 channels spaced 100 GHz apart, and (c) 32
channels spaced 50 GHz apart.

5.29 Why do second-order nonlinearities typically not affect a lightwave system?

5.30 In discussing the chromatic dispersion penalty, the Telcordia standard for SONET
systems [Tel99] specifies the spectral width of a pulse, for single-longitudinal mode
(SLM) lasers, as its 20 dB spectral width divided by 6.07. We studed these lasers in
Section 3.5.1. Show that for SLM lasers whose spectra have a Gaussian profile, this
is equivalent to the rms spectral width.

5.31 For a narrow but chirped Gaussian pulse with chirp factor κ = −6, calculate the
chromatic dispersion limit at a bit rate of 1 Gb/s, in the 1.55 μm band, for a penalty
of 2 dB. Compare this with the chromatic dispersion limit for unchirped pulses
plotted in Figure 5.19.
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6
c h a p t e r

Client Layers of the
Optical Layer

This chapter describes several networks that use optical fiber as their underlying
transmission mechanism. These networks can be thought of as client layers of

the optical layer. As we saw in Chapter 1, the optical layer provides lightpaths to the
client layers, where the lightpaths are the physical links between client layer network
elements. All the client layers that we will study process the data in the electrical
domain, performing functions such as fixed time division multiplexing or statistical
time division multiplexing (packet switching). They aggregate and bring a variety
of lower-speed voice, data, and private line services into the network. Each of these
client networks is important in its own right and can operate over point-to-point
fiber links as well as over a more sophisticated optical layer, using the lightpaths
provided by the optical layer.

The predominant client layers in backbone networks today are SONET/SDH,
Ethernet, and the Optical Transport Network (OTN). These protocols would cor-
respond to the physical layer in the OSI hierarchy (see Figure 1.6). SONET/SDH
as part of the first generation of optical networks was the earliest to be deployed
in backbone networks and has been very successful over the years. It is particularly
adept at supporting constant bit rate (CBR) connections, and it multiplexes these
connections into higher speed optical connections by using time division multiplex-
ing. Originally designed for low speed voice and CBR connections, up to 51 Mb/s,
it now supports data network, packet traffic that can have link transmission rates
in the tens of gigabits per second. An important feature of SONET/SDH is that it
provides carrier grade service of high availability.

SONET/SDH can transport packets for data networks due to data link layer
protocols that adapt packet traffic to its connections. Generic Framing Procedure
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(GFP) is an adaptation method that works for a variety of data networks, including
IP, Ethernet, and Fibre Channel.

OTN builds upon the concepts of SONET/SDH and has been designed to carry all
types of data traffic including SONET/SDH traffic. It has been enhanced to operate
at very high transmission rates, and it has a complete and flexible set of operation
and management features.

Ethernet started as a local-area network (LAN) using a coaxial cable. Today, it is
carried over all communication physical media including twisted pair, wireless, and
fiber optic cables. It offers a wide range of data rates: 10 Mb/s, 100 Mb/s, 1 Gb/s,
and 10 Gb/s. Ethernet spans the data link and physical layers.

IP will also be covered, even though it is not a proper client layer of the optical
layer. It is at the network layer and is not carried directly over optical paths. However,
it is the predominant packet transport technology for many applications including
the Internet, and much of the traffic carried by optical networks is IP traffic. Thus,
it is important to understand IP since optical networks should efficiently support its
traffic. In addition, some of the ideas of the IP protocol have been applied to design
optical networks.

IP uses connectionless routing, where packets are forwarded based only on the
packets’ destinations. It has been enhanced with the multiprotocol label switching
(MPLS), protocol which is a connection-oriented routing mechanism. In connection-
oriented routing, streams of packets are organized into flows, and routing is done
per flow. Flows are identified by labels, and these labels are carried by packets to
identify their flow and to facilitate packet forwarding along routes.

In the metro network, there are several types of client layers such as Gigabit
Ethernet, 10-Gigabit Ethernet, Fibre Channel, Resilient Packet Ring (RPR) as well
as SONET/SDH. Fibre Channel is used in the so-called storage-area networks to
interconnect computers and their peripherals. RPR is at the data link layer and is
not a proper client layer of the optical layer. However, for data packet traffic, it is an
alternative to SONET/SDH, and like SONET/SDH, it uses a ring network topology
to provide high availability of service.

In this chapter, we provide descriptions of these various networks, focusing
primarily on a qualitative understanding, as well as characteristics that are important
in the context of the optical layer. We first describe SONET/SDH in some detail,
including the SONET sublayers, frame structure, and the various overhead bytes.
We will see in Chapters 8 and 9 that many functions in the optical layer are somewhat
analogous to those in the SONET layer. In particular, the control, management, and
survivability built into SONET/SDH networks are the basis of how these functions
are being implemented in the optical layer. Similarly, in the context of IP and MPLS,
we discuss the IP and MPLS routing and signaling protocols. These protocols are
being reused to control the optical layer.
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Table 6.1 Transmission rates for asynchronous and plesiochronous
signals, adapted from [SS96].

Level North America Europe Japan

0 0.064 Mb/s 0.064 Mb/s 0.064 Mb/s
1 1.544 Mb/s 2.048 Mb/s 1.544 Mb/s
2 6.312 Mb/s 8.448 Mb/s 6.312 Mb/s
3 44.736 Mb/s 34.368 Mb/s 32.064 Mb/s
4 139.264 Mb/s 139.264 Mb/s 97.728 Mb/s

6.1 SONET/SDH

SONET (Synchronous Optical Network) is the current transmission and multiplexing
standard for high-speed signals within the carrier infrastructure in North America.
A closely related standard, SDH (Synchronous Digital Hierarchy), has been adopted
in Europe and Japan and for most submarine links.

In order to understand the factors underlying the evolution and standardization
of SONET and SDH, we need to look back in time and understand how multiplexing
was done in the public network. Prior to SONET and SDH, the existing infrastruc-
ture was based on the plesiochronous digital hierarchy (PDH), dating back to the
mid-1960s. (North American operators refer to PDH as the asynchronous digital
hierarchy.) At that time the primary focus was on multiplexing digital voice circuits.
An analog voice circuit with a bandwidth of 4 kHz could be sampled at 8 kHz and
quantized at 8 bits per sample, leading to a bit rate of 64 kb/s for a digital voice
circuit. This became the widely accepted standard. Higher-speed streams were de-
fined as multiples of this basic 64 kb/s stream. Different sets of standards emerged
in different parts of the world for these higher-speed streams, as shown in Table 6.1.
In North America, the 64 kb/s signal is called DS0 (digital signal-0), the 1.544 Mb/s
signal is DS1, the 44.736 Mb/s is DS3, and so on. In Europe, the hierarchy is labeled
E0, E1, E2, E3, and so on, with the E0 rate being the same as the DS0 rate. These
rates are widely prevalent today in carrier networks and are offered as leased line
services by carriers to customers, more often than not to carry data rather than voice
traffic.

PDH suffered from several problems, which led carriers and vendors alike to
seek a new transmission and multiplexing standard in the late 1980s. This resulted
in the SONET/SDH standards, which solved many problems associated with PDH.
We explain some of the benefits of SONET/SDH below and contrast it with PDH.
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Figure 6.1 Comparison of asynchronous and synchronous multiplexing. (a) In the asyn-
chronous case, demultiplexers must be stacked up to extract a lower-speed stream from
a multiplexed stream. (b) In the synchronous case, this can be done in a single step using
relatively simple circuitry.

1. Multiplexing simplification: In asynchronous multiplexing, each terminal in the
network runs its own clock, and while we can specify a nominal clock rate for the
signal, there can be significant differences in the actual rates between different
clocks. For example, in a DS3 signal, a 20 ppm (parts per million) variation
in clock rate between different clocks, which is not uncommon, can produce
a difference in bit rate of 1.8 kb/s between two signals. So when lower-speed
streams are multiplexed by interleaving their bits, extra bits may need to be
stuffed in the multiplexed stream to account for differences between the clock
rates of the individual streams. As a result, the bit rates in the asynchronous
hierarchy are not integral multiples of the basic 64 kb/s rate, but rather slightly
higher to account for this bit stuffing. For instance, a DS1 signal is designed
to carry 24 64 kb/s signals, but its bit rate (1.544 Mb/s) is slightly higher than
24× 64 kb/s.

With asynchronous multiplexing, it is very difficult to pick out a low-bit-
rate stream, say, at 64 kb/s, from a higher-speed stream passing through, say, a
DS3 stream, without completely demultiplexing the higher-speed stream down
to its individual component streams. This results in the need for “multiplexer
mountains,” or stacked-up multiplexers, each time a low-bit-rate stream needs to
be extracted, as shown in Figure 6.1. This is a relatively expensive proposition and
also compromises network reliability because of the large amount of electronics
needed overall.

The synchronous multiplexing structure of SONET/SDH provides significant
reduction in the cost of multiplexing and demultiplexing. All the clocks in the
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network are perfectly synchronized to a single master clock, and as a conse-
quence, the rates defined in SONET/SDH are integral multiples of the basic rate
and no bit stuffing is needed when multiplexing streams together. As a result, a
lower-speed signal can be extracted from a multiplexed SONET/SDH stream in
a single step by locating the appropriate positions of the corresponding bits in
the multiplexed signal. This makes the design of SONET multiplexers and de-
multiplexers much easier than their asynchronous equivalents. We will explore
this in more detail in Section 6.1.1.

2. Management: The SONET and SDH standards incorporate extensive manage-
ment information for managing the network, including extensive performance
monitoring, identification of connectivity and traffic type, identification and re-
porting of failures, and a data communication channel for transporting man-
agement information between the nodes. This is mostly lacking in the PDH
standards.

3. Interoperability: Although PDH defined multiplexing methods, it did not define
a standard format on the transmission link. Thus different vendors used different
line coding, optical interfaces, and so forth to optimize their products, which
made it very difficult to connect one vendor’s equipment to another’s via a trans-
mission link. SONET and SDH avoid this problem by defining standard optical
interfaces that enable interoperability between equipment from different vendors
on the link.

4. Network availability: The SONET and SDH standards have evolved to incorpo-
rate specific network topologies and specific protection techniques and associ-
ated protocols to provide high-availability services. As a consequence, the service
restoration time after a failure with SONET and SDH is much smaller—less than
60 ms—than the restoration time in PDH networks, which typically took several
seconds to minutes.

6.1.1 Multiplexing

SONET and SDH employ a sophisticated multiplexing scheme, which can, however,
be easily implemented in today’s very large-scale integrated (VLSI) circuits. Although
SONET and SDH are basically similar, the terms used in SONET and SDH are
different, and we will use the SONET version in what follows and introduce the
SDH version wherever appropriate.

For SONET, the basic signal rate is 51.84 Mb/s, called the synchronous transport
signal level-1 (STS-1). Higher-rate signals (STS-N) are obtained by interleaving the
bytes from N frame-aligned STS-1s. Because the clocks of the individual signals are
synchronized, no bit stuffing is required. For the same reason, a lower-speed stream
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Table 6.2 Transmission rates for SONET/SDH, adapted
from [SS96].

SONET Signal SDH Signal Bit Rate (Mb/s)

STS-1 51.84
STS-3 STM-1 155.52
STS-12 STM-4 622.08
STS-24 1244.16
STS-48 STM-16 2488.32
STS-192 STM-64 9953.28
STS-768 STM-256 39, 814.32

can be extracted easily from a multiplexed stream without having to demultiplex the
entire signal.

The currently defined SONET and SDH rates are shown in Table 6.2. Note
that an STS signal is an electrical signal and in many cases (particularly at the
higher speeds) may exist only inside the SONET equipment. The interface to other
equipment is usually optical and is essentially a scrambled version of the STS signal in
optical form. Scrambling is used to prevent long runs of 0s or 1s in the data stream.
(See Section 4.1.1 for a more detailed explanation of scrambling.) Each SONET
transmitter scrambles the signal before it is transmitted over the fiber, and the next
SONET receiver descrambles the signal. The optical interface corresponding to the
STS-3 rate is called OC-3 (optical carrier-3), and similar optical interfaces have been
defined for OC-12, OC-48, OC-192, and OC-768 corresponding to the STS-12,
STS-48, STS-192, and STS-768 signals.

For SDH, the basic rate is 155 Mb/s and is called STM-1 (synchronous transport
module-1). Note that this is higher than the basic SONET bit rate. The SONET
bit rate was chosen to accommodate the commonly used asynchronous signals,
which are DS1 and DS3 signals. The SDH bit rate was chosen to accommodate
the commonly used PDH signals, which are E1, E3, and E4 signals. Higher-bit-rate
signals are defined analogous to SONET, as shown in Table 6.2.

A SONET frame consists of some overhead bytes called the transport overhead
and the payload bytes. The payload data is carried in the so-called synchronous
payload envelope (SPE). The SPE includes a set of additional path overhead bytes
that are inserted at the source node and remain with the data until it reaches its
destination node. For instance, one of these bytes is the path trace, which identifies
the SPE and can be used to verify connectivity in the network. We will study the
frame structure in more detail in Section 6.1.4.
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SONET and SDH make extensive use of pointers to indicate the location of
multiplexed payload data within a frame. The SPE does not have a fixed starting point
within a frame. Instead, its starting point is indicated by a pointer in the line overhead.
Even though the clocks in SONET are all derived from a single source, there can be
small transient variations in frequency between different signals. Such a difference
between the incoming signal and the local clock used to generate an outgoing signal
translates into accumulated phase differences between the two signals. This problem
is easily solved by allowing the payload to be shifted earlier or later in a frame
and indicating this by modifying the associated pointer. This avoids the need for bit
stuffing or additional buffering. However, it does require a fair amount of pointer
processing, which can be performed easily in today’s integrated circuits.

Lower-speed non-SONET streams below the STS-1 rate are mapped into virtual
tributaries (VTs). Each VT is designed to have sufficient bandwidth to carry its
payload. In SONET, VTs have been defined in four sizes: VT1.5, VT2, VT3, and VT6.
These VTs are designed to carry 1.5, 2, 3, and 6 Mb/s asynchronous/plesiochronous
streams, as shown in Figure 6.2. Of these, the VT1.5 signal is the most common, as it
holds the popular DS1 asynchronous signal. At the next level in the hierarchy, a VT
group consists of either four VT1.5s, three VT2s, two VT3s, or a single VT6. Seven
such VT groups are byte interleaved along with a set of path overheads to create a
basic SONET SPE. Just as an SPE floats within a SONET frame, the VT payload
(called VT SPE) can also float within the STS-1 SPE, and a VT pointer is used to
point to the VT SPE. The pointer is located in two designated bytes within each VT
group. Figure 6.3 illustrates this pointer structure.

In many cases, it is necessary to map higher-speed non-SONET signals into an
SPE for transport over SONET. The most common examples today are probably
high-speed IP or Ethernet packet streams. For this purpose, an STS-Nc signal with
a locked payload is also defined in the standards. The “c” stands for concatenated,
and N is the number of STS-1 payloads. The concatenated or locked payload implies
that this signal cannot be demultiplexed into lower-speed streams.

For example, a 150 Mb/s client signal can be mapped into an STS-3c signal.
Mappings have been defined in the standards for a variety of signals, including IP.

While SDH employs the same philosophy as SONET, there are some differences
in terminology and in the multiplexing structure for sub-STM-1 signals. Analo-
gous to SONET virtual tributaries, SDH uses virtual containers (VCs) to accom-
modate lower-speed non-SDH signals. VCs have been defined in five sizes: VC-
11, VC-12, VC-2, VC-3, and VC-4. These VCs are designed to carry 1.5 Mb/s
(DS1), 2 Mb/s (E1), 6 Mb/s (E2), 45 Mb/s (E3 and DS3), and 140 Mb/s (E4)
asynchronous/plesiochronous streams, respectively. However, a two-stage hierarchy
is defined here, where VC-11s, VC-12s, and VC-2s can be multiplexed into VC-3s
or VC-4s, and VC-3s and VC-4s are then multiplexed into an STM-1 signal.
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Figure 6.2 The mapping of lower-speed asynchronous streams into virtual tributaries
in SONET.
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Figure 6.3 The use of pointers in a SONET STS-1 signal carrying virtual tributaries
(VTs). The STS payload pointer in the transport overhead points to the STS-1 synchronous
payload envelope (SPE) and the VT pointer inside the STS-1 SPE points to the VT SPE.
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6.1.2 VCAT and LCAS

As we discussed earlier, SONET has the option of locking or concatenating multi-
ple STS-1 payloads to carry client signals. Commonly supported concatenations are
STS-3c, STS-12c, STS-48c, and STS-192c, which correspond to the line rates shown
in Table 6.2. A drawback of concatenation is that the constituent payloads must
be contiguous. Thus, if there are two STS-1s that are adjacent but a third STS-1
that is not, the three could not be concatenated together to form an STS-3c. This
can leave stranded unused bandwidth. Another drawback is that since there are a
limited number of concatenated connection rates, STS-3c, STS-12c, . . ., there can be
a mismatch between the client signal rate and the available SONET/SDH connection
rates. For example, the smallest SONET concatenated connection that can carry a
Gigabit Ethernet link is a 2.5 Gb/s STS-48c connection, which is an overprovision-
ing by 150%. Yet another drawback is that older SONET DCS equipment switch
at STS-1 rates and cannot switch larger payloads. In this case, implementing con-
tiguous concatenated services will require upgrading intermediate SONET switching
equipment, which can be expensive.

Virtual Concatenation (VCAT) addresses these problems by allowing noncon-
tiguous payloads to be combined as a single connection. Such a grouping is referred
to as a virtual concatenation group (VCG). VCAT is an inverse multiplexing tech-
nique that combines multiple connections into a single connection at the aggregate
bandwidth. For example, STS-1-12v is a SONET VCAT connection with the same
data rate as an STS-12c and is composed of 12 STS-1 payloads, which are possibly
noncontiguous. Here, the "v" in STS-1-12v means virtual concatenation. Another
SONET VCAT connection with the same data rate is an STS-3c-4v, which is com-
posed of four STS-3c connections.

The VCAT notation for SONET is STS-N-Mv, where N is the size of a member
and M is the number of members in a VCG. The values of N are the standard
concatenated payload sizes, and commonly STS-1 and STS-3c. The M values have
fewer restrictions than contiguous concatenation, and as a result the right-sized
bandwidth can be provisioned for a data application. Going back to our Gigabit
Ethernet application, VCAT can provide a 1.05 Gb/s STS-3-7v connection, which
is an overprovisioning of only 5%. SDH also has virtual concatenation. The VCAT
notation for SDH is VC-N-Mv, for example, VC-4-7v is composed of seven VC-4
connections, and VC-3-5v is composed of five VC-3 connections.

Note that for a SONET STS-1-Mv connection, intermediate SONET nodes can
be unaware that a particular STS-1 is a member of the VCG. This is an important
property of virtual concatenation since it permits seamless deployment over the vast
SONET installed base with only the endpoints being aware of VCAT, and has been
one of the primary factors behind its adoption. Of course, this also applies to SDH.
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A VCG could consist of lower-order tributaries (e.g., VT-1.5/VC-11 or VC-
12) or higher order tributaries (e.g., VC-3/STS-1 or VC-4/STS-3c). Accordingly, we
have low-order or LO-VCAT and high-order or HO-VCAT. Typically, 10 Mb/s and
100 Mb/s Ethernet traffic use LO-VCAT and Gigabit Ethernet traffic uses HO-VCAT.
For example, SONET VT1.5-64v can carry 100 Mb/s Ethernet and STS-1-21v can
carry 1 Gb/s Ethernet, which for both cases is only a 2% overprovisioning.

VCAT also allows the members of a VCG to be routed on different physical
paths. Thus, a VCAT connection can be made up of constituent connections from
different parts of the network, which can further reduce the amount of stranded
unused bandwidth.

Combining VCG members that are routed on different physical paths poses a
practical problem since the latencies of the paths could be widely different. The
difference in latencies is known as the differential delay. In order to combine these
byte streams properly, buffers are required at the end of the connection to compensate
for the delay. The standards allow a differential delay between any two members of
a VCG to be up to 128 ms. This corresponds to about the maximum latency we can
expect when routing between any two points on the globe! Practical implementations
tolerate differential delays of 32 to 64 ms.

The Link Capacity Adjustment Scheme (LCAS) is a companion to VCAT that
allows for hitless resizing of bandwidth in a VCAT connection when adding or
removing members of a VCG. This can be useful for managing the capacity of
a VCAT connection for applications such as using the connection as an IP link.
Then the link capacity can be adjusted to changes in IP traffic loads. LCAS can
also be used to implement hitless regrooming, which can occur when traffic must be
rerouted to optimize bandwidth use or avoid a network component that will undergo
maintenance.

6.1.3 SONET/SDH Layers

The SONET layer consists of four sublayers—the path, line, section, and physical
layers. Figure 6.4 shows the top three layers. Each layer, except for the physical
layer, has a set of associated overhead bytes that are used for several purposes. These
overhead bytes are added whenever the layer is introduced and removed whenever
the layer is terminated in a network element. The functions of these layers will
become clearer when we discuss the frame structure and overheads associated with
each layer in the next section.

The path layer in SONET (and SDH) is responsible for end-to-end connections
between nodes and is terminated only at the ends of a SONET connection. It is
possible that intermediate nodes may do performance monitoring of the path layer
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Figure 6.4 SONET/SDH layers showing terminations of the path, line, and section
layers for a sample connection passing through terminal multiplexers (TMs) and add/drop
multiplexers (ADMs). The physical layer is not shown.

signals, but the path overhead itself is inserted at the source node of the connection
and terminated at the destination node.

Each connection traverses a set of links and intermediate nodes in the network.
The line layer (multiplex section layer in SDH) multiplexes a number of path-layer
connections onto a single link between two nodes. Thus the line layer is terminated
at each intermediate line terminal multiplexer (TM) or add/drop multiplexer (ADM)
along the route of a SONET connection. The line layer is also responsible for per-
forming certain types of protection switching to restore service in the event of a line
failure.

Each link consists of a number of sections, corresponding to link segments be-
tween regenerators. The section layer (regenerator-section layer in SDH) is terminated
at each regenerator in the network.

Finally, the physical layer is responsible for actual transmission of bits across the
fiber.

6.1.4 SONET Frame Structure

Figure 6.5 shows the structure of an STS-1 frame. A frame is 125 μs in duration
(which corresponds to a rate of 8000 frames/s), regardless of the bit rate of the
SONET signal. This time is set by the 8 kHz sampling rate of a voice circuit. The
frame is a specific sequence of 810 bytes, including specific bytes allocated to carry
overhead information and other bytes carrying the payload. We can visualize this
frame as consisting of 9 rows and 90 columns, with each cell holding an 8-bit byte.
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Figure 6.5 Structure of an STS-1 frame. B denotes an 8-bit byte.

The bytes are transmitted row by row, from left to right, with the most significant
bit in each byte being transmitted first.

The first three columns are reserved for section and line overhead bytes. The
remaining bytes carry the STS-1 SPE. The STS-1 SPE itself includes one column of
overhead bytes for carrying the path overhead.

An STS-N frame is obtained by byte-interleaving N STS-1 frames, as shown in
Figure 6.6. The transport overheads are in the first 3N columns, and the remaining
87N columns contain the payload. The transport overheads need to be frame aligned
before they are interleaved. However, because each STS-1 has an associated payload
pointer to indicate the location of its SPE, the payloads do not have to be frame
aligned. An STS-Nc frame looks like an STS-N frame, except that the payload
cannot be broken up into lower-speed signals in the SONET layer. The same 87N

columns contain the payload, and special values in the STS-payload pointers are
used to indicate that the payload is concatenated.

Figure 6.7 shows the overhead bytes in an STS-1 frame or an STS-Nc frame. In
an STS-N frame, there are N sets of overhead bytes, one for each STS-1. Each STS-1
has its own set of section and line overheads. An STS-Nc, on the other hand, has
only a single set of overhead bytes, due to the fact that its payload has to be carried
intact from its source to its destination with the SONET network.

We cover the overhead bytes here because they provide some key management
functions that make SONET so attractive for network operators. In the following
discussion, the actual locations and formatting of the bytes are not as important as
understanding the functions they perform. We will look at these functions in more
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Figure 6.6 Structure of an STS-N frame, which is obtained by byte-interleaving N

STS-1 frames.

detail in the context of the optical layer in Chapter 8. The section and line overheads
in particular are of great interest to the optical layer. Some if not all these bytes are
monitored by optical layer equipment. In addition, some of the overhead bytes are
currently undefined, and these bytes are now being considered as possible candidates
to carry optical layer overhead information. We will discuss this aspect in more detail
in Chapter 8. For a more detailed description of the overhead bytes, see [Tel99].

Section Overhead

Framing (A1/A2). These two bytes are used for delineating the frame and are set to
prespecified values in each STS-1 within an STS-N . Network elements use these
bytes to determine the start of a new frame.

Section Trace(J0)/Section Growth(Z0). The J0 byte is present in the first STS-1 in
an STS-N and is used to carry an identifier, which can be monitored to verify
connectivity between adjacent section-terminating nodes in the network. The Z0
byte is present in the remaining STS-1s, and its use is still to be determined.

Section BIP-8 (B1). This byte is located in the first STS-1 in an STS-N and is used
to monitor the bit error rate performance of each section. The byte locations in
the remaining frames within an STS-N are currently undefined. The transmitter
computes a bit interleaved parity (BIP) computed over all bytes in the previous
STS-N frame after scrambling and places it in the B1 byte of the current frame
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Figure 6.7 SONET overhead bytes. Entries of the form X/Y indicate that the first label
X applies to the first STS-1 within an STS-N signal and the second label Y applies to the
remaining STS-1’s in the STS-N .

before it is scrambled. An odd parity value indicates an error. We studied how
this code works in Section 4.5 and Problem 4.16 in Chapter 4.

Orderwire (E1). This byte (located in the first STS-1 in a frame) is used to carry a
voice channel between nodes, for use by maintainence personnel in the field.

Section User Channel (F1). This byte (located in the first STS-1 in a frame) is made
available to the user for inserting additional user-specific information.

Section Data Communication Channel (D1, D2, D3). These bytes (located in the
first STS-1 in a frame) are used to carry a data communication channel (DCC)
for maintenance purposes such as alarms, monitoring, and control.

Line Overhead

Following is a brief outline of the functions of some of the line overhead bytes.
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STS Payload Pointer (H1 and H2). The H1 and H2 bytes in the line overhead carry
a two-byte pointer that specifies the location of the STS SPE. More precisely,
these bytes carry a value corresponding to the offset in bytes between the pointer
and the first byte of the STS SPE.

Line BIP-8 (B2). The B2 byte carries a bit interleaved parity check value for each
STS-1 within the STS-N . It is computed by taking the parity over all bits of the
line overhead and the envelope capacity of the previous STS-1 frame before it is
scrambled. This byte is checked by line terminating equipment. The intermedi-
ate section terminating equipment checks and resets the B1 byte in the section
overhead but does not alter the B2 byte.

APS channel (K1, K2). The K1 and K2 bytes are used to provide a channel for
carrying signaling information during automatic protection switching (APS). We
will study the different types of SONET APS schemes in Chapter 9. The K2 byte
is also used to detect a specific kind of a signal called a forward defect indicator
and to carry a return defect indicator signal. These defect indicator signals are
used for maintenance purposes in the network; we will study their use in detail
in Section 8.5.4.

Line Data Communication Channel. Bytes D4 through D12 (located in the first STS-
1 in a frame) are used to carry a line data communication channel for maintenance
purposes such as alarms, monitoring, and control.

Path Overhead

STS Path trace (J1). Just as in the section overhead, the path overhead includes a
byte (J1) to carry a path identifier that can be monitored to verify connectivity
in the network.

STS Path BIP-8 (B3). The B3 byte provides bit error rate monitoring at the path
layer. It carries a bit interleaved parity check value calculated over all bits of the
previous STS SPE before scrambling.

STS Path Signal Label (C2). The C2 byte is used to indicate the content of the STS
SPE. Specific labels are assigned to denote each type of signal mapped into a
SONET STS-1.

Path Status (G1). The G1 byte is used to convey the performance of the path from
the destination back to the source node. The destination inserts the current error
count in the received signal into this byte, which is then monitored by the source
node. Part of this byte is also used to carry a defect indicator signal back to the
source. We will study the use of defect indicator signals in Section 8.5.4.
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6.1.5 SONET/SDH Physical Layer

A variety of physical layer interfaces are defined for SONET/SDH, depending on
the bit rates and distances involved, as shown in Table 6.3. We have used the SDH
version standardized by the ITU, as it is more current. The interfaces defined for
SONET systems generally align with the SDH versions. Generally, we can classify
the different applications based on the target distance and loss on the link between
the transmitter and receiver. With this in mind, the applications defined fit into one
of the following categories:

Intraoffice connections (I) corresponding to distances of less than approximately
2 km (the SONET term for this is short reach)

Short-haul interoffice connections (S) corresponding to distances of approxi-
mately 15 km at 1310 nm operating wavelength and 40 km at 1550 nm operat-
ing wavelength (the SONET term for this is intermediate reach)

Long-haul interoffice connections (L) corresponding to distances of approxi-
mately 40 km at 1310 nm operating wavelength and 80 km at 1550 nm operat-
ing wavelength (the SONET term for this is long reach)

Very-long-haul interoffice connections (V) corresponding to distances of approx-
imately 60 km at 1310 nm operating wavelength and 120 km at 1550 nm oper-
ating wavelength

Ultra-long-haul interoffice connections (U) corresponding to distances of approx-
imately 160 km

The other variables include the type of fiber and the type of transmitter used. The
fiber types are the ones we covered in Section 2.5.9 and include standard single-mode
fiber (G.652), dispersion-shifted fiber (G.653), and nonzero dispersion-shifted fiber
(G.655). The transmitter types include LEDs or multilongitudinal mode (MLM)
Fabry-Perot lasers at 1310 nm for short distances at the lower bit rates to 1550
nm single-longitudinal mode (SLM) DFB lasers for the higher bit rates and longer
distances. The physical layer uses scrambling to prevent long runs of 1s or 0s in the
data (see Section 4.1.1).

The applications specify many transmission-related parameters, of which the
main ones are the allowed loss range and the maximum chromatic dispersion on the
link. The loss includes connectors and splices along the path. The relative contribu-
tion of the latter to the overall loss is particularly high in intraoffice connections,
where a number of patch panels and connectors can be present in the interconnect.
We can translate the loss numbers into target distances by assuming a loss of ap-
proximately 3.5 dB/km for intraoffice connections, 0.8 dB/km for short-haul, and
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Table 6.3 Different physical interfaces for SDH. Adapted from ITU recommendations G.957
and G.691. No optical amplifiers are used in the spans. The first letter in the application code
specifies the target reach and the following number indicates the bit rate. The number after the
period indicates the fiber type and operating wavelength: a blank or 1 indicates 1310 nm transmis-
sion over standard single-mode fiber (G.652), 2 indicates 1550 nm transmission over for standard
single-mode fiber (G.652), 3 indicates 1550 nm transmission over dispersion-shifted fiber (G.653),
and 5 indicates 1550 nm transmission over nonzero-dispersion-shifted fiber (G.655). The trans-
mitters include multilongitudinal mode (MLM) Fabry-Perot lasers and single-longitudinal mode
(SLM) DFB lasers, as well as light-emitting diodes (LEDs). The two values of the dispersion limit
correspond, respectively, to the two choices of the transmitter. ffs indicates that the specification is
for further study. This is the case for dispersion-limited links using directly modulated SLM lasers
where no agreement has been reached on how to specify the chirp limits. Some of the applications
are loss limited, and therefore the dispersion limit is not applicable (NA).

Bit Rate Code Wavelength Fiber Loss Transmitter Dispersion
(nm) (dB) (ps/nm)

STM-1 I-1 1310 G.652 0-7 LED/MLM 18/25
S-1.1 1310 G.652 0-12 MLM 96
S-1.2 1550 G.652 0-12 MLM/SLM 296/NA
L-1.1 1310 G.652 10-28 MLM/SLM 246/NA
L-1.2 1550 G.652 10-28 SLM NA
L-1.3 1550 G.653 10-28 MLM/SLM 296/NA

STM-4 I-4 1310 G.652 0-7 LED/MLM 14/13
S-4.1 1310 G.652 0-12 MLM 74
S-4.2 1310 G.652 0-12 SLM NA
L-4.1 1310 G.652 10-24 MLM/SLM 109/NA
L-4.2 1550 G.652 10-24 SLM ffs
L-4.3 1550 G.653 10-24 SLM NA
V-4.1 1310 G.652 22-33 SLM 200
V-4.2 1550 G.652 22-33 SLM 2400
V-4.3 1550 G.653 22-33 SLM 400
U-4.2 1550 G.652 33-44 SLM 3200
U-4.3 1550 G.653 33-44 SLM 530

STM-16 I-16 1310 G.652 0-7 MLM 12
S-16.1 1310 G.652 0-12 SLM NA
S-16.2 1550 G.652 0-12 SLM ffs
L-16.1 1310 G.652 10-24 SLM NA
L-16.2 1550 G.652 10-24 SLM 1600
L-16.3 1550 G.653 10-24 SLM ffs
V-16.2 1550 G.652 22-33 SLM 2400
V-16.3 1550 G.653 22-33 SLM 400
U-4.2 1550 G.652 33-44 SLM 3200
U-4.3 1550 G.653 33-44 SLM 530
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Table 6.3 Different physical interfaces for SDH (continued).

Bit Rate Code Wavelength Fiber Loss Transmitter Dispersion
(nm) (dB) (ps/nm)

STM-64 I-64.1r 1310 G.652 0-4 MLM 3.8
I-64.1 1310 G.652 0-4 SLM 6.6
I-64.2r 1550 G.652 0-7 SLM 40
I-64.2 1550 G.652 0-7 SLM 500
I-64.3 1550 G.653 0-7 SLM 80
I-64.5 1550 G.655 0-7 SLM ffs
S-64.1 1550 G.652 6-11 SLM 70
S-64.2 1550 G.652 3/7-11 SLM 800
S-64.3 1550 G.653 3/7-11 SLM 130
S-64.5 1550 G.655 3/7-11 SLM 130
L-64.1 1310 G.652 17-22 SLM 130
L-64.2 1550 G.652 11/16-22 SLM 1600
L-64.3 1550 G.653 16-22 SLM 260
L-64.3 1550 G.653 0-7 SLM ffs
V-64.2 1550 G.652 22-33 SLM 2400
V-64.3 1550 G.653 22-33 SLM 400

0.5 dB/km at 1310 nm and 0.3 dB/km at 1550 nm for the other longer-distance ap-
plications. Similarly, the chromatic dispersion numbers can be translated into target
distances based on the dispersion parameter of the fiber used in the relevant operating
range.

These standards allow the use of optical power amplifiers and preamplifiers
but do not include optical line amplifiers. With optical line amplifiers, we are now
seeing spans without regeneration well in excess of the distance limits specified here.
Today’s long-haul WDM systems with line amplifiers have regenerator spacings of
about 400 to 600 km, with some ultra-long-haul systems extending this distance to a
few thousand kilometers. The spans for such systems are vendor dependent and have
not yet been standardized. (Note that the use of “long-haul” and “ultra-long-haul”
in the context of WDM systems is different from their use in SDH terminology.)

6.1.6 Elements of a SONET/SDH Infrastructure

Figure 6.8 shows different types of SONET equipment deployed in a network.
SONET is deployed in three types of network configurations: rings, linear con-
figurations, and point-to-point links. The early deployments were in the form of
point-to-point links, and this topology is still used today for many applications. In
this case, the nodes at the ends of the link are called terminal multiplexers (TMs).
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Figure 6.8 Elements of a SONET infrastructure. Several different SONET configurations are
shown, including point-to-point, linear add/drop, and ring configurations. Both access and interoffice
(backbone) rings are shown. The figure also explains the role of a DCS in the SONET infrastructure,
to crossconnect lower-speed streams, to interconnect multiple rings, and to serve as a node on rings
by itself.

TMs are also sometimes called line terminating equipment (LTE). In many cases, it is
necessary to pick out one or more low-speed streams from a high-speed stream and,
likewise, add one or more low-speed streams to a high-speed stream. This function
is performed by an add/drop multiplexer (ADM). For example, an OC-48 ADM
can drop and add OC-12 or OC-3 streams from/to an OC-48 stream. Similarly, an
OC-3 ADM can drop/add DS3 streams from/to an OC-3 stream. ADMs are now
widely used in the SONET infrastructure. ADMs can be inserted in the middle of a
point-to-point link between TMs to yield a linear configuration.
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Maintaining service availability in the presence of failures has become a key
driver for SONET deployment. The most common topology used for this purpose is
a ring. Rings provide an alternate path to reroute traffic in the event of link or node
failures, while being topologically simple. The rings are made up of ADMs, which in
addition to performing the multiplexing and demultiplexing operations, incorporate
the protection mechanisms needed to handle failures. Usually, SONET equipment
can be configured to work in any of these three configurations: ring ADM, linear
ADM, or as a terminal multiplexer.

Rings are used both in the access part of the network and in the backbone
(interoffice) part of the network to interconnect central offices. Given the capac-
ity requirements in today’s networks, it is quite common to use multiple overlaid
rings, particularly in backbone networks, each operating over a different wavelength
provided by an underlying optical layer.

Two types of ring architectures are used: unidirectional path-switched rings
(UPSRs) and bidirectional line-switched rings (BLSRs). The BLSRs can use either
two fibers (BLSR/2) or four fibers (BLSR/4). We will discuss these architectures and
the protection mechanisms that they incorporate in detail in Chapter 9. In general,
UPSRs are used in the access part of the network to connect multiple nodes to a hub
node residing in a central office, and BLSRs are used in the interoffice part of the
network to interconnect multiple central offices.

Another major component in the SONET infrastructure is a digital crosscon-
nect (DCS). A DCS is used to manage all the transmission facilities in the central
office. Before DCSs arrived, the individual DS1s and DS3s in a central office were
manually patched together using a patch panel. Although this worked fine for a
small number of traffic streams, it is quite impossible to manage today’s central
offices, which handle thousands of such streams, using this approach. A DCS au-
tomates this process and replaces a patch panel by crossconnecting these individual
streams under software control. It also does performance monitoring and has grown
to incorporate multiplexing as well. DCSs started out handling only PDH streams
but have evolved to handle SONET streams as well. Although the overall network
topology including the DCSs is a mesh, note that only rings have been standardized
so far.

A variety of DCSs are available today, as shown in Figure 6.9. Typically, these
DCSs have hundreds to thousands of ports. The term grooming refers to the grouping
together of traffic with similar destinations, quality of service, or traffic type. It
includes multiplexing of lower-speed streams into high-speed streams, as well as
extracting lower-speed streams from different higher-speed streams and combining
them based on specific attributes. In this context, the type of grooming that a DCS
performs is directly related to the granularity at which it switches traffic. If a DCS
is switching traffic at granularities of DS1 rates, then we say that it grooms the
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Figure 6.9 Different types of crossconnect systems.

traffic at the DS1 level. At the bottom of the hierarchy is a narrowband DCS, which
grooms traffic at the DS0 level. Next up is a wideband DCS, which grooms traffic
at DS1 rates, and then a broadband DCS, which grooms traffic at DS3/STS-1 rates.
These DCSs typically have interfaces ranging from the grooming rate to much higher-
speed interfaces. For instance, a wideband DCS will have interfaces ranging from
DS1 to OC-12, while a broadband DCS will have interfaces ranging from DS3 to
OC-768. There are also DCSs that groom at DS3 rates and above, with primarily
high-speed optical interfaces. While such a box could be called broadband DCS, it is
more commonly called an optical crossconnect. However, we also have other types
of optical crossconnects that groom traffic at STS-48 rates, and yet others that use
purely optical switch fabrics and groom traffic in units of wavelengths or more.

Instead of having this hierarchy of crossconnect systems, why not have a single
DCS with high-speed interfaces, which grooms at the lowest desired rate, say, DS0?
This is not possible due to practical considerations of scalability, cost, and footprint.
For instance, it is difficult to imagine building a crossconnect with hundreds to
thousands of 10 Gb/s OC-192 ports that grooms down to the DS1 level. In general,
the higher the speed of the desired interfaces on the crossconnect, the higher up it
will reside in the grooming hierarchy of Figure 6.9.

DCSs can also incorporate ADM functions and perform other network functions
such as restoration against failures, the topic of Chapter 9.

6.2 Optical Transport Network

The Optical Transport Network (OTN), sometimes referred to as G.709, was de-
signed to transport data packet traffic such as IP and Ethernet over fiber optics, as
well as legacy traffic and in particular SONET/SDH. It is called the digital wrapper
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Table 6.4 OTN line rates compared with SONET/SDH line rates.

OTN
(G.709) Line Rates SONET/SDH Line Rates

OTU1: 2.666 Gb/s STS-48/ STM-16: 2.488 Gb/s
OTU2: 10.709 Gb/s STS-192/ STM-64: 9.953 Gb/s
OTU3: 43.018 Gb/s STS-786/STM-128: 39.813 Gb/s

technology because it wraps any client signal in overhead information for opera-
tions, administration, and management. Its line rates, OTU1, OTU2, and OTU3, are
shown in Table 6.4. It builds on SONET/SDH concepts, and it features the following
capabilities.

1. Forward error correction (FEC): OTN has been designed for high data trans-
mission rates, as shown in Table 6.4. At very high data rates or over very long
distances, noise is significant and becomes a problem when ensuring low bit
error rates. Forward error correction (FEC) as we discussed in Section 4.5 is
critical to achieving these low bit error rates. FEC had already been used in
implementations of SDH. These are proprietary coding schemes that rely on
making use of unused section overhead bytes to carry the redundant FEC bytes.
However, the performance is limited since the number of bytes is limited, and
interoperability with other vendor equipment cannot be assured. OTN has been
designed to carry FEC overhead and employs stronger FEC using the (255,239)
Reed-Solomon code (Section 4.5). Thus, for each 255 byte block, there are 16
redundant bytes. The FEC can correct errors in a block of up to 8 bytes of error
and detect an error in a block with at most 16 bytes of error. The blocks are
interleaved to increase the length of error bursts that can be corrected.

2. Management: As we have seen in the previous section, SONET/SDH supports
monitoring and managing the signal at the section, line, and path levels. This
overhead includes signal identification, BER measurement, and communicating
alarm information. OTN provides structure for monitoring a connection end-
to-end and over various segments. These segments may overlap with up to six
such monitoring segments at any given point. An example application would be
a connection of a network A that passes through another network B; that is, B
is serving as a carrier for network A. Then the operators of both networks must
monitor the connection as it passes through B, using their own set of monitoring
and managing signals. These signals must be operating in tandem.
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Figure 6.10 OTN hierarchy.

3. Protocol transparency: OTN provides a constant bit rate service. It has opera-
tions, administration, and management of its connections that are transparent
to its clients. It can carry all types of data packet traffic including IP and 10-
Gigabit Ethernet, as well as SONET/SDH frames. OTN frames can carry entire
SONET/SDH frames including overhead without modification. Table 6.4 shows
that OTN line rates are 7% higher than SONET/SDH line rates, and this is due
to its additional overhead and FEC information.

4. Asynchronous timing: OTN has an asynchronous mapping of client signals into
OTN frames where the clock that generates the frames can be a simple free-
running oscillator. To account for any mismatch between the clocks of the OTN
frames and the client signal, the OTN payload floats within the frame. Using
simple free-running oscillators can simplify implementation and reduce costs.
OTN also has a synchronous mapping where the clock to generate the OTN
frames is derived from the client signal.

6.2.1 Hierarchy

The layers of the OTN hierarchy are shown in Figure 6.10. The optical transmission
section (OTS), optical multiplexed section (OMS), and optical channel (OCh) layers
are in the optical domain. The OTS layer manages fiber link segments between optical
components such as between optical amplifiers, or optical amplifiers and WDM
multiplexers. The OMS layer manages fiber links between optical multiplexers and
switches, and the OCh layer manages optical connections between 3R regenerators
(e.g., lightpaths). This is explained further in Section 8.3.
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The optical channel transport unit (OTU) and optical channel data unit (ODU)
have similar functions as the section, line, path layers of SONET/SDH. The OTU
is similar to the section layer of SONET/SDH, where now the OTN OCh layer
provides optical connections between 3R regenerators. It has overhead to delineate
OTN frames, provide identification of the optical connection, monitor bit error
rate (BER) performance, carry alarm indicators to signal failures, and provide a
communication channel between the end points of the optical connection. The layer
adds the FEC to the OTN frames and scrambles the frames before transmission. In
addition, it provides synchronization information for multiframes. Multiframes are
a method to send messages over multiple OTN frames. For example, a 256-byte
message can be sent through a single overhead byte over 256 frames. A multiframe
has a fixed period that must be a power of two.

The optical channel data unit (ODU) has similar functions as the line and path
layers of SONET/SDH. It supports up to 6 tandem connection monitoring. Each
monitoring provides identification, monitors BER performance, carries alarm indi-
cators, and provides communication channels to the end points. The ODU layer has
the optical channel payload unit (OPU) sublayer that adapts client signals to the
OTN frames.

6.2.2 Frame Structure

Figure 6.11(a) shows the structure of an OTN frame. It is organized into 4 rows and
4080 columns of bytes. A frame is transmitted serially starting with row 1, and per
row from the left to right. Each row is composed of 16 interleaved FEC blocks of 255
bytes which is a total of 16× 255 = 4080 bytes. Each block has 1 byte of overhead,
238 bytes of payload, and 16 bytes of redundant FEC bytes. Since 16 blocks are
interleaved and each block can correct up to 8 bytes of errors, bursts of errors can be
corrected up to 16× 8 = 128 bytes. The OTU and ODU overheads reside in columns
1 through 14 of the OTN frame, where the OTU overhead is in row 1, and the ODU
overhead is in rows 2 through 4. The OPU overhead is in columns 15 and 16 of the
frame. Figure 6.11(b) presents the overhead bytes of the OTN frame. The frame is
scrambled before being transmitted.

Next we describe the rest of the overhead shown in Figure 6.11.

Frame Alignment Overhead

Frame Alignment Signal (FAS). These 6 bytes are used to delineate the frame similar
to the A1 and A2 bytes in the SONET section overhead. When the frame is
scrambled, this field is excluded.
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Figure 6.11 OTN (G.709) frame (a) structure showing the location of the overhead
bytes, and (b) a larger view of the overhead bytes.

Multiframe Alignment Signal (MFAS). Some of the overhead fields carry informa-
tion that is dispersed over multiple frames, referred to as multiframes. The MFAS
byte is incremented every frame providing 256 values indicating the number of
the frame within a multiframe. The MFAS byte is used to synchronize bytes of
multiframes.

Optical Channel Transport Unit (OTU) Overhead

Section Monitoring (SM). The SM field is 3 bytes and has the trail trace identifier,
BIP-8 byte, and alarm signals, which are described below.
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Trail Trace Identifier (TTI). The TTI byte carries the identification of the two end
points of the optical connection. TTI has a similar function as the SONET/SDH
section trace (J0) byte.

Each end point has 16 bytes of identification information. This information
is carried through the TTI byte over multiframes with a period of 64 frames. The
first 32 bytes carry the identifications of the two end points, and the remaining
32 bytes are operator specific.

BIP-8. This is similar to the SONET/SDH BIP-8 and is used to monitor the bit error
rate.

Alarm signals. These are the backward error indicator and backward incoming
alignment error (BEI/BIAE); backward defect indication (BDI); and the incoming
alignment error (IAE). An example of when incoming alignment errors can occur
is when the clock signal is lost.

The BEI/BIAE and BDI fields provide performance information upstream
from receivers to senders. The 4 bits of the BEI/BIAE indicate the number of
errors measured using the BIP-8 byte, or it can indicate that there is an incoming
alignment error. The BDI bit indicates whether there is a signal defect. The IAE
bit provides performance information downstream from sender to receiver. It
indicates to the receiver that the sender has detected an alignment error.

How these alarm signals can be used is discussed in Chapter 9.

General Communications Channel (GCC0). This 2-byte field provides a clear chan-
nel connection between OTU termination points. It resembles the data commu-
nication channel (DCC) of SONET/SDH.

Optical Channel Data Unit (ODU) Overhead

Path Monitoring (PM). These are 3 bytes used to monitor the end-to-end path. It has
structure similar to the 3-byte section monitoring (SM) field described above for
the OTU overhead. This includes bytes for a trail trace identifier (TTI), BIP-8, and
alarm signals. The alarm signals includes a path monitoring status (STAT) field,
which can be used to carry an alarm indication signal (AIS). (See Section 8.5.4
on the application of an AIS.) The STAT field can carry other signals such as
indicating the optical channel is open.

Tandem Connection Monitoring (TCMk, k = 1, 2, ..., 6). There are six TCM fields,
each of 3 bytes and having the same structure as the path monitoring (PM) field
described above. A TCM field may be used by a network operator to monitor the
error performance of a signal for different applications, for example, monitoring
the connection through the public network. Because the standards do not specify
who should use the TCM fields, network operators must negotiate an agreement.
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Tandem Connection Monitoring Activation (TCM ACT). This byte is unused.

Fault Type and Fault Location (FTFL). This byte is part of the 256-byte multiframe
message that indicates faults in the forward and reverse directions.

General Communication Channel (GCC1 and GCC2). This is a 2-byte communica-
tion channel similar to the GCC field in the OTU overhead.

Automatic Protection Switching/Protection Communication Channel (APS/PCC).
These 4 bytes provide a channel for carrying signaling information for automatic
protection switching (APS). The APS is supported at different monitoring levels.
We will study the different types of APS schemes in Chapter 9.

Experimental (EXP). These 2 bytes are reserved for experimental purposes and may
be used by operators and vendors.

Reserved (RES). These bytes are reserved for future standardization.

Optical Channel Payload Unit (OPU) Overhead

The OPU overhead is used to adapt the client signals to the OTN frame. In the OTN
asynchronous mode, the clock for the OTN frame may have a slightly different rate
than the clock for the client signal. To deal with this mismatch, the OPU overhead
can add or remove data bytes from the OTN payload.

Payload Structure Identifier (PSI). This byte is part of a 256-byte multiframe mes-
sage that describes the payload. The first byte of the message is the payload type
(PT). It identifies the type of payload being carried in the frame, for example,
constant bit rate (CBR) such as SONET/SDH, Generic Framing Procedure (see
Section 6.3), multiplexed ODU signals, and test signals. The other 255 bytes
depend on the mapping and concatenation.

Justification (JC, NJO, PJO). To deal with the differences in clock rates, the ODU
layer will add or remove a data byte from a OTN frame payload to adjust to
these differences. The justification control (JC) byte indicates whether data will
be carried by two bytes: the negative justification opportunity (NJO) and the
positive justification opportunity (PJO) bytes. Normally, only the PJO carries
payload data. To add a byte to the payload, both PJO and NJO carry data, and
to delete a byte from the payload, neither PJO nor NJO carries data.

To protect against errors, the JC value is copied in 3 bytes. A majority vote
(i.e., two out of three) is taken to determine the actual JC value.

6.2.3 Multiplexing

OTN supports multiplexing of ODU signals: four ODU1s can be multiplexed into
an ODU2, sixteen ODU1s or four ODU2s can be multiplexed into an ODU3, or a
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mix of ODU1s and ODU2s can be multiplexed into an ODU3. OTN also supports
virtual concatenation. Here, we will limit the discussion to the OTN frame of an
ODU2 carrying four ODU1s.

OTU2 frames are organized into multiframes of size four, where each multiframe
carries the frames of four ODU1s: ODU1[1], ODU1[2], ODU1[3], and ODU1[4].
The payloads of the ODU1s are byte interleaved into the payload of a ODU2 frame.

The OPU overhead of an OTU2 frame will carry information in its PSI byte
about the multiplexed signals. The payload type indicates multiplexed ODU signals.
Bytes 2 through 17 of the PSI indicate the type of signals being multiplexed, for
example, whether the signals are ODU1, ODU2, or ODU3, and their position in the
payload.

6.3 Generic Framing Procedure

Generic Framing Procedure (GFP) is a common method to adapt diverse packet pro-
tocols at the link layer to be transported over SONET/SDH or the Optical Transport
Network (OTN) as shown in Figure 6.12. It facilitates interoperability of equipment
of different vendors.

The packet protocols can have variable-length packets, such as Ethernet, IP over
PPP, Gigabit Ethernet, and Resilient Packet Ring (RPR); or have fixed-length packets,
such as Fibre Channel. For clients with variable-length packets, GFP can be combined
with SONET/SDH Virtual Concatenation (VCAT) and Link Capacity Adjustment
Scheme (LCAS) to provide packet links. As discussed in Section 6.1.2, with VCAT, a
packet link can be configured to have the right amount of bandwidth for the client
traffic, and with LCAS, the link bandwidth can be adjusted to meet variations in the
packet traffic load. For clients with fixed-length packets, a GFP link can resemble a
constant bit rate link, leading to low latencies.

As shown in Figure 6.12, GFP has common aspects and client-specific aspects.
The GFP common aspects are basic functions common to all clients, while the GFP
client specific aspects have adaption features that depend on the client protocol.
The GFP common aspects include the functions of frame delineation, multiplexing,
frame scrambling, and client management. The GFP client-specific aspects are the
mappings of the client signal to GFP frames. There are two mappings: frame mapped
GFP (GFP-F) or transparent mapped GFP (GFP-T). Frame mapped GFP will simply
encapsulate each client packet into a GFP frame and is applicable to variable-length
packets. Transparent mapped GFP is applicable to fixed-length packets that are
encoded by (8,10) line codes that require very low transmission latency, primarily
Fibre Channel.
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GFP Frame

GFP has client and control frames. A client frame can either be a client data frame
(CDF), which carries client data; or a client management frame (CMF), which carries
management information of the client signal or GFP connection. An important con-
trol frame is the idle frame, which is sent whenever the GFP connection has nothing
to carry. Therefore, a GFP connection is always carrying a frame.

The GFP frame structure is shown in Figure 6.13. The Core Header is 4 bytes
long and consists of a two-byte Payload Length Identifier (PLI). It also has a 2-byte
cyclic redundancy check (CRC) to protect itself. The PLI can either have the length
of the GFP frame in bytes or indicate that the frame is a control frame.

The Payload Area carries information about the client payload and can vary in
length with a maximum of 65,535 bytes. It is composed of a Payload Header, Payload
Information field, and an optional Frame Check Sequence (FCS). The Payload Header
indicates the structure of the payload, and the Payload Information field carries the
client’s signal. The FCS is a 4-byte cyclic redundancy check to protect the Payload
Information field.
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The Payload Header has a 2-byte type field, a 2-byte cyclic redundancy check to
protect just the type field, and an optional extension field. The extension field can be
up to 60 bytes, so the Payload Header can have length between 4 and 64 bytes. If the
frame is a client frame, the payload type field has a subfield that indicates whether
the GFP frame is a client data frame or client management frame, and a subfield
that indicates whether there is an FCS. It also has subfields to indicate the client’s
protocol, whether the frame is frame mapped or transparent mapped, and the type
of extension if any to the Payload Header. There are extension fields for linear and
ring variants. The linear extension supports multiple clients sharing a GFP point-
to-point connection, whereas the ring extension supports multiple clients in a ring
configuration. For example, the linear extension has an 8-bit channel identification
(CID) field to indicate one of 256 communication channels. The extensions also have
a 2-byte cyclic redundancy check.

GFP Common Aspects

A common GFP function is frame delineation, which is primarily done with the
Core Header of the frame. Recall that the Core Header is composed of a Packet
Length Identifier (PLI) field and a cyclic redudancy check for the field. Since a GFP
connection always has a GFP frame, the end of a frame is the beginning of the next.
However, if there is an error such as in the PLI, the receiver can lose track of the
length of the current frame and the beginning of the next. Thus, it loses the frame
delineation. The receiver will then search for the start of a subsequent GFP frame by
using the cyclic redundancy check of the frame’s core header. In particular, a receiver
will assume that the last 4 bytes it has received is a GFP frame Core Header. If the
header’s cyclic redundancy check works out, then the receiver guesses that this is
the beginning of a frame. This is known as header error check (HEC) based frame
delineation. Additional checks on the next consecutive frames are done before the
receiver determines it is synchronized again. This technique has the advantage of
requiring no additional bits for synchronization.

Other common GFP functions are scrambling, multiplexing, and sending client
management signals. GFP scrambles the Core Header to ensure a high rate of bit
transitions and scrambles the payload area to ensure that it does not repeat the
scrambled Core Header.

There are two types of multiplexing: frame multiplexing and client multiplexing.
Frame multiplexing involves frames from multiple GFP processes; that is, client
frames and control frames are multiplexed together. Client multiplexing is supported
with the linear and ring extensions.

Client management signals can be transported using client management frames.
For example, client signal fail messages can be sent.
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Figure 6.14 Ethernet topologies.

GFP Client-Specific Aspects

A client-specific function is the mapping of client signals to a GFP frame using a
frame mapped GFP (GFP-F) or a transparent mapped GFP (GFP-T). As we mentioned
earlier, a GFP-F frame is an encapsulation of a client packet. Transparent mapped
GFP is a little more complicated. First, note that it is applicable to fixed-length
packets that are encoded by (8,10) line codes. Note that the line code of the client
signal is unnecessary for GFP transport because GFP frames have their own frame
synchronization. Thus, the GFP-T mapping will first extract the data bytes and
control characters in the client signals. Then blocks are formed from 8 data bytes or
control characters, and then superblocks are formed from 8 blocks. The superblock
is transported in a GFP-F frame. Latency is low because a superblock does not have
to wait for its entire client frame before being forwarded.

6.4 Ethernet

Ethernet was created in the 1970s to be a packet-switched data link that connects
computers and computer equipment over a single coaxial cable, that is, a bus. It is
easy to understand, implement, manage, and maintain, and has led to low network
costs. Ethernet has since evolved to include a variety of topologies including point-
to-point, bus, star, and mesh as shown in Figure 6.14; and adapted to a variety of
physical communication media, including coaxial cable, twisted pair copper cable,
wireless media, and optical fiber. It has a wide range of rates. Typical rates today
are 10 Mb/s, 100 Mb/s (Fast Ethernet), 1 Gb/s (Gigabit Ethernet or GbE), and
10 Gb/s (10-Gigabit Ethernet or 10 GbE). At the time of this writing 40 Gb/s and
100 Gb/s Ethernet are being developed. It was one of the first local-area network
(LAN) technologies and has thrived to become the predominant LAN as well as a
predominant link layer technology.
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Media Access Control

In the original Ethernet, computers were attached to the network coaxial cable with
a network interface card (NIC), and each NIC has a unique 6-byte Ethernet address
that is assigned by the NIC manufacturer. A node can transmit a packet on the cable,
and the transmission signal will be received by all the nodes. The coaxial cable was
effectively a broadcast communication link. A problem with this configuration is that
nodes transmitting at the same time can interfere with one another’s transmissions,
causing a transmission collision. Since such collisions mean transmissions are not
received properly, they are a waste of link bandwidth.

Ethernet has a media access control (MAC) protocol to arbitrate transmissions
between nodes. When a node has a packet to transmit, it listens to the link. When it
detects that the link is idle (i.e., there are no transmissions), it transmits its packet and
at the same time listens to the link. If it detects a collision, then it stops transmitting,
avoiding further waste of bandwidth. Then it attempts to retransmit the packet
after a randomly chosen delay. Since all nodes in a collision will retransmit after
a randomly chosen delay, there is a high likelihood that exactly one of the nodes
will retransmit before the others. Once this node retransmits, the other nodes will
detect its transmission and wait until the link is idle again. The arbitration protocol
is referred to as carrier sense multiple access with collision detection (CSMA/CD)
because a node listens to the link before transmitting and stops transmitting upon
detecting a collision.

To achieve high throughput, the time to detect a collision must be small relative
to the time to transmit a packet. Then the fraction of time spent on collisions will
be small compared to the fraction of time to successfully transmit packets. The colli-
sion detection delay is largely dependent on the propagation delay across the cable,
which is dependent on the length of the cable. Therefore, collision detection delays
were made small by limiting the length of the cable. For example, 10 Mb/s Ethernet
networks have a maximum diameter of about 2500 m. Since packet transmission
times are inversely proportional to transmission speeds, for 100 Mb/s Ethernet net-
works, the diameter limit was reduced by about a factor of 10 to 200 m. For Gigabit
Ethernet, reducing the diameter by another factor of 10 leads to a diameter of about
20 m, which is too small to be practical for some important applications. Instead, the
Ethernet packet lengths were increased by a factor of about 10. Another method to
achieve high throughput is frame bursting, which allows a node to transmit frames
consecutively without being interrupted. Then small frames can be put together and
transmitted as a longer virtual frame.

Thus far we have assumed that the Ethernet link operates as a bus, and this
was the case for the initial implementations that used coaxial cables. However, the
twisted pair copper and fiber optic implementations have two unidirectional channels
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going in opposite directions. In order for the network to implement CSMA/CD, a
transmission on one channel must be looped back on the other channel. Then a node
can detect if a collision has occurred.

Point-to-Point Link

An important application of Ethernet is as a point-to-point link connecting two end
nodes. For twisted pair and fiber optic implementations, Ethernet has an option
to operate as a full duplex link. Performance improves because both channels can
be used simultaneously. As a consequence, CSMA/CD is unnecessary since the end
nodes do not interfere with each other’s transmissions. Without CSMA/CD, there
are less constraints on frame lengths and link diameters. 10-Gigabit Ethernet only
allows full duplex operation and uses ordinary Ethernet frames.

To realize flow control, a receiver can send a pause frame to the sender to make
it stop sending. A pause frame indicates an amount of time the sender must wait
before resuming transmissions.

Local-Area Network

Ethernet is the predominant LAN technology. Today the most popular Ethernet LAN
configuration is the star topology, which has a hub at its center, connecting a number
of Ethernet segments. The topology has management advantages since much of the
network administration can be done at a single location. It fits naturally into the
telecommunication infrastructure of office buildings. It also improves signal quality
by repeating or regenerating signals.

One type of hub is a repeater that simply broadcasts the incoming signals to all
Ethernet segments. Then the star topology behaves like a single Ethernet. This simple
design does not scale well with the number of nodes because the network bandwidth
is divided among all the nodes. This results in each node having access to network
bandwidth that is inversely proportional to the number of nodes. Another type of
hub that leads to better traffic throughput is a switch (or multiport bridge), which
is discussed in Section 6.4.2. With switches, Ethernet can be extended from the star
topology to operate on a mesh topology.

Another important Ethernet feature is the virtual LAN (VLAN). It allows the
network bandwidth to be shared among groups of nodes, so that each group can
communicate over its own VLAN. A VLAN has a distinct identifier called a tag.
Ethernet VLAN packets have a field for their tag so that they can be distinguished
and forwarded to the members of their VLAN group. VLAN technology can be
used to implement virtual private networks (VPNs). In addition, Ethernet VLAN
packets have a priority field to support quality of service. Note that Ethernet VLAN
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Figure 6.15 (a) Basic Ethernet frame and (b) VLAN Ethernet frame.

technology has similarities with MPLS technology (see Section 6.6 on MPLS), which
is also used to forward packets, separate traffic, and support quality of service.

6.4.1 Frame Structure

The basic Ethernet frame is shown in Figure 6.15(a).

Preamble (PRE). The preamble is 7 bytes of alternating pattern of 1s and 0s
(10101010) used to indicate the start of a frame and for synchronization.

Start-of-frame delimiter (SFD). This byte is an alternating pattern of 1s and 0s that
ends with two consecutive 1s (10101011) and indicates the beginning of the rest
of the frame.

Destination address (DA). This 6-byte Ethernet address is the destination of the
frame.

Source address (SA). This 6-byte Ethernet address is the origin of the frame.

Length/Type. These 2 bytes either indicate the length of the data field in bytes or
the type of frame. If the value is at most 1500 bytes, then it is interpreted as the
length of the data field. If the value is greater than 1536, then the frame is an
optional type, and the value indicates the type.

Payload. This is the payload of the frame and ranges from 46 to 1500 bytes. If the
user of the Ethernet has less than 46 bytes to send, then payload is padded to 46
bytes.

Frame check sequence (FCS). These 4 bytes are the cyclic redundancy check for
frames excluding the PRE and SFD.
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The frame, excluding the PRE and SFD, has a minimum length of 64 and maxi-
mum length of 1518 bytes. The size of the data field ranges from 46 to 1500 bytes.
If the actual data is less than 46 bytes, then padding is added.

Recall that for Gigabit Ethernet, the frame is about 10 times longer than for
100 Mb/s Ethernet so that the CSMA/CD protocol can operate efficiently. In partic-
ular, the Gigabit Ethernet frame should have minimum length of about 500 bytes.
To realize this length, an extension field is appended to the basic frame. On the other
hand, if the Gigabit Ethernet link is used as a point-to-point link, then the minimum
length of 500 bytes is unnecessary.

For Gigabit Ethernet, some vendors provide NICs and switches that support
a jumbo frame option where packets can have payloads of up to 9000 bytes. 10-
Gigabit Ethernet uses regular-sized Ethernet frames since it is restricted to full duplex
links.

The Ethernet frame option for VLANs is shown in Figure 6.15(b). The frame
has a 4-byte VLAN header inserted between the SA and length/type field. The first 2
bytes of the VLAN header is in the location of the length/type field in a basic Ethernet
frame. Its value (hexadecimal 8100) will indicate that the frame is a VLAN frame.
The next 2 bytes of the VLAN header carry a 12-bit VLAN tag, a 1-bit flag that is
set to 0, and a 3-bit priority field. The value in the priority indicates the priority of
the frame from 0 (lowest) to 7 (highest).

This option can be used to implement quality of service. For example, priority 7
can be for critical control messages; priority 5 and 6 for delay sensitive applications
such as interactive voice and video; priority 1 through 4 for traffic that requires
some assurance of lower delays (though not necessarily minimum delays) and lower
packet loss; and priority 0 for best effort traffic.

We will cover more Ethernet frame structures in Section 6.4.4 that are used to
help service providers transport Ethernet traffic of its customers.

6.4.2 Switches

The basic Ethernet switched network topology is the star topology as shown in
Figure 6.14. The hub is an Ethernet switch (or multiport bridge), which has buffers,
processing, and a forwarding table for frames. The forwarding table has a list of
Ethernet addresses in the network, and along with each address is the switch port
number of where that address came from. The switch learns where the other nodes
are from the frames it receives and updates its forwarding table accordingly. The
following example illustrates the process of forwarding frames and updating the
forwarding table.

Consider a frame arriving at a switch through a port P. The switch checks the
frame’s source address S and destination address D. The switch forwards the frame
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as follows. The switch will look up D in its forwarding table. Suppose D is found
and its corresponding port is P∗. If P∗ is not P—that is, it is not the port the frame
arrived through—then the frame is forwarded to P∗. On the other hand, if P∗ is the
same as P, then the frame is dropped. Now suppose there is no entry in the table for
D. Then the switch will give its best effort to get the frame to D by broadcasting the
frame on all its ports except P.

To update the forwarding table, the switch notices that the frame arrived on port
P. Thus, the switch assumes that the source address S can be found through port P,
and updates its forwarding table accordingly. In particular, if there is an entry for
S in the forwarding table, then it updates the entry with port P. If there is no such
entry, it creates one and initializes the entry with port P. In this way, each frame
arrival will update the forwarding table. Note that if a node is added or moved
the forwarding table is automatically updated. Table entries also have lifetimes and
are refreshed every time they are used. If they are not updated, they are eventually
deleted.

Spanning Tree

If we have a network of Ethernet switches, the forwarding mechanisms of the Eth-
ernet star topology can still be used if the network topology is a spanning tree. A
spanning tree is a connected network topology that does not have any loops or cy-
cles; that is, it is acyclic. An acyclic topology has the property that between any pair
of switches X and Y there is a unique path. A consequence of this property is that
a switch X will forward and receive frames to and from switch Y through only one
port. This will let the Ethernet switches maintain their forwarding tables.

If the physical topology of the network is an arbitrary mesh and not a tree, then
links are blocked so that the unblocked network forms a spanning tree. Links that
are blocked do not forward data frames. Figure 6.16(a) shows a spanning tree of
switches in a mesh topology network.

The spanning tree protocol (STP) is a distributed algorithm run by the switches
to form the spanning tree. The Ethernet links have weights assigned to them. The
protocol creates the tree by first having the switches elect one of the switches as the
root switch (see Figure 6.16(b)). If there are multiple candidate root switches, then
ties are broken by comparing the candidates’ Ethernet addresses. After the election,
each of the other switches determines a shortest path toward the root based on link
weights. For each nonroot switch, its port that leads to the shortest path toward
the root is its root port as shown in Figure 6.16(b). The corresponding link is part
of the tree, and the port at the other end of the link is called a designated port.
All other ports are blocked. The unblocked links form a spanning tree as shown in
Figure 6.16(b). Note that root ports are used to forward packets toward the root
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Figure 6.16 (a) An Ethernet spanning tree and (b) a tree showing the root, root ports,
and designated ports.

switch, while designated ports are used to forward packets away from the root switch
to the outlying switches.

To determine a root and to compute shortest paths, the switches periodically ex-
change control messages called bridge protocol data units (BPDUs). These messages
carry at a minimum the Ethernet address that the transmitting switch believes to be
the root, and the weight of the shortest path to the root from the transmitting switch.

There have been a number of improvements to STP, so that the original STP is
now obsolete. One of the improvements, rapid spanning tree protocol (RSTP) (see
Section 9.3.2) reduces the convergence time to compute a spanning tree when there
is a topological change. RSTP precomputes backup paths to the root, so that they
can be switched to when necessary. An extension of RSTP to VLANs is the multiple
spanning tree protocol (MSTP). Each VLAN has its own spanning tree and blocks
the links for its VLAN group. Links that are blocked by some VLANs may be part
of the spanning trees of other VLANs. Unlike STP, all links can be utilized as long
as each link is covered by some VLAN.

Link Aggregation Control Protocol

Switched Ethernet networks have options that allow switches to have ports of varying
line rates. There is also an option to build up high-capacity links by aggregating
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multiple parallel links into a single logical link. This is Ethernet’s link aggregation
control protocol (LACP). It organizes multiple parallel links between two switches
into a link aggregation group (LAG), which then operates as a single link. Here,
traffic is split at the ingress of the aggregate link, packet by packet, to be routed on
the constituent links, and then reassembled in order at the egress of the aggregate
link. It is a simple method to increase the capacity of links using existing lower speed
links.

Note that the traffic must be split carefully so that packets are delivered in-order
to applications because many applications perform badly if packets are delivered
out-of-order. LACP splits traffic among the links in the LAG by a hash function,
which uses a packet’s header information to determine which link to forward the
packet across. In this way, packets for the same application are kept in-order since
they have the same header information and are forwarded by the hash function
across the same link. The hash function is designed to split the traffic evenly, though
in practice the split may be less than even.

6.4.3 Ethernet Physical Layer

Ethernet has a data link layer and a physical (PHY) layer. Thus far, our discussion
has focused on the data link layer, which includes the media access control (MAC)
sublayer. We will now discuss the physical layer but limit it to Gigabit Ethernet and
10-Gigabit Ethernet since these are the types of Ethernet for wide- and metropolitan-
area networks.

Gigabit Ethernet Physical Layer

Gigabit Ethernet’s physical layer was developed in two parts. The first part cov-
ers shielded fiber cables and shielded copper cables, while the other part covers
unshielded copper cables. The first part has a physical coded sublayer (PCS) that
implements an (8,10) line code, borrowed from Fibre Channel (see Section 6.8.1).
The PCS sublayer includes an autonegotiation protocol that determines such oper-
ational modes as whether to be in half or full duplex mode and whether the pause
flow control will be used.

Under the PCS sublayer is the physical media attachment (PMA) sublayer that
transmits the line codes serially at a rate of 1.25 Gb/s using the non-return-to-zero
(NRZ) signal format. Below the PMA sublayer is the physical media dependent
(PMD) sublayer which specifies the transceiver for the physical medium. There are
three types of PMD: short range, long range, and shielded copper. The short-range
is at the 850 nm wavelength with a reach of 220 to 550 m on multimode fiber. The
long-range PMD is at 1310 nm wavelength and can operate on multimode fiber, at a
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distance of 550 m, or single-mode fiber at a distance of 5 km. There is a nonstandard
interface at 1550 nm which on single-mode fiber can reach 70 km. The PMD for
shielded copper is at the distance of 25 m.

For unshielded copper cable, a different scheme is used due to the limits of twisted
pair copper. Each cable has four twisted pairs, which are all used. Over a cable, four
signal symbols are sent at a time using multilevel modulation using five levels of
amplitude. The distances for unshielded copper cable is 100 m.

10-Gigabit Ethernet Physical Layer

10-Gigabit Ethernet physical layer also has the physical coded sublayer (PCS), phys-
ical media attachment (PMA) sublayer, and physical media dependent (PMD) sub-
layer. There are PMDs for fiber optic and copper cables. For fiber optic cables, there
are three PCS options: LAN PHY, WAN PHY, and WWAN PHY. Both the LAN PHY
and WAN PHY use a (64,66) line code. The WAN PHY was designed for wide-area
network applications. It has an extra WAN interface sublayer (WIS) between the
PCS and PMA sublayers that encapsulates the Ethernet MAC frame into a simplified
SONET frame.

Both the LAN PHY and WAN PHY operate over short-range (SR), long-range
(LR), extended-range (ER), and long reach multimode (LRM) PMDs. The short-
range PMD is at 850 nm wavelength at a reach of 82 m on older multimode fiber
technology and 300 m on OM3 multimode fiber. The long-range PMD is at 1310 nm
wavelength at a reach of 10 km on single-mode fiber and 260 m on OM3 multimode
fiber. The extended-range PMD is at 1550 nm wavelengths and at a reach of 40 km
on single-mode fiber. Long reach multimode PMD is at 1310 nm wavelength over
multimode fiber at distances of 260 m.

The WWAN PHY PCS uses four 2.5 Gb/s links using an (8,10) line code. The
PMD is for four wavelengths multiplexed on either multimode fiber (reach of 300 m)
or single-mode fiber (reach of 10 km).

10-Gigabit Ethernet on copper cable has short ranges, which is sufficient for
applications as interconnects and backplanes. There is a PMD for twisted pair cables
with a reach of 100 m which uses multilevel modulation. The 10GBASE-CX4 PMD
has a reach of 15 m. It has four parallel channels, each at 2.5 Gb/s, and uses an
(8,10) line code. The least expensive copper PMD is CX1, which is for twinax cable
(coaxial cable but with two inner conductors) at a reach of 10 m.

6.4.4 Carrier Transport

With the pervasiveness of Ethernet in enterprises, service providers offer Ethernet
connectivity across multiple sites. These services include E-Line, which is an Ethernet
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point-to-point connection; E-LAN, which is a multipoint connection that operates
as a virtual switched Ethernet network; and E-TREE, which is an Ethernet point-
to-multipoint connection. In many cases, customers require carrier grade service,
including high availability.

In addition, Ethernet is emerging as the carrier transport mechanism within
service provider networks themselves, since most growth within these networks is
driven by applications such as digital video and data-oriented services.

Ethernet options that support carrier transport are Provider Bridges and Provider
Backbone Bridges (PBB). For these options, the frame header and its processing are
modified and use the idea of stacked labels in MPLS (see Section 6.6).

Note that service providers can use other technologies to carry Ethernet. For car-
rier grade service, SONET/SDH technology can be used, where Ethernet is adapted
to SONET/SDH connections using the Generic Framing Procedure. A drawback of
this implementation is that SONET/SDH equipment is expensive.

Another technology is MPLS. As discussed in Section 6.6, pseudowire technology
can be used to transport Ethernet over MPLS, and MPLS can deliver carrier grade
services. It is also less expensive than SONET/SDH.

Although SONET/SDH and MPLS can already provide carrier grade services, en-
hancing Ethernet so that it can provide carrier grade service on its own has important
advantages. First, Ethernet has traditionally been less expensive than SONET/SDH
or MPLS in both capital and operational expenditures and in many cases by a signif-
icant margin. Thus, a carrier grade Ethernet technology may be the least expensive
in the end. In addition, it is simpler to operate and manage a network with one
protocol than a mix of protocols.

Provider Bridges

To illustrate Provider Bridges, consider the example in Figure 6.17 where there
is an enterprise network with two offices at different locations and the offices
are connected through a service provider. For VLANs within an office, the or-
dinary VLAN Ethernet frame is used. The frame has a header that includes a
source address, a destination address, and a VLAN tag. Since the enterprise is
a customer to the service provider, we will refer to the addresses and tags as
the customer source address (C-SA), customer destination address (C-DA), and
customer tag (C-Tag). To support a VLAN that spans both offices, the service
provider must transport VLAN frames by providing a bridge between the two
offices. Provider Bridges supports this by allowing an additional 12-bit service
tag (S-Tag) as shown in Figure 6.17. Then the service provider can set up its
own VLAN to transport the customer VLAN traffic. (Provider Bridges is some-
times referred to as Q-in-Q because Ethernet VLAN is under the IEEE 802.1Q



6.4 Ethernet 409

PRE

Payload

FCS

SFD

C-DA

C-SA

Length/
Type

Customer
network

Customer
networkService provider

network

Ethernet connection

C-Tag

PRE

Payload

FCS

SFD

C-DA

C-SA

Length/
Type

C-Tag

PRE

Payload

FCS

SFD

C-DA

C-SA

Length/
Type

C-Tag

S-Tag

(Office) (Office)

Figure 6.17 Provider bridges (Q-in-Q) for VLANs, and the Ethernet frame structures.

standard and the bridging is of VLAN frames being transported in another
VLAN.)

The S-Tag is inserted into the Ethernet frame at the ingress to the service provider
and is removed at the egress of the service provider. Thus, the customer is unaware of
the S-Tag. In addition, the customer’s VLANs are invisible to the service provider be-
cause the service provider’s network uses only the S-Tag and the customer’s addresses
to switch the frames.

Unfortunately, this bridging solution does not scale well with the number of
customers or the size of a service provider. First, it is limited to 4096 S-Tag values.
Second, because of the way Ethernet supports VLANs, a provider switch may have
to learn the Ethernet addresses of all the customer edge devices to forward Ethernet
frames properly. This would be a problem for switches in the provider’s backbone
that carry the traffic of many customers.

Provider Backbone Bridges

Provider Backbone Bridges (PBB) alleviates the scalability problems of Provider
Bridges. Consider again the case of an enterprise network with two offices at differ-
ent locations and connected through the service provider as shown in Figure 6.17.
Suppose the service provider has a backbone network as shown in Figure 6.18. (Note
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Figure 6.18 Provider backbone bridges (Mac-in-Mac) for VLANs, and the Ethernet
frame address and tag information.

that this backbone network could be that of another service provider.) In the figure,
the Ethernet frame address and tag information are shown.

To transport a Provider Bridges frame through the backbone, inserted into the
frame at the ingress of the backbone are a backbone source address (B-SA), a back-
bone destination address (B-DA), a backbone tag (B-Tag), and a service identifier tag
(I-Tag). At the egress of the backbone, these addresses and tags are removed. The
backbone addresses are Ethernet address at the edges of the backbone. Therefore,
within the backbone, switches only use backbone addresses and tags, and there is
a complete separation from customer information. PBB is also referred to as MAC-
in-MAC since the customer Ethernet VLAN frame is encapsulated with another
Ethernet VLAN header.

Note that the B-Tag allows a service provider to partition its backbone into
broadcast domains. With a 24-bit field, the I-Tag allows many more service instances
than the S-Tag of Provider Bridges. In addition, the I-Tag field can be transparent to
switches in the core of the backbone, which reduces switching equipment complexity.

Carrier Grade Service

To better support carrier grade services, there is an extension of PBB called Provider
Backbone Bridge–Traffic Engineering (PBB-TE), sometimes referred to as Provider
Backbone Transport (PBT) . The basic idea is to use Ethernet as a connection-oriented
transport technology, where the connections are static. VLANs can be used to define
PBB-TE path connections, similar to MPLS tunnels (see Section 6.6). Just as with
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MPLS, PBB-TE connections can be routed to efficiently utilize network bandwidth
or to achieve certain performance criteria such as maximum latencies, minimum
throughput, or maximum loss rates. Note that resources can be provisioned to guar-
antee service-level agreements (SLAs) for these connections. PBB-TE also supports
provisioning backup tunnels for protection.

PBB-TE disables the spanning tree protocol, broadcasting, flooding, and the
learning aspect of switched Ethernet routing. This eliminates some of the dynamic,
self-organizing, and complex aspects of the Ethernet protocol, making it simpler,
more stable, and more controllable.

Besides PBB-TE, survivability mechanisms have also been developed for Ethernet
to support carrier grade service. These mechanisms are described in Section 9.3.2.

6.5 IP

IP (Internet Protocol) is by far the most widely used wide-area networking technology
today. IP is the underlying network protocol used in the all-pervasive Internet and is
equally important in most private intranets to link up computers. IP is a networking
technology, or protocol, that is designed to work above a wide variety of lower
layers, which are termed data link layers in the classical layered view of networks
(Section 1.4). This is one of the important reasons for its widespread success.

Figure 6.19 shows IP within the layered architecture framework. The traditional
data link layers over which IP operates are Ethernet and the point-to-point protocol
(PPP). IP operates over other low-speed serial lines as well as high-speed optical fiber
lines using well-known data link layer protocols—for example, high-level data link
control (HDLC).

Several layering structures are possible to map IP into the optical layer. The term
IP over WDM is commonly used to refer to a variety of possible mappings shown in
Figure 6.20. Figure 6.20(a) shows the packet-over-SONET (POS) implementation.
Here, IP packets are mapped into PPP frames and then encoded into SONET frames
for transmission over a wavelength. Figure 6.20(b) shows an implementation using
Gigabit or 10-Gigabit Ethernet as the underlying link (media access control) layer
and Gigabit/10-Gigabit Ethernet physical layer (PHY) for encoding the frames for
transmission over a wavelength. We will study the implications of these different
approaches in Chapter 13.

IP, being a network layer protocol, does not guarantee reliable, in-sequence deliv-
ery of data from source to destination. This job is performed by a transport protocol,
typically the transmission control protocol (TCP). Another commonly used transport
protocol for simple message transfers over IP is the user datagram protocol (UDP).
Commonly used applications such the file transfer protocol (FTP), hypertext transfer
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Figure 6.20 Various implementations of IP over WDM. (a) A packet-over-SONET
(POS) variant, where IP packets are mapped into PPP frames then an HDLC-like framing
and scrambling, and finally into SONET frames. (b) IP packets are mapped into PPP
frames, and then framed using the Generic Framing Procedure (GFP) before mapped into
a SONET or OTN path. (c) Using Gigabit or 10-Gigabit Ethernet media access control
(MAC) as the link layer and Gigabit or 10-Gigabit Ethernet physical layer (PHY) for
encoding the frames for transmission over a wavelength.

protocol (HTTP), secure shell (SSH), and simple mail transfer protocol (SMTP) use
TCP as their transport protocol. Other applications use UDP for transport such as
the network file system (NFS), which is used to share files across a network, and the
simple network management protocol (SNMP), which is used for management. (We
will discuss SNMP in Chapter 8.) UDP is also the transport protocol of choice for
streaming media.
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Figure 6.21 Routing in an IP network. The routing tables at some of the nodes are also
shown. The tables contain the identity of the next hop node for each destination.

6.5.1 Routing and Forwarding

IP was one of the earliest packet-switching protocols. IP transports information in
the form of packets, which are of variable length. An IP router is the key network
element in an IP network. A router forwards packets from an incoming link onto an
outgoing link. Figure 6.21 illustrates how packets are forwarded in an IP network.
The nature of this routing is fundamental to IP. Here we describe the classical routing
mechanism used by IP. Each router maintains a routing table. The routing table has
one or more entries for each destination router in the network. The entry indicates
the next node adjacent to this router to which packets need to be forwarded. The
forwarding process works as follows. The router looks at the header in a packet
arriving on an incoming link. The header contains the identity of the destination
router for that packet. The router then does a lookup of its routing table to determine
the next adjacent node for that packet and forwards the packet on the link leading
to that node. In the example shown in Figure 6.21, consider a packet from node 1
destined for node 4. Node 1 looks at its table and forwards this packet to node 5.
Node 5 forwards the packet to node 3, which in turn forwards the packet to node
4, its ultimate destination.

Clearly, maintaining these routing tables at the routers is central to the operation
of the network. It is likely that links and nodes in the network may fail, or reappear,
and new links and nodes may be added over the course of time. The routers detect
these changes automatically and update their routing tables using a distributed rout-
ing protocol. The protocol works as follows. Each router is assumed to be capable
of determining whether its links to its neighbors are up or down. Whenever a router
detects a change in the status of these links, it generates a link state packet and floods
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it to all the routers in the network. Flooding is a technique used to disseminate in-
formation across the network. Each node, upon receiving a flood packet, forwards
the packet on all its adjacent links except the link from which it came. Thus these
packets eventually reach all the nodes in the network. A node receiving a link state
packet updates its routing table based on the new information. Over time, all nodes
in the network have updated routing tables that reflect the current network topology.

A number of subtle enhancements are needed to make the flooding process
work reliably. For example, link state packets could take different paths through the
network and undergo different delays. As a result, an older link state packet might
arrive after a more recent up-to-date version. If left unchecked, this could cause
damage. Consider what happens when a link goes down and comes back up. The
first link state packet (packet X) says that the link is down, and the subsequent one
(packet Y) indicates that the link is up. A node receiving packet X after packet Y will
think that the link is down, even after it has come up! To prevent this phenomenon,
the link state packets have a sequence number. If a router receives a link state packet
whose sequence number is lower than a previously received link state packet, it
simply discards the packet. Packets could also be lost in the network, so link state
updates are generated periodically and not just after a link up/down event occurs.

Using these link state packets, each router can construct its view of the entire
network topology. On this topology, each router then computes the shortest path
from itself to all the other routers and stores the identity of the next router in the
path for each destination node in its routing table. A typical shortest-path algorithm
used for this purpose is the Dijkstra algorithm [Dij59].

The routing protocol that we have described above is an example of an in-
tradomain routing protocol. One of the most commonly used intradomain routing
protocols in the Internet—Open Shortest Path First (OSPF)—works just as we have
described above.

The Internet is a very large network, and it is impractical to expect each router to
maintain a topology of the entire Internet. For this purpose, the network is divided
into multiple interconnected domains. Each domain is called an autonomous system
(AS). A separate interdomain routing protocol is used to route between domains
in a large network. One example of such a protocol is the border gateway protocol
(BGP), details of which the reader can find in the references at the end of this chapter.

6.5.2 Quality of Service

IP networks traditionally offer “best-effort” services. IP tries its best to get a packet
from its source to its destination. However, different packets may take different
routes through the network and experience random delays, and some packets will be
dropped if there is congestion in the network. There has been a great deal of effort
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to improve this state of affairs so as to offer some quality-of-service (QoS) assurance
to the users of the network. Within IP, a mechanism called Diff-Serv (differentiated
services) has been proposed. In Diff-Serv, packets are grouped into different classes,
with the class type indicated in the IP header. The class type specifies how packets
are treated within each router. Packets marked as expedited forwarding (EF) are
handled in a separate queue and routed through as quickly as possible. Several
additional priority levels of assured forwarding (AF) are also specified. An AF has
two attributes: xy. The attribute x typically indicates the queue to which the packet is
held in the router prior to switching. The attribute y indicates the drop preference for
the packets. Packets with y = 3 have a higher likelihood of being dropped, compared
to packets with y = 1.

While Diff-Serv attempts to tackle the QoS issue, it does not provide any end-to-
end method to guarantee QoS. For example, we cannot determine a priori if sufficient
bandwidth is available in the network to handle a new traffic stream with real-time
delay requirements. This is one of the benefits of multiprotocol label switching, which
we will study next.

6.6 Multiprotocol Label Switching

Multiprotocol label switching (MPLS) is a connection-oriented technology to trans-
port IP packets. It has a wide variety of applications. Today MPLS works with other
packet-switched networks, providing the same benefits as it does for IP. However,
for simplicity, we will focus our discussion on how it works with IP.

MPLS can be thought of as a layer sandwiched between the IP layer and the data
link layer. MPLS provides a label-switched path (LSP) between nodes in the network.
A router implementing MPLS is called a label-switched router (LSR). Each packet
now carries a label that is associated with a label-switched path. Each LSR maintains
a label-forwarding table, which specifies the outgoing link and outgoing label for
each incoming label. When an LSR receives a packet, it extracts the label, uses it to
index into the forwarding table, replaces the incoming label with the outgoing label,
and forwards the packet on to the link specified in the forwarding table.

This very simple MPLS paradigm has several applications in an IP network.

1. Separation of control and data planes: One of the fundamental design philoso-
phies in MPLS is that the label-switching and packet-forwarding process at each
router is completely decoupled from how LSPs are set up and taken down in
the network. We can think of the latter as a network control function, which
involves first deciding what LSPs to set up or take down and then actually set-
ting them up and taking them down. This simple separation allows us to build
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optimized hardware for packet forwarding, independent of the network control
mechanisms, and allows for LSPs to be set up and taken down based on different
criteria and using different protocols.

2. Packet forwarding processing: An LSR doing label forwarding can potentially
process a much larger number of packets per second compared to a regular
router because the label switching and forwarding process is much simpler than
classical IP routing and can be implemented almost entirely in hardware. While
many of the functions of classical IP routing discussed in the previous section can
also be implemented in hardware, there is a close coupling between the routing
function and the control function in IP. Any changes to the control framework get
reflected in the routing behavior. As a result, existing hardware will not continue
to remain optimized for routing if the control framework changes. In contrast,
in MPLS, we can optimize the forwarding hardware in the LSRs, independent of
how label-switched paths are set up or taken down.

3. Connection oriented: IP packet forwarding is based on the destination addresses
of the packets, that is, connectionless routing. This means that packets at a node
with the same destination will be forwarded out of a common link. It does
not matter whether or not these packets have different service requirements.
In addition, this type of forwarding can have the undesired effect of funneling
packet traffic to certain links and overloading them.

MPLS is connection oriented. Its packets are organized into packet streams
called forward equivalence classes, and each forward equivalence class has an
LSP. This has several implications. First, packets with different service require-
ments can be separated into different forward equivalence classes, and their
LSPs can take different routes even if they have the same source and destination
nodes. Second, traffic for the same destination can be split to improve network
performance, for example, traffic load balancing among links to alleviate link
congestion. This is called traffic engineering. It can be implemented by dividing
packet traffic into forward equivalence classes and routing their LSPs to avoid
congestion. Finally, MPLS can be used to support multiple virtual private net-
works (VPNs) over a single IP network. Each VPN can be carried over a separate
set of LSPs, allowing the service provider to provide QoS, security, and other
policy measures on a VPN-specific basis.

4. Explicit routing: IP routing follows shortest paths to destination nodes. Although
this can be efficient in using network resources, it can also be limiting.

MPLS allows explicit routing. LSPs can be explicitly routed to ensure that
they traverse links that offer certain QoS assurances for their packets. They
can be routed along links with sufficient reserved bandwidth to enable QoS
guarantees. Explicit routing can be used to implement traffic engineering and
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avoid network congestion. It can be used to implement VPN service. Another
important application is survivability from network failures, where a backup
path LSP is used if a primary LSP fails. Very often a backup LSP cannot be a
shortest path.

Deciding which LSPs to set up in a network can be a complicated process,
depending on the objectives and the application. Luckily, as we indicated earlier,
this function is completely decoupled from the label-switching mechanism in the
LSRs. For example, if the objective is simply to reduce packet delay, we might set up
LSPs between pairs of nodes with a lot of traffic between them. If the objective is to
provide QoS guarantees, we would set up LSPs based on the bandwidth availability
in the network.

6.6.1 Labels and Forwarding

Figure 6.22(a) illustrates the concepts of labels and forwarding. An IP packet trans-
mitted on the LSP X gets a label X1 on the ingress to the LSP. While following
the LSP, a packet’s label can change from link to link. This is referred to as label
swapping or switching. Note that at the node before the last node of the LSP, the
label is removed or popped off. It really is not needed since it is exiting the LSP. This
is known as penultimate hop popping and is done so that the last node of the LSP
has less processing. To LSRs A and B, LSP X behaves as a point to point, virtual
link. This is often referred to as a tunnel because it passes underneath the classical
IP routing layer, and this is why MPLS is viewed as a layer between the classical IP
layer and the link layer.

MPLS extends the concept of tunneling by allowing LSPs to have their own LSP
tunnels, as shown in Figure 6.22(b). The figure considers LSP X again but instead of
LSRs C and D being connected by a physical link, they are connected by an LSP Y.
Thus, LSP Y is a tunnel for LSP X. An IP packet will pass through LSP X using a label
for X. However, when it reaches LSR C, the LSR will insert a label for LSP Y and
forward it along the LSP. When it reaches the end of LSP Y, the label for Y is removed
using penultimate hop popping. At LSR D, the packet continues on LSP X. Note
that the labels are added and deleted from the packet like a stack. A nice property
of the stack organization is that to forward a packet through the network, only the
top of the label stack is examined. Note that multiple LSPs may use a common LSP
tunnel as a virtual link.

An MPLS packet has a 4-byte MPLS header: a 20-bit label field, a 3-bit experi-
mental (EXP) field, a bottom-of-the-stack flag, and an 8-bit time to live (TTL) field,
as shown in Figure 6.23(a). The TTL is an indicator of how long the packet has been
in the network; when it expires, the packet is discarded. This helps to remove packets
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Figure 6.22 (a) A simple LSP X and (b) an LSP tunnel Y for an LSP X.

that are being misrouted and are lingering in the network. A possible application
of the 3-bit experimental field is to implement quality of service, as discussed in
Section 6.6.2.

These MPLS headers are stacked at the front of the IP packet as shown in
Figure 6.23(b). To forward packets, the LSRs must be able to process the top of the
stack by either pushing a header, popping a header, or swapping labels.

The MPLS label paradigm can simplify operation and reduce complexity, result-
ing in better scalability for large networks. We have already seen that label stacks
only require their tops to be processed. Also, using a common LSP tunnel to carry
multiple constituent LSPs can reduce complexity since an intermediate LSR only
deals with the single tunnel rather than the constituent LSPs. In addition, networks
that are organized hierarchically can use LSP tunnels to simplify their operation. For
example, consider a network N with a backbone subnetwork B. Suppose backbone
B has MPLS tunnels between its edge LSRs to traverse it, and suppose network N
has LSPs between its edge LSRs. Note that N’s LSPs can use B’s tunnels. To set up



6.6 Multiprotocol Label Switching 419

Label

(a)

TTL

E
X

P

Bottom of stack
flag

MPLS header
stack

IP packet
Top of the

stack

(b)

Figure 6.23 (a) An MPLS label and (b) a stack of LSP labels prepended to an IP packet.

and operate N’s LSPs and B’s tunnels, LSRs outside of B can be unaware of the LSRs
at the core of B and vice versa.

6.6.2 Quality of Service

MPLS supports quality of service. First, each MPLS header has a 3-bit EXP field that
can be used to hold priority or service-class values. LSRs can process and forward
packets according to these values. For example, packets with high priority can be
transmitted before packets with low priority. Second, packets with common quality
of service requirements can be grouped together as a forward equivalence class. Then
an LSP and its MPLS label correspond to a service class. To meet quality of service
requirements, the LSP can be routed so that there are enough resources along the
route. In addition, LSRs can process and forward packets of the LSP to meet the
requirements.

One type of quality of service is hard guarantees, such as for minimum band-
width, maximum latencies, maximum loss rate, and maximum jitter. Integrated
services (Int-Serv) support fine-grained hard guarantees. However, it requires a
high amount of state information at routers. Diff-Serv, which we discussed in Sec-
tion 6.5.2, has much less state information requirements and can meet the needs of
many applications.
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6.6.3 Signaling and Routing

The original signaling protocols for MPLS were the Resource Reservation Protocol
(RSVP) and Label Distribution Protocol (LDP). Under these protocols, when an
ingress LSR has an LSP to set up it sends a request message to the egress LSR.
The egress LSR sends a reply message along the reverse path that sets up the label
forwarding tables along the path. The request and reply messages follow paths that
are limited to IP’s shortest path routes, so LSPs are along shortest path routes.

RSVP-Traffic Engineering (RSVP-TE) and Constrained-based Routing LDP (CR-
LDP) are upgrades to RSVP and LDP, so that LSP routes may be explicitly defined
by the ingress LSRs. Now an ingress LSR can compute a path for a new LSP and
store the path information in a request message. The request message follows the
path using the information that it is carrying. The reply message follows the reverse
path, setting up label forwarding tables along the path.

To compute LSP routes, ingress LSRs collect network topology and resource
information about each link, for example, using the same mechanism used to collect
topology information for IP routing. Paths can be computed that avoid links that
cannot support the service level of an LSP, such as links with insufficient bandwidth.

6.6.4 Carrier Transport

MPLS technology can be used by service providers to implement connection services,
especially packet transport services, for customers. An example customer service is
Ethernet connectivity discussed in Section 6.4.4.

For the network operator, MPLS has widely used signaling protocols such as
LDP and RSVP-TE, as well as other operations and management functions. Its label
processing makes it scalable to large networks. It supports quality of service to ensure
service-level agreements (SLAs) and traffic engineering to optimize the use of network
resources. In addition, it has carrier grade survivability features (see Section 9.3.4).
Thus, carrier grade service can be supported.

MPLS can be made to provide connection services for a variety of protocols us-
ing the pseudowire technology. A pseudowire is a connection service over a packet-
switched network, which in many cases is MPLS. For example, there is a pseudowire
of Ethernet over MPLS, which has an MPLS connection resembling an Ethernet con-
nection. As we mentioned in Section 6.4.4, supporting Ethernet traffic is important.
For example, enterprise customers use it to connect offices at different sites, and
Ethernet is used to carry digital video.

Transport MPLS (T-MPLS) is another networking technology that supports car-
rier grade transport service for packet traffic. T-MPLS and MPLS are not peer net-
works, so IP/MPLS packets must be encapsulated to be transported in a T-MPLS
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connection. T-MPLS reuses the architecture of MPLS and simplifies it for transport.
It adds features to support bidirectional connections, since MPLS is a unidirectional
technology. Since T-MPLS connections are expected to have very long lifetimes,
T-MPLS has protection switching and operations and management not found in
ordinary MPLS (see Section 9.3.4 on protection switching). Due to concerns over
the compatibility of Transport MPLS with MPLS, development of T-MPLS has been
halted and work on a new MPLS has begun, called MPLS-Transport Profile (MPLS-
TP). This new development will likely incorporate some of the aspects of T-MPLS.

6.7 Resilient Packet Ring

Resilient Packet Ring (RPR) is a packet-switched ring network that transports data
packets such as IP packets. It has application as a metropolitan- or wide-area net-
work. RPR provides different services. It has guaranteed bandwidth to emulate
constant-bit-rate, low delay service, and it has fair access for best-effort service. The
ring network topology is resilient to failures, and in particular it remains connected
after single-link or single-node failures. The RPR failure recovery mechanism is dis-
cussed in Section 9.3.1, which is designed to have restoration times of 50 ms. RPR
is at the link layer just like Ethernet. It has its own frames, which are described in
[DYGU04]. It can be mapped into the Gigabit Ethernet physical layer, the 10-Gigabit
Ethernet physical layer, or SONET/SDH frames.

The ring network is bidirectional formed by two counter-rotating rings called
Ringlets 0 and 1, as shown in Figure 6.24, where the links have the same capacities.
A source node sends an RPR frame to its destination by inserting it into one of
ringlets. The frame is then forwarded by intermediate nodes until it reaches its
destination node, where it is switched out of the ringlet. Note that there are two
types of frames: transit frames, which have accessed a ringlet, and ingress frames,
which are new frames that are waiting to be added into a ringlet.

RPR has a medium access control (MAC) protocol to access a ringlet. Each node
has separate queues for transit and ingress frames, as shown in Figure 6.25. The
MAC determines which frames have access to an outgoing ringlet link, and frames
are transmitted on the link without preemption. The MAC ensures that transit frames
are never dropped by giving them priority over ingress frames on an outgoing link.
In addition, after an ingress frame begins transmission on an outgoing link, there
may be an arriving transit frame from the incoming ringlet link. Therefore, the MAC
disallows an ingress frame from accessing an outgoing ringlet link unless there is
space in the transit queue for an incoming transit frame. Thus, the RPR network
never drops packets.
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Figure 6.25 An RPR node.

6.7.1 Quality of Service

RPR supports three classes of traffic.

Class A. This class has low latency and jitter. When accessing a ringlet, it has high
priority. It is divided into Classes A0 and A1, where both have preallocated
network bandwidth to ensure their latency and jitter. The preallocated bandwidth
for Class A0 traffic is called reserved and can only be used by the node’s A0
traffic. If the node does not have enough A0 traffic, the preallocated bandwidth
is left unused. On the other hand, preallocated bandwidth for Class A1 is called
reclaimable because the unused bandwidth may be used by other classes of traffic.

Class B. This class has predictable latency and jitter. When accessing a ringlet, this
class has medium priority. Class B traffic is divided into Classes B-CIR (committed
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information rate) and B-EIR (excess information rate). Class B-CIR is similar to
Class A1 because it has preallocated network bandwidth to ensure its latency and
jitter, and the bandwidth is reclaimable. Class B-EIR packets are called fairness
eligible (FE) because they can access unused, unreserved bandwidth according to
RBR’s fairness mechanisms described in Section 6.7.3.

Class C. This class has best-effort transport. When accessing a ringlet, this class has
low priority. Class C traffic is also fairness eligible because it can access unused,
unreserved bandwidth according to the RPR’s fairness mechanisms.

6.7.2 Node Structure

Figure 6.26 shows the organization of a node for Ringlet 0. There is the primary
transit queue (PTQ) and an optional secondary transit queue (STQ). Both are first-
in-first-out (FIFO) queues. If the node is configured in the single queue mode, then
there is only the primary transit queue. For this mode, transit traffic has priority
over ingress traffic. Therefore, ingress traffic will access the ring only if the primary
transit queue is empty.

In the dual queue mode, the primary transit queue is for Class A transit traffic,
and the secondary transit queue is for the Classes B and C transit traffic. Class A
transit traffic in the primary transit queue has highest priority to access the outgoing
link. If the primary transit queue is empty, then the secondary transit queue has
priority to access the link if the secondary transit queue is “full.” The queue is full or
not depending on whether its occupancy is above or below a prespecified threshold.
If the primary transit queue is empty and the secondary transit queue is not full, then
the ingress traffic can access the outgoing link.

Note that in either the single or dual queue mode, Class A traffic has high
priority over all other traffic. Since it has preallocated bandwidth, it will experience
low network latency comprised of propagation delay and small queueing delays at
intermediate nodes.

The traffic shapers shown in Figure 6.26 regulate the rate at which the ingress
traffic accesses the network. Traffic classes A0, A1, and B-CIR are regulated to
access the ring at their preallocated bandwidth. There is a traffic shaper for the
ingress traffic of the fairness eligible classes, Classes B-EIR and C. They have their
rates dynamically adjusted to achieve fairness, as described in Section 6.7.3. There
is also a downstream shaper (not shown) that limits all traffic from the node on its
outgoing link except the A0 traffic. This ensures that the traffic from the node does
not exceed the unreserved rate.
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Figure 6.26 Node structure for Ringlet 0 for the case of two transit queues: primary
transit queue (PTQ) and secondary transit queue (STQ). The STQ is optional.

6.7.3 Fairness

The fairness eligible traffic, that is, Classes B-EIR and C, may use reclaimable or
unreserved bandwidth. However, with transit traffic having priority over ingress
traffic on a ringlet, there is an inherent unfairness of upstream nodes having access
before downstream nodes. If there is a heavy traffic load of fairness eligible traffic
from upstream nodes, downstream nodes could be starved from any bandwidth.
To ensure that all nodes have equal access to bandwidth, RPR uses a fair access
for fairness eligible traffic, which we discuss next. RPR allows unequal sharing of
bandwidth by assigning each node a fairness weight and letting a node’s bandwidth
be proportional to its weight. However, to simplify the discussion, we will assume
that all nodes have equal access to the bandwidth.

Consider a node k and its outgoing link on a ringlet, say Ringlet 0. There are two
options of the fairness protocol.

Aggressive mode. This is for the dual queue case. Now node k will consider its out-
going link to be congested if its secondary transit queue is above a prespecified
threshold or its transmission rate on the link is higher than the amount of unre-
served bandwidth, that is, the link is using some of the bandwidth reserved for
Class A0 traffic.

When the node k has a congested outgoing link, it determines the rate at which
it is sending ingress traffic. This rate is called its local fair rate. The congestion
may be due in part to nodes that are upstream from node k on the ringlet that are
transmitting their ingress traffic at a higher rate than node k. After determining
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its local fair rate, node k sends this rate to its upstream nodes. An upstream node
will then limit its own ingress traffic rate with node k’s local fair rate. In this
way, node k can reduce the ingress traffic rate of upstream nodes that get more
bandwidth than it does. This can free bandwidth for node k.

If node k has an uncongested outgoing link, then it will periodically and
incrementally increase the transmission rate of its ingress traffic.

Conservative mode. This is the single queue case. There are two prespecified thresh-
old transmission rates: low threshold, which indicates that the outgoing link has
become congested, and high threshold, which indicates that the link is too con-
gested. The high threshold is higher than the low threshold but often less than
the actual capacity of the link.

Node k will consider its outgoing link to be congested if its transmission rate
on the outgoing link is higher than the low threshold rate or if the time between
consecutive transmissions exceeds a prespecified maximum delay. When the node
is congested, it periodically computes its local fair rate, which is its estimate of
the rate that upstream nodes should be sending through its outgoing link. It sends
this rate value to its upstream nodes. The upstream nodes will then limit the rate
of their ingress traffic that uses node k’s outgoing link to node k’s local fair rate.

The local fair rate is determined by node k as follows. If node k has just become
congested, it calculates its local fair rate by computing the amount of unreserved
bandwidth through its outgoing link divided by the number of upstream nodes
sending traffic through the link. If on one hand node k has been continuously
congested then it incrementally increases its local fair rate if its outgoing link
is underutilized; that is, its traffic rate is below the low threshold rate. On the
other hand, it will incrementally decrease its local fair rate if its outgoing link is
overutilized; that is, its traffic rate is above the high threshold rate.

6.8 Storage-Area Networks

Storage-area networks (SANs) are networks used to interconnect computer systems
with other computer systems and peripheral equipment, such as disk drives, printers,
and tape drives. These networks are built by enterprises that have medium to large
data centers. Figure 6.27 shows a typical SAN interconnecting multiple CPUs and
various types of peripheral devices. A key part of a SAN is a switch, which provides
reconfigurable connectivity between the various attached devices. The SANs that we
consider below all use a circuit-switched approach, where connections are rapidly
established and taken down between the attached devices as needed.

In early installations, the entire SAN was located within a building or campus,
but today the network is distributed over a wider metropolitan area, with some links
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Figure 6.27 Architecture of a storage-area network.

extending into the long-haul network. One reason to do so is to be able to provide
resilience against disasters. A common technique is to maintain two data centers,
with data from one center backed up onto the other. Another reason to distribute the
network is to locate peripherals and other equipment away from major downtown
areas into cheaper suburban areas where real estate is less expensive.

SANs typically operate at bit rates ranging from 200 Mb/s to about 10 Gb/s
and operate over fiber optic links in most cases. What makes them important from
the perspective of the optical layer is that there can be a huge number of such
connections between two data centers. Large mainframes have hundreds of I/O
channels to connect them to other devices. It is not uncommon to see networks with
hundreds to thousands of these links between two data centers.

6.8.1 Fibre Channel

Fibre Channel (see Table 6.5) was developed in the early 1990s and has become
the predominant storage-area network. This protocol adds overhead to the data and
then uses an (8,10) line code to encode the signal for transmission over the fiber. (The
16GFC, a 16 Gb/s standard in development, uses a new line coding scheme to get
better efficiency.) In the table, we have indicated the data rate as well as the actual
transmission rate over the fiber, which is obtained after adding overheads and line
coding.

The Fibre Channel architecture includes I/O ports on computers and peripherals,
as well as an electronic switch. Both copper and fiber interfaces have been defined,
with the fiber interface widely used in practice. Longwave lasers at 1300 and 1550 nm
are used with single-mode fibers with a reach of up to tens of kilometers. Shortwave
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Table 6.5 Fibre Channel storage-area network.

Name Data Rate Transmission Rate
(MBytes/s) (Gb/s)

1GFC 100 1.063
2GFC 200 2.125
4GFC 400 4.252
8GFC 800 8.504

10GFC 1000 10.519

lasers at 850 nm are used with multimode fibers with a reach of up to a few hundred
meters.

Summary

In this chapter, we studied several important client layers of the optical layer. These
have been deployed widely in public telecommunications networks as well as private
enterprise networks. The public transmission infrastructure in North America is
dominated by SONET; SDH is used in most other parts of the world. SONET/SDH
provides efficient time division multiplexing for low-speed streams and allows these
streams to be transported across the network in a reliable, well-managed way. OTN is
an alternative and emerging technology. Generic Framing Procedure is a mechanism
for these physical layer protocols to be used by a variety of packet networks.

The predominant network layer protocol today is IP. Most of the data traffic
entering the network is IP traffic, spurred by the growth of the Internet and corporate
intranets. IP provides primarily best-effort routing of packets from their source to
destination and has no notion of connections. MPLS has emerged to expand the
scope of IP to allow explicit routing of packets along defined paths through the
network.

Ethernet is another packet network technology. It is used in the enterprise domain
and for transport within service providers. Ethernet also has a physical layer that
supports optical transmission at the 1 Gb/s and 10 Gb/s rates.

The Resilient Packet Ring is an alternative to the SONET/SDH ring for data
packet traffic. It provides different services including guaranteed bandwidth and
best effort, and fair access. Because of its ring topology, it is resilient to faults.
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Storage-area networks area constitute another important class of networks using
optical fiber for transmission. These are used to link up computers to other com-
puters and their peripherals. Fibre Channel is the predominant technology for these
networks.

Further Reading

A general reference that covers SONET and IP is the book by Walrand and Varaiya
[WV00]. There is an extensive body of literature dealing with SONET/SDH. A com-
prehensive set of papers that cover the multiplexing standards, network topologies,
and performance and management is collected in [SS96]. See also the book by Sex-
ton and Reid [SR97] for an advanced treatment of the subject and [Gor00] as well.
SONET/SDH has been extensively standardized by the American National Standards
Institute (ANSI) and the International Telecommunications Union (ITU). In addition,
Telcordia publishes generic criteria for equipment vendors. A list of the standards
documents may be obtained on the World Wide Web at www.itu.ch, www.ansi.org,
and www.telcordia.com; some of them are listed in Appendix C. Telcordia’s GR-253
[Tel99] contains an extensive description of SONET, which we have made liberal
use of in this chapter. A summary of Virtual Concatenation (VCAT) and the Link
Capacity Adjustment Scheme (LCAS) can be found in [BCRvH06].

The Optical Transport Network (OTN) is under the standard ITU-T G.709
[ITU03]. The performance of OTN can be enhanced by “stronger” forward error
correcting codes (FEC). ITU-T G.975.1 specifies some of these that are often referred
to as super-FEC schemes [ITU04].

Overviews of the Generic Framing Procedure (GFP) are in [BRM02, HVSZ02].
GFP is an ITU standard [ITU01].

Readers wanting to learn about IP and MPLS will be deluged with information.
For an introductory overview of IP, see [PD99, Per99]. See [Com00, Ste94] for a more
detailed treatment of TCP/IP, and [DR00] for MPLS. The Internet Engineering Task
Force (www.ietf.org) develops and maintains standards, with all standards docu-
ments (RFCs—requests for comments) being readily available. There is an IP/MPLS
Forum (www.ipmplsforum.org). Transport MPLS is specified in the ITU standard
G.8110/Y.1370 [ITU06].

Before MPLS, the protocol that was used for connection-oriented routing of IP
packets was Asynchronous Transfer Mode (ATM). Appendix J has a description of
this protocol.

Ethernet standards are available from ANSI and the Institute of Electrical
and Electronic Engineers (IEEE). The IEEE has a Web site at www.ieee.org. See
www.gigabit-ethernet.org for details on Gigabit Ethernet. Ethernet is the IEEE 802.3
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standard, Ethernet VLANs are defined in IEEE 802.1Q, Provider Bridges are de-
fined in IEEE 802.1ad, Provider Backbone Bridges are defined in IEEE 802.1ah,
and Provider Backbone Bridge–Traffic Engineering is defined in IEEE 802.1Qay.
There is the IEEE Communication Magazine’s series on the topic of carrier Ethernet
[MPH08, NSG08]. An industry alliance on carrier Ethernet is the Metro Ethernet
Forum, which has a Web site at metroethernetforum.org.

A tutorial of the Resilient Packet Ring can be found in [DYGU04]. RPR is
specified in the IEEE 802.17 standard [IEE04]. Its fair access mechanism is described
and analyzed in [GYB+04, YGK04].

ANSI standards have been established for Fibre Channel. [Cla99, TS00] pro-
vide primers on storage-area networks in general, focusing on Fibre Channel so-
lutions. The Fibre Channel Industry Association (FCIA) maintains a Web site,
www.fibrechannel.org, for Fibre Channel.

Problems

6.1 Which sublayer within the SONET or optical layer would be responsible for handling
the following functions?

(a) A SONET path fails, and the traffic must be switched over to another path.
(b) Many SONET streams are to be multiplexed onto a higher-speed stream and

transmitted over a SONET link.
(c) A fiber fails, and SONET line terminals at the end of the link reroute all the

traffic on the failed fiber onto another fiber.
(d) The error rate on a SONET link between regenerators is to be monitored.
(e) The connectivity of an STS-1 stream through a network needs to be verified.

6.2 In Table 6.3, calculate the equivalent distance limitations of the different types
of SONET systems. Assume a loss of 0.25 dB/km at 1550 nm and 0.5 dB/km at
1310 nm.

6.3 You have to connect two SDH boxes operating at STM-16 line rate over a link that
can have a loss of anywhere from 0 to 7 dB. Unfortunately, the boxes do not support
the same interfaces. One of them supports an I-16 interface, and the other has an
S-16.1 interface. The detailed specifications for these interfaces, extracted from ITU
Recommendation G.957, are given in Table 6.6. Can you find a way to interconnect
these boxes and make the link budget work? You are allowed to use variable optical
attenuators in the link.
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Table 6.6 Specifications for STM-16 intraoffice and short-
haul interfaces (from ITU G.957).

Parameter I-16 S-16.1

Transmitter MLM SLM
Wavelength range 1.3 μm 1.3 μm
Transmit power (max) −3 dBm 0 dBm
Transmit power (min) −10 dBm −5 dBm
Receive sensitivity (min) −18 dBm −27 dBm
Receive overload (min) −3 dBm 0 dBm
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7
c h a p t e r

WDM Network Elements

W e have already explored some of the motivations for deploying WDM
networks in Chapter 1 and will go back to this issue in Chapter 13. These

networks provide circuit-switched end-to-end optical channels, or lightpaths, be-
tween network nodes to their users, or clients. A lightpath consists of an optical
channel, or wavelength, between two network nodes that is routed through multiple
intermediate nodes. Intermediate nodes may switch and convert wavelengths. These
networks may thus be thought of as wavelength-routing networks. Lightpaths are
set up and taken down as dictated by the users of the network.

In this chapter we will explore the architectural aspects of the network elements
that are part of this network. The architecture of such a network is shown in Fig-
ure 7.1. The network consists of optical line terminals (OLTs), optical add/drop
multiplexers (OADMs), and optical crossconnects (OXCs) interconnected via fiber
links. Not shown in the figure are optical line amplifiers, which are deployed along
the fiber link at periodic locations to amplify the light signal. In addition, the OLTs,
OADMs, and OXCs may themselves incorporate optical amplifiers to make up for
losses. As of this writing, OLTs are widely deployed, and OADMs are deployed to a
lesser extent. OXCs are just beginning to be deployed.

The architecture supports a variety of topologies, including ring and mesh topolo-
gies. OLTs multiplex multiple wavelengths into a single fiber and also demultiplex
a composite WDM signal into individual wavelengths. OLTs are used at either end
of a point-to-point link. OADMs are used at locations where some fraction of the
wavelengths need to be terminated locally and others need to be routed to other
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Figure 7.1 A wavelength-routing mesh network showing optical line terminals (OLTs),
optical add/drop multiplexers (OADMs), and optical crossconnects (OXCs). The network
provides lightpaths to its users, such as SONET boxes and IP routers. A lightpath is
carried on a wavelength between its source and destination but may get converted from
one wavelength to another along the way.

destinations. They are typically deployed in linear or ring topologies. OXCs perform
a similar function but on a much larger scale in terms of number of ports and wave-
lengths involved, and are deployed in mesh topologies or in order to interconnect
multiple rings. We will study these network elements in detail later in this chapter.
The users (or clients) of this network are connected to the OLTs, OADMs, or OXCs.
The network supports a variety of client types, such as IP routers, Ethernet switches,
and SONET terminals and ADMs.

Each link can support a certain number of wavelengths. The number of wave-
lengths that can be supported depends on the component- and transmission-imposed
limitations that we studied in Chapters 2, 3, and 5.

We next describe several noteworthy features of this architecture:
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Wavelength reuse. Observe from Figure 7.1 that multiple lightpaths in the network
can use the same wavelength, as long as they do not overlap on any link. This spa-
tial reuse capability allows the network to support a large number of lightpaths
using a limited number of wavelengths.

Wavelength conversion. Lightpaths may undergo wavelength conversion along their
route. Figure 7.1 shows one such lightpath that uses wavelength λ2 on link EX,
gets converted to λ1 at node X, and uses that wavelength on link XF . Wavelength
conversion can improve the utilization of wavelengths inside the network. We
will study this aspect in Section 7.4.1 and in Chapter 10. Wavelength conversion
is also needed at the boundaries of the network to adapt signals from outside the
network into a suitable wavelength for use inside the network.

Transparency. Transparency refers to the fact that the lightpaths can carry data at a
variety of bit rates, protocols, and so forth and can, in effect, be made protocol
insensitive. This enables the optical layer to support a variety of higher layers
concurrently. For example, Figure 7.1 shows lightpaths between pairs of SONET
terminals, as well as between pairs of IP routers. These lightpaths could carry
data at different bit rates and protocols.

Circuit switching. The lightpaths provided by the optical layer can be set up and
taken down upon demand. These are analogous to setting up and taking down
circuits in circuit-switched networks, except that the rate at which the setup
and take-down actions occur is likely to be much slower than, say, the rate
for telephone networks with voice circuits. In fact, today these lightpaths, once
set up, remain in the network for months to years. With the advent of new
services and capabilities offered by today’s network equipment, we are likely to
see a situation where this process is more dynamic, both in terms of arrivals of
lightpath requests and durations of lightpaths.

Note that packet switching is not provided within the optical layer. The
technology for optical packet switching is still fairly immature; see Chapter 12
for details. It is left to the higher layer, for example, IP or Ethernet, to perform
any packet-switching functions needed.

Survivability. The network can be configured such that, in the event of failures,
lightpaths can be rerouted over alternative paths automatically. This provides
a high degree of resilience in the network. We will study this aspect further in
Chapter 9.

Lightpath topology. The lightpath topology is the graph consisting of the network
nodes, with an edge between two nodes if there is a lightpath between them. The
lightpath topology thus refers to the topology seen by the higher layers using the
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Figure 7.2 Block diagram of an optical line terminal. The OLT has wavelength multi-
plexers and demultiplexers and adaptation devices called transponders. The transponders
convert the incoming signal from the client to a signal suitable for transmission over the
WDM link and an incoming signal from the WDM link to a suitable signal toward the
client. Transponders are not needed if the client equipment can directly send and re-
ceive signals compatible with the WDM link. The OLT also terminates a separate optical
supervisory channel (OSC) used on the fiber link.

optical layer. To an IP network residing above the optical layer, the lightpaths
look like links between IP routers. The set of lightpaths can be tailored to meet
the traffic requirements of the higher layers. This topic will be explored further
in Chapter 10.

7.1 Optical Line Terminals

OLTs are relatively simple network elements from an architectural perspective. They
are used at either end of a point-to-point link to multiplex and demultiplex wave-
lengths. Figure 7.2 shows the three functional elements inside an OLT: transponders,
wavelength multiplexers, and optionally, optical amplifiers (not shown in the figure).
A transponder adapts the signal coming in from a client of the optical network into
a signal suitable for use inside the optical network. Similarly, in the reverse direction,
it adapts the signal from the optical network into a signal suitable for the client.
The interface between the client and the transponder may vary depending on the
client, bit rate, and distance and/or loss between the client and the transponder. The
most common interface is the SONET/SDH short-reach (SR) interface described in
Section 6.1.5. There are also cheaper very-short-reach (VSR) interfaces at bit rates
of 10 Gb/s and higher.
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The adaptation includes several functions, which we will explore in detail
in Section 8.6.3. The signal may need to be converted into a wavelength that
is suited for use inside the optical network. The wavelengths generated by the
transponder typically conform to standards set by the International Telecommu-
nications Union (ITU) in the 1.55 μm wavelength window, as indicated in the
figure, while the incoming signal may be a 1.3 μm signal. The transponder may
add additional overhead for purposes of network management. It may also add
forward error correction (FEC), particularly for signals at 10 Gb/s and higher
rates. The transponder typically also monitors the bit error rate of the signal
at the ingress and egress points in the network. For these reasons, the adapta-
tion is typically done through an optical-to-electrical-to-optical (O/E/O) conver-
sion. Down the road, we may see some of the all-optical wavelength-converting
technologies of Section 3.8 being used in transponders; these are still in research
laboratories.

In some situations, it is possible to have the adaptation enabled only in the
incoming direction and have the ITU wavelength in the other direction directly sent
to the client equipment. This is shown in the middle of Figure 7.2. In some other
situations, we can avoid the use of transponders by having the adaptation function
performed inside the client equipment that is using the optical network, such as a
SONET network element. This is shown at the bottom of Figure 7.2. This reduces
the cost and results in a more compact and power-efficient solution. However, this
WDM interface specification is proprietary to each WDM vendor, and there are no
standards. (More on this in Section 8.4.) Transponders typically constitute the bulk
of the cost, footprint, and power consumption in an OLT. Therefore, reducing the
number of transponders helps minimize both the cost and the size of the equipment
deployed.

The signal coming out of a transponder is multiplexed with other signals at
different wavelengths using a wavelength multiplexer onto a fiber. Any of the mul-
tiplexing technologies described in Chapter 3, such as arrayed waveguide gratings,
dielectric thin-film filters, or fiber Bragg gratings, can be used for this purpose. In
addition, an optical amplifier may be used to boost the signal power if needed.
In the other direction, the WDM signal is amplified again, if needed, before it is
sent through a demultiplexer that extracts the individual wavelengths. These wave-
lengths are again terminated in a transponder (if present) or directly in the client
equipment.

Finally, the OLT also terminates an optical supervisory channel (OSC). The OSC
is carried on a separate wavelength, different from the wavelengths carrying the
actual traffic. It is used to monitor the performance of amplifiers along the link as
well as for a variety of other management functions that we will study in Chapter 8.
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Figure 7.3 Block diagram of a typical optical line amplifier. Only one direction is shown.
The amplifier uses multiple erbium gain stages and optionally includes dispersion com-
pensators and OADMs between the gain stages. A Raman pump may be used to provide
additional Raman gain over the fiber span. The OSC is filtered at the input and termi-
nated, and added back at the output.

7.2 Optical Line Amplifiers

Optical line amplifiers are deployed in the middle of the optical fiber link at periodic
intervals, typically 80–120 km. Figure 7.3 shows a block diagram of a fairly standard
optical line amplifier. The basic element is an erbium-doped fiber gain block, which
we studied in Chapter 3. Typical amplifiers use two or more gain blocks in cas-
cade, with so-called midstage access. This feature allows some lossy elements to be
placed between the two amplifier stages without significantly impacting the overall
noise figure of the amplifier (see Problem 4.5 in Chapter 4). These elements include
dispersion compensators to compensate for the chromatic dispersion accumulated
along the link, and also the OADMs, which we will discuss next. The amplifiers also
include automatic gain control (see Chapter 5) and built-in performance monitoring
of the signal, a topic we will discuss in Chapter 8.

There are also Raman amplifiers, where a high-power pump laser is used at each
amplifier site to pump the fiber in the direction opposite to the signal. The optical
supervisory channel is filtered at the input and terminated, and added back at the
output. In a system using C- and L-bands, the bands are separated at the input to
the amplifier and separate EDFAs are used for each band.

7.3 Optical Add/Drop Multiplexers

Optical add/drop multiplexers (OADMs) provide a cost-effective means for handling
passthrough traffic in both metro and long-haul networks. OADMs may be used at
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Figure 7.4 A three-node linear network example to illustrate the role of optical add/drop multi-
plexers. Three wavelengths are needed between nodes A and C, and one wavelength each between
nodes A and B and between nodes B and C. (a) A solution using point-to-point WDM systems. (b)
A solution using an optical add/drop multiplexer at node B.

amplifier sites in long-haul networks but can also be used as stand-alone network
elements, particularly in metro networks. To understand the benefits of OADMs,
consider a network between three nodes, say, A, B, and C, shown in Figure 7.4, with
IP routers located at nodes A, B, and C. This network supports traffic between A
and B, B and C, and A and C. Based on the network topology, traffic between A
and C passes through node B. For simplicity, we will assume full-duplex links and
full-duplex connections. This is the case for most networks today. Thus the network
in Figure 7.4 actually consists of a pair of fibers carrying traffic in opposite directions.

Suppose the traffic requirement is as follows: one wavelength between A and B,
one wavelength between B and C, and three wavelengths between A and C. Now
suppose we deploy point-to-point WDM systems to support this traffic demand.
The resulting solution is shown in Figure 7.4(a). Two point-to-point systems are
deployed, one between A and B and the other between B and C. As we saw earlier
in Section 7.1, each point-to-point system uses an OLT at each end of the link. The
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OLT includes multiplexers, demultiplexers, and transponders. These transponders
constitute a significant portion of the system cost.

Consider what is needed at node B. Node B has two OLTs. Each OLT termi-
nates four wavelengths and therefore requires four transponders. However, only one
out of those four wavelengths is destined for node B. The remaining transponders
are used to support the passthrough traffic between A and C. These transponders
are hooked back to back to provide this function. Therefore, six out of the eight
transponders at node B are used to handle passthrough traffic—a very expensive
proposition.

Consider the OADM solution shown in Figure 7.4(b). Instead of deploying
point-to-point WDM systems, we now deploy a wavelength-routing network. The
network uses an OLT at nodes A and C and an OADM at node B. The OADM
drops one of the four wavelengths, which is then terminated in transponders. The
remaining three wavelengths are passed through in the optical domain using rel-
atively simple filtering techniques, without being terminated in transponders. The
net effect is that only two transponders are needed at node B, instead of the eight
transponders required for the solution shown in Figure 7.4(a). This represents a
significant cost reduction. We will explore this subject of cost savings in detail in
Section 10.1.

In typical carrier networks, the fraction of traffic that is to be passed through
a node without requiring termination can be quite large at many of the network
nodes. Thus OADMs perform a crucial function of passing through this traffic in a
cost-effective manner.

Going back to our example, the reader may ask why transponders are needed
in the solution of Figure 7.4(a) to handle the passthrough traffic. In other words,
why not simply eliminate the transponders and connect the WDM multiplexers and
demultiplexers between the two OLTs at node B directly, as shown in Figure 7.4(b),
rather than designing a separate OADM? Indeed, this is possible, provided those
OLTs are engineered to support such a capability. The physical layer engineering for
networks is considerably more complex than that for point-to-point systems, as we
saw in Chapter 5. For example, in a simple point-to-point system design, the power
level of a signal coming into node B from node A might be so low that it cannot
be passed through for another hop to node C. Also, in a network, the power of the
signals added at a node must ideally be equal to the power of the signals passing
through. However, there are also simpler and less expensive methods for building
OADMs, as we will see in Section 7.3.1.

We will see in the next section that today’s OADMs are rather inflexible. They
are, for the most part, static elements and do not allow in-service selection under
software control of what channels are dropped and passed through. We will see how
reconfigurable OADMs can be built in Section 7.3.2, using tunable filters and lasers.
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7.3.1 OADM Architectures

Several architectures have been proposed for building OADMs. These architectures
typically use one or more of the multiplexers/filters that we studied in Chapter 3.
Most practical OADMs use either fiber Bragg gratings, dielectric thin-film filters,
or arrayed waveguide gratings. Here, we view an OADM as a black box with two
line ports carrying the aggregate set of wavelengths and a number of local ports,
each dropping and adding a specific wavelength. The key attributes to look for in an
OADM are the following:

What is the total number of wavelengths that can be supported?

What is the maximum number of wavelengths that can be dropped/added at
the OADM? Some architectures allow only a subset of the total number of
wavelengths to be dropped/added.

Are there constraints on whether specific wavelengths can be dropped/added?
Some architectures only allow a certain set of wavelengths to be dropped/added
and not any arbitrary wavelength. This capability ranges from being able to
add/drop a single wavelength, to groups of wavelengths, to any arbitrary wave-
length. This has a significant impact on how traffic can be routed in the network,
as we will see below.

How easy is it to add and drop additional channels? Is it necessary to take a
service hit (i.e., disrupt existing channels) in order to add/drop an additional
channel? This is the case with some architectures but not with others.

Is the architecture modular, in the sense that the cost is proportional to the
number of channels dropped? This is important to service providers because they
prefer to “pay as they grow” as opposed to incurring a high front-end cost. In
other words, service providers usually start with a small number of channels in
the network and add additional channels as traffic demands increase.

What is the complexity of the physical layer (transmission) path design with the
OADM, and how does adding new channels or nodes affect this design? Funda-
mentally, if the overall passthrough loss seen by the channels is independent of
the number of channels dropped/added, then adding/dropping additional chan-
nels can be done with minimal impact to existing channels. (Other impairments
like crosstalk would still have to be factored in, however.) This is an important
aspect of the design that we will pay close attention to.

Is the OADM reconfigurable, in the sense that selected channels can be
dropped/added or passed through under remote software control? This is a desir-
able feature to minimize manual intervention. For instance, if we need to drop an
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additional channel at a node due to traffic growth at that node, it would be sim-
pler to do so under remote software control rather than sending a craftsperson
to that location. We will study this issue in Section 7.3.2.

Figure 7.5 shows three different OADM architectures, and Table 7.1 compares
their salient attributes. Several other variants are possible, and some will be explored
in Problem 7.1.

In the parallel architecture (Figure 7.5(a)), all incoming channels are demulti-
plexed. Some of the demultiplexed channels can be dropped locally, and others are
passed through. An arbitrary subset of channels can be dropped and the remaining
passed through. So there are no constraints on what channels can be dropped and
added. As a consequence, this architecture imposes minimal constraints on planning
lightpaths in the network. In addition, the loss through the OADM is fixed, inde-
pendent of how many channels are dropped and added. So if the other transmission
impairments discussed in Chapter 5 are taken care of by proper design, then adding
and dropping additional channels does not affect existing channels. Unfortunately,
this architecture is not very cost-effective for handling a small number of dropped
channels because, regardless of how many channels are dropped, all channels need
to be demultiplexed and multiplexed back together. Therefore we need to pay for
all the demultiplexing and multiplexing needed for all channels, even if we need to
drop only a single channel. This also results in incurring a higher loss through the
OADM. However, the architecture becomes cost-effective if a large fraction of the
total number of channels is to be dropped, or if complete flexibility is desired with
respect to adding and dropping any channel. The other impact of this architecture
is that since all channels are demultiplexed and multiplexed at all the OADMs, each
lightpath passes through many filters before reaching its destination. As a result,
wavelength tolerances on the multiplexers and lasers (see Section 5.6.6) can be fairly
stringent.

Some cost improvements can be made by making the design modular as shown in
Figure 7.5(b). Here, the multiplexing and demultiplexing are done in two stages. The
first stage of demultiplexing separates the wavelengths into bands, and the second
stage separates the bands into individual channels. For example, a 16-channel system
might be implemented using four bands, each having 4 channels. If only 4 channels
are to be dropped at a location, the remaining 12 channels can be expressed through
at the band level, instead of being demultiplexed down to the individual channel level.
In addition to the cost savings in the multiplexers and demultiplexers realized, the use
of bands allows signals to be passed through with lower optical loss and better loss
uniformity. Several commercially available OADMs use this approach. Moreover, as
the number of channels becomes large, a modular multistage multiplexing approach
(see Section 3.3.10) becomes essential. Parallel OADMs are typically realized using
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Figure 7.5 Different OADM architectures. (a) Parallel, where all the wavelengths are
separated and multiplexed back; (b) modular version of the parallel architecture; (c) serial,
where wavelengths are dropped and added one at a time; and (d) band drop, where a
band of wavelengths are dropped and added together. W denotes the total number of
wavelengths.
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Table 7.1 Comparison of different OADM architectures. W is the total number of
channels and D represents the maximum number of channels that can be dropped by
a single OADM.

Attribute Parallel Serial Band Drop

D = W 1 	 W

Channel constraints None Decide on channels Fixed set
at planning stage of channels

Traffic changes Hitless Requires hit Partially hitless
Wavelength planning Minimal Required Highly constrained
Loss Fixed Varies Fixed up to D

Cost (small drops) High Low Medium
Cost (large drops) Low High Medium

dielectric thin-film filters and arrayed waveguide gratings, and may use interleaver-
type filters for large channel counts.

In the serial architecture (Figure 7.5(c)), a single channel is dropped and added
from an incoming set of channels. We call this device a single-channel OADM (SC-
OADM). These can be realized using fiber Bragg gratings or dielectric thin-film filters.
In order to drop and add multiple channels, several SC-OADMs are cascaded. This
architecture in many ways complements the parallel architecture described above.
Adding and dropping additional channels disrupts existing channels. Therefore it
is desirable to plan what set of wavelengths needs to get dropped at each location
ahead of time to minimize such disruptions. The architecture is highly modular in
that the cost is proportional to the number of channels dropped. Therefore the cost
is low if only a small number of channels are to be dropped. However, if a large
number of channels are to be dropped, the cost can be quite significant since a
number of individual devices must be cascaded. There is also an indirect impact on
the cost because the loss increases as more channels are dropped, requiring the use
of additional amplification.

The increase of loss with number of channels dropped plays a major role in
increasing the complexity of deploying networks using serial OADMs. This is illus-
trated by the simple example shown in Figure 7.6. Suppose the allowed link budget
for a lightpath between a transmitter and a receiver is 25 dB. Consider a situation
where a lightpath from node B to node D is deployed with a loss of close to 25 dB
between its transmitter and receiver. Now consider the situation when a new light-
path is to be supported at a different wavelength from node A to node C. In order to
support this lightpath, an additional SC-OADM must be deployed at node C (and at
node A) to drop the new lightpath. This OADM introduces an additional loss, say,
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Figure 7.6 Impact of traffic changes on a network using serial OADMs. (a) Initial
situation. (b) A new lightpath is added between node A and node C, causing lightpath
BD to fail. (c) Lightpath BD is regenerated by adding a regenerator at node C. However,
this causes other lightpaths flowing through C to be impacted.

of 3 dB, to the channels passing through node C. Introducing this OADM suddenly
increases the loss on the lightpath from B to D to 28 dB, making it inoperative. The
story does not end there, however! Suppose that in order to fix this problem we
decide to regenerate this lightpath at node C. In order to regenerate this lightpath,
we need to drop it at node C, send it through a regenerator, and add it back. This
requires an additional SC-OADM at node C, which introduces 3 dB of additional
loss for channels passing through node C. This in turn could disrupt other lightpaths
passing through node C. Therefore adding or dropping additional channels can have
a ripple effect on all the other lightpaths in the network. The use of optical amplifiers
in conjunction with careful link engineering can alleviate some of these problems.
For instance, a certain amount of loss can be allocated up front, after an optical
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amplifier is introduced. SC-OADMs can be added until the loss budget is met, after
which another amplifier can be added.

Note that passthrough channels do not undergo any filtering. As a result, each
lightpath only passes through two filters, one at the source node and one at the
destination node. Thus wavelength tolerances on the multiplexers and lasers are less
stringent, compared to the parallel architecture.

In the band drop architecture (Figure 7.5(d)), a fixed group of channels is dropped
and added from the aggregate set of channels. The dropped channels then typically
go through a further level of demultiplexing where they are separated out. The added
channels are usually combined with simple couplers and added to the passthrough
channels. A typical implementation could drop, say, 4 adjacent channels out of 32
channels using a band filter.

This architecture tries to make a compromise between the parallel architec-
ture and the serial architecture. The maximum number of channels that can be
dropped is determined by the type of band filter used. Within this group of chan-
nels, adding/dropping additional channels does not affect other lightpaths in the
network as the passthrough loss for all the other channels not in this group
is fixed.

This architecture does complicate wavelength planning in the network, however,
and places several constraints on wavelength assignment because the same set of
wavelengths are dropped at each location. For example, if wavelength λ1 is added
at a node and dropped at the next node, all other wavelengths, say, λ2, λ3, λ4, in the
same band as λ1 will also be added at the same node and dropped at the next node.
What makes this not so ideal is that once a wavelength is dropped as part of a band,
it will likely need to be regenerated before it can be added back into the network. So
in this example, wavelengths λ2, λ3, λ4 will need to be regenerated at both nodes even
if they are passing through. It is difficult to engineer the link budget to allow optical
passthrough of these wavelengths without regeneration. This problem can be fixed by
using different varieties of OADMs, each of which drops a different set of channels.
As the reader can readily imagine, this makes network planning complicated. If
wavelength drops can be planned in advance and the network remains static, then
this may be a viable option. However, in networks where the traffic changes over
time, this may not be easy to plan.

The architectures that we discussed above are the ones that are feasible based
on today’s technology, and commercial implementations of all of these exist today.
It is clear that none of them offers a perfect solution that meets a full range of
applications. Serial and band-drop architectures have a low entry cost, but their
deployment has been hindered due to the lack of flexibility in dealing with traffic
changes in the network.
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7.3.2 Reconfigurable OADMs

Reconfigurability is a very desirable attribute in an OADM. Reconfigurability refers
to the ability to select the desired wavelengths to be dropped and added on the fly,
as opposed to having to plan ahead and deploy appropriate equipment. This allows
carriers to be flexible when planning their network and allows lightpaths to be set
up and taken down dynamically as needed in the network. The architectures that we
considered in Figure 7.5 were not reconfigurable in this sense.

Figures 7.7 and 7.8 show a few different reconfigurable OADM (ROADM)
architectures. Figure 7.7(a) presents a variation of the parallel architecture. It uses
optical switches to add/drop specific wavelengths as and when needed. Figure 7.7(b)
shows a variation of the serial architecture where each SC-OADM is now a tunable
device that is capable of either dropping and adding a specific wavelength, or passing
it through.

Both of these architectures only partially address the reconfigurability problem
because transponders are still needed to provide the adaptation into the optical layer.
We distinguish between two types of transponders: a fixed-wavelength transponder
and a tunable transponder. A fixed-wavelength transponder is capable of transmit-
ting and receiving at a particular fixed wavelength. This is the case with most of
the transponders today. A tunable transponder, on the other hand, can be set to
transmit at any desired wavelength and receive at any desired wavelength. A tun-
able transponder uses a tunable WDM laser and a broadband receiver capable of
receiving any wavelength.

With fixed-wavelength transponders, in order to make use of the reconfigurable
OADMs (ROADMs) shown in Figure 7.7(a) and (b), we need to deploy the transpon-
ders ahead of time so that they are available when needed. This leads to two prob-
lems: First, it is expensive to have a transponder deployed and not used while the
associated OADM is passing that wavelength through. But let us suppose that this
cost is offset by the added value of being able to set up and take down lightpaths
rapidly. The second problem is that although the OADMs are reconfigurable, the
transponders are not. So we still need to decide ahead of time as to which set of
wavelengths we will need to deploy transponders for, making the network planning
problem more constrained.

Avoiding these problems requires the use of tunable transponders, and even more
flexible architectures than the ones shown in Figure 7.7(a) and (b). For example,
Figure 7.7(c) shows a serial architecture where we have full reconfigurability. Each
tunable SC-OADM is capable of adding/dropping any single wavelength and passing
the others through, as opposed to a fixed wavelength. The adaptation is performed
using a tunable transponder. This provides a fully reconfigurable OADM. Likewise,
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Figure 7.7 Reconfigurable OADM architectures. (a) A partially tunable OADM using a
parallel architecture with optical add/drop switches and fixed-wavelength transponders.
T indicates a transmitter and R indicates a receiver. (b) A partially tunable OADM using a
serial architecture with fixed-wavelength transponders. (c) A fully tunable OADM using
a serial architecture with tunable transponders. This transponder uses a tunable laser
(marked T in the shaded box) and a broadband receiver. (d) A fully tunable OADM
using a parallel architecture with tunable transponders.
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Figure 7.7(d) shows a parallel architecture with full reconfigurability. Note that this
architecture requires the use of a large optical switch. This is exactly the optical
crossconnect that we will study next.

Figure 7.8(a) shows a broadcast and select ROADM. The incoming optical signal
is broadcast through a passive optical coupler so that part of the signal is dropped and
the other part is sent to the passthrough path. The drop path goes to demultiplexers or
passive splitters and to local receivers. In the passthrough path, there is a wavelength
blocker, which is a reconfigurable device that can selectively block or passthrough
individual wavelengths.

In the passthrough path of the ROADM, the wavelengths that are dropped at
the ROADM are blocked by the wavelength blocker so they do not reach the output.
The wavelengths from local tunable tranmitters of the ROADM are added to the
output of the ROADM through a combiner (e.g., passive optical coupler).

Figure 7.8(b) shows how the wavelength blocker works. The incoming optical
signal is demultiplexed into individual wavelengths, which go to individual wave-
length blockers; then the signals from the blockers are combined at the output. The
blockers are similar to variable optical attenuators (VOAs) except they are controlled
to either pass through their wavelength or block it.

Figure 7.8(c) is a ROADM implemented using a 1×N wavelength selective switch
(WSS). A WSS can individually switch the wavelengths on its input to its outputs.
(Note that a wavelength blocker is sometimes referred to as a 1× 1 WSS.)

The 1×N WSS is connected to the input of the ROADM, and one of the outputs of
the WSS is the passthrough to the output of the ROADM. The other N−1 outputs of
the WSS are used to drop wavelengths locally. These outputs are sometimes referred
to as colorless because they can carry any wavelength. Wavelengths of local tunable
transmitters of the ROADM can be added to the output of the ROADM using a
combiner, for example, an optical coupler, as shown in Figure 7.8(c), or using an
N × 1 WSS.

The ROADMs we have discussed so far are applicable to nodes that have two
incident fiber links (e.g., nodes in a ring network). The number of incident fiber links
to a node is referred as the node’s degree, so in this case nodes have degree 2. In
mesh and interconnected ring topologies there are nodes that have higher degree.
Optical crossconnects, discussed in Subsection 7.4, can be used for these nodes.
Basically, they are extensions of the architecture of Figure 7.7(d). However, they
have a high upfront cost. A less expensive alternative are multidegree ROADMs,
which are extensions of ROADM architectures.

Figure 7.9 has two examples of multidegree ROADMs, of degree 3, using the
broadcast and select and WSS technologies. For the example in Figure 7.9(a), the
signals from incoming fibers are broadcast through optical splitters. The outputs
of the splitters are dropped to the receivers of local tunable transponders of the
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Figure 7.8 (a) Broadcast and select ROADM, (b) wavelength blocker, and (c) WSS
based ROADM.

ROADM as well as passed through to a stage of N ×1 WSSs, where N is the number
of output ports of the multidegree ROADM. The outputs of the N × 1 WSSs go to
the outgoing fibers. Tunable transmitters of the local transponders are connected to
an output fiber through the fiber’s N × 1 WSS. The signals of the transmitters first
go through a combiner and then an input of the WSS.
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Figure 7.9 Broadcast and select multidegree ROADMs, where receivers and transmit-
ters (a) are fixed to particular fiber links and (b) can be used on any fiber link.

This multidegree ROADM is not as flexible as Figure 7.7(d). Its transmitters
and receivers are hardwired to particular fiber link ports. For example, a transmitter
physically attached to an outgoing fiber cannot be used on other outgoing fibers.
The example in Figure 7.9(b) alleviates this problem to some extent. Now the WSSs
can be dynamically configured to allow local tunable transponders to have their
wavelengths switched to any fiber link.
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We can modify the two example architectures in Figure 7.9 by replacing the power
splitters with 1×N WSSs. For these designs as well as the designs in Figure 7.8, using
WSSs rather than optical splitters or couplers has the advantage of improving power
loss. A disadvantage is that WSSs are more expensive. Also note that the ROADMs
may still require optical amplifiers to be placed between components to compensate
for power losses.

So what would an ideal OADM look like? Such an OADM (1) would be capable
of being configured to drop a certain maximum number of channels, (2) would
allow the user to select what specific channels are dropped/added and what are
passed through under remote software control, including the transponders, without
affecting the operation of existing channels, (3) would not require the user to plan
ahead as to what channels may need to be dropped at a particular node, and (4)
would maintain a low fixed loss regardless of how many channels are dropped/added
versus passed through.

7.4 Optical Crossconnects

OADMs are useful network elements to handle simple network topologies, such as
the linear topology shown in Figure 7.4 or ring topologies, and a relatively modest
number of wavelengths. An additional network element is required to handle more
complex mesh topologies and large numbers of wavelengths, particularly at hub
locations handling a large amount of traffic. This element is the optical crossconnect
(OXC). We will see that though the term optical is used, an OXC could internally use
either a pure optical or an electrical switch fabric. An OXC is also the key network
element enabling reconfigurable optical networks, where lightpaths can be set up
and taken down as needed, without having to be statically provisioned.

Consider a large carrier central office hub. This might be an office in a large city
for local service providers or a large node in a long-haul service provider’s network.
Such an office might terminate several fiber links, each carrying a large number of
wavelengths. A number of these wavelengths might not need to be terminated in that
location but rather passed through to another node. The OXC shown in Figure 7.10
performs this function. OXCs work alongside SONET/SDH network elements as
well as IP routers, and WDM terminals and add/drop multiplexers as shown in
Figure 7.10. Typically, some OXC ports are connected to WDM equipment and
other OXC ports to terminating devices such as SONET/SDH ADMs, IP routers, or
ATM switches. Thus, the OXC provides cost-effective passthrough for express traffic
not terminating at the hub as well as collects traffic from attached equipment into the
network. Some people think of an OXC as a crossconnect switch together with the
surrounding OLTs. However, our definition of OXC does not include the surrounding
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Figure 7.10 Using an OXC in the network. The OXC sits between the client equipment
of the optical layer and the optical layer OLTs.

OLTs because carriers view crossconnects and OLTs as separate products and often
buy OXCs and OLTs from different vendors.

An OXC provides several key functions in a large network:

Service provisioning. An OXC can be used to provision lightpaths in a large network
in an automated manner, without having to resort to performing manual patch
panel connections. This capability becomes important when we deal with large
numbers of wavelengths in a node or with a large number of nodes in the
network. It also becomes important when the lightpaths in the network need to
be reconfigured to respond to traffic changes. The manual operation of sending
a person to each office to implement a patch panel connection is expensive and
error prone. Remotely configurable OXCs take care of this function.

Protection. Protecting lightpaths against fiber cuts and equipment failures in the
network is emerging as one of the most important functions expected from a
crossconnect. The crossconnect is an intelligent network element that can detect
failures in the network and rapidly reroute lightpaths around the failure. Cross-
connects enable true mesh networks to be deployed. These networks can provide
particularly efficient use of network bandwidth, compared to the SONET/SDH
rings we discussed in Chapter 6. We discuss this topic in detail in Chapter 9.

Bit rate transparency. The ability to switch signals with arbitrary bit rates and frame
formats is a desirable attribute of OXCs.

Performance monitoring, test access, and fault localization. OXCs provide visibil-
ity to the performance parameters of a signal at intermediate nodes. They usually



454 WDM Network Elements

allow test equipment to be hooked up to a dedicated test port where the signals
passing through the OXC can be monitored in a nonintrusive manner. Nonin-
trusive test access requires bridging of the input signal. In bridging, the input
signal is split into two parts. One part is sent to the core, and the other part is
made available at the test access port. OXCs also provide loopback capabilities.
This allows a lightpath to be looped back at intermediate nodes for diagnostic
purposes.

Wavelength conversion. In addition to switching a signal from one port to another
port, OXCs may also incorporate wavelength conversion capabilities.

Multiplexing and grooming. OXCs typically handle input and output signals at op-
tical line rates. However, they can incorporate multiplexing and grooming ca-
pabilities to switch traffic internally at much finer granularities, such as STS-1
(51 Mb/s). Note that this time division multiplexing has to be done in the elec-
trical domain and is really SONET/SDH multiplexing, but incorporated into the
OXC, rather than in a separate SONET/SDH box.

An OXC can be functionally divided into a switch core and a port complex.
The switch core houses the switch that performs the actual crossconnect function.
The port complex houses port cards that are used as interfaces to communicate with
other equipment. The port interfaces may or may not include optical-to-electrical
(O/E) or optical-to-electrical-to-optical (O/E/O) converters.

Figure 7.11 shows different types of OXCs and different configurations for in-
terconnecting OXCs with OLTs or OADMs in a node. The scenarios differ in terms
of whether the actual switching is done electrically or optically, in the use of O/E
and O/E/O converters, and how the OXC is interconnected to the surrrounding
equipment. Table 7.2 summarizes the main differences between these architectures.

The first three configurations shown in Figure 7.11 are opaque configurations—
the optical signal is converted into the electrical domain as it passes through the
node. The last configuration (Figure 7.11(d)) is an all-optical configuration—the
signal remains in the optical domain as it passes through the node.

Looking at Figure 7.11, observe that in the opaque configurations the switch core
can be electrical or optical; that is, signals may be switched either in the electrical
domain or in the optical domain. An electrical switch core can groom traffic at
fine granularities and typically includes time division multiplexing of lower-speed
circuits into the line rate at the input and output ports. Today, we have electrical core
OXCs switching signals at granularities of STS-1 (51 Mb/s) or STS-48 (2.5 Gb/s). In
contrast, a true optical switch core does not offer any grooming. It simply switches
signals from one port to another.

An electrical switch core is designed to have a total switch capacity, for instance,
1.28 Tb/s. This capacity can be utilized to switch, say, up to 512 OC-48 (2.5 Gb/s)
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Figure 7.11 Different scenarios for OXC deployment. (a) Electrical switch core; (b)
optical switch core surrounded by O/E/O converters; (c) optical switch core directly
connected to transponders in WDM equipment; and (d) optical switch core directly
connected to the multiplexer/demultiplexer in the OLT. Only one OLT is shown on either
side in the figure, although in reality an OXC will be connected to several OLTs.

signals or 128 OC-192 (10 Gb/s) signals. The optical core is typically bit rate inde-
pendent. Therefore a 1000-port optical switch core can switch 1000 OC-48 streams,
1000 OC-192 streams, or even 1000 OC-768 (40 Gb/s) streams, all at the same cost
per port. The optical core is thus more scalable in capacity, compared to an electrical
core, making it more future proof as bit rates increase in the future. In particular, the
configuration of Figure 7.11(d) allows us to switch groups of wavelengths or all the
wavelengths on a fiber together on a single OXC port. This makes that configuration
capable of handling enormous overall capacities and reduces the number of OXC
ports required in a node.

As bit rates increase, the cost of a port on an electrical switch increases. For
instance, an OC-192 port might cost twice as much as an OC-48 port. The cost
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Table 7.2 Comparison of different OXC configurations. Some configurations use optical to elec-
trical converters as part of the crossconnect, in which case they are able to measure electrical
layer parameters such as the bit error rate (BER) and invoke network restoration based on this
measurement. For the first two configurations, the interface on the OLTs is typically a SONET
short-reach (SR), or very-short-reach (VSR) interface. For the opaque photonic configuration, it is
an intermediate-reach (IR) or a special VSR interface. The cost, power, and footprint comparisons
are made based on characteristics of commercially available equipment at OC-192 line rates.

Attribute Opaque Opaque Opaque All-Optical
Electrical Optical Optical

with O/E/Os
Fig. 7.11(a) Fig. 7.11(b) Fig. 7.11(c) Fig. 7.11(d)

Low-speed grooming Yes No No No
Switch capacity Low High High Highest
Wavelength conversion Yes Yes Yes No
Switching triggers BER BER Optical power Optical power
Interface on OLT SR/VSR SR/VSR IR/serial VSR Proprietary
Cost per port Medium High Medium Low
Power consumption High High Medium Low
Footprint High High Medium Low

of a port on an optical core switch, however, is the same regardless of the bit rate.
Therefore, at higher bit rates, it will be more cost-effective to switch signals through
an optical core OXC than an electrical core OXC.

An optical switch core is also transparent; it does not care whether it is switching
a 10 Gb/s Ethernet signal or a 10 Gb/s SONET signal. In contrast, electrical switch
cores require separate port cards for each interface type, which convert the input
signal into a format suitable for the switch fabric.

Figure 7.11(a) shows an OXC consisting of an electrical switch core surrounded
by O/E converters. The OXC interoperates with OLTs through short-reach (SR) or
very-short-reach (VSR) interfaces. The OLT has transponders to convert this signal
into the appropriate WDM wavelength. Alternatively, the OXC itself may have
wavelength-specific lasers that operate with the OLTs without requiring transponders
between them.

Figure 7.11(b)–(d) shows OXCs with an optical switch core. The differences
between the figures lie in how they interoperate with the WDM equipment. In
Figure 7.11(b), the interworking is done in a somewhat similar fashion as in Fig-
ure 7.11(a)—through the use of O/E/O converters with short-reach or very-short-
reach optical interfaces between the OXC and the OLT. In Figure 7.11(c), there
are no O/E/O converters and the optical switch core directly interfaces with the
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transponders in the OLT. Figure 7.11(d) shows a different scenario where there are
no transponders in the OLT and the wavelengths in the fiber are directly switched
by the optical switch core in the OXC after they are multiplexed/demultiplexed. The
cost, power, and overall node footprint all improve as we go from Figure 7.11(b)
to Figure 7.11(d). The electrical core option typically uses higher power and takes
up more footprint, compared to the optical option, but the relative cost depends on
how the different products are priced, as well as the operating bit rate on each port.

The OXCs in Figure 7.11(a) and (b) both have access to the signals in the elec-
trical domain and can therefore perform extensive performance monitoring (signal
identification and bit error rate measurements). The bit error rate measurement can
also be used to trigger protection switching. Moreover, they can signal to other net-
work elements by using inband overhead channels embedded in the data stream. (We
will study signaling in more detail in Chapter 8.)

The OXCs in Figure 7.11(c) and (d) do not have the capability to look at the
signal, and therefore they cannot do extensive signal performance monitoring. They
cannot, for instance, invoke protection switching based on bit error rate moni-
toring, but instead they could use optical power measurement as a trigger. These
crossconnects need an out-of-band signaling channel to exchange control informa-
tion with other network elements. With the configuration of Figure 7.11(c), the
attached equipment needs to have optical interfaces that can deal with the loss in-
troduced by the optical switch. These interfaces will also need to be single-mode
fiber interfaces since that is what most optical switches are designed to handle. In
addition, serial interfaces (single fiber pair) are preferred rather than parallel in-
terfaces (multiple fiber pairs), as each fiber pair consumes a port on the optical
switch.

The all-optical configuration of Figure 7.11(d) provides a truly all-optical net-
work. However, it mandates a more complex physical layer design (see Chapter 5) as
signals are now kept in the optical domain all the way from their source to their des-
tination, being switched optically at intermediate nodes. Given that link engineering
is complex and usually vendor proprietary, it is not easy to have one vendor’s OXC
interoperate with another vendor’s OLT in this configuration.

Note also that the configurations of Figure 7.11(b), (c), and (d) can all be com-
bined in a single OXC. We could have some ports having O/E/Os, others connected
to OLTs with O/E/Os, and still others connected to OLTs without any O/E/Os.

It is possible to integrate the OXC and OLT systems together into one piece of
equipment. Doing so provides some significant benefits. It eliminates the need for
redundant O/E/Os in multiple network elements, allows tight coupling between the
two to support efficient protection, and makes it easier to signal between multiple
OXCs in a network using the optical supervisory channel available in the OLTs.
For example, in Figure 7.11(a), we could have WDM interfaces directly on the
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Figure 7.12 Illustrating the need for wavelength conversion. (a) Node B does not con-
vert wavelengths. (b) Node B can convert wavelengths.

crossconnect and eliminate the intraoffice short-reach interface. We would migrate
from the configuration in Figure 7.11(b) to the configuration in Figure 7.11(c).

This integration also has the drawback of making it a single-vendor solution.
Service providers must then buy all their WDM equipment, including OLTs and
OXCs, from the same vendor in order to realize this simplification. Some service
providers prefer to build their network by mixing and matching “best-in-class”
equipment from multiple vendors. Moreover, this solution does not address the
problem of dealing with legacy situations where the OLTs are already deployed and
OXCs must be added later.

7.4.1 All-Optical OXC Configurations

We now focus the discussion on understanding some of the issues associated with
the all-optical configuration of Figure 7.11(d). As shown, the configuration can be
highly cost-effective relative to the other configurations, but lacks three key func-
tions: low-speed grooming, wavelength conversion, and signal regeneration. Low-
speed grooming is needed to aggregate the lower-speed traffic streams properly for
transmission over the fiber. Optical signals need to be regenerated once they have
propagated through a number of fiber spans and/or other lossy elements.

Wavelength conversion is needed to improve the utilization of the network. We
illustrate this with the simple example shown in Figure 7.12. Each link in the three-
node network can carry three wavelengths. We have two lightpaths currently set up
on each link in the network as shown and need to set up a new lightpath from node A
to node C. Figure 7.12(a) shows the case where node B cannot perform wavelength
conversion. Even though free wavelengths are available in the network, the same
wavelength is not available on both links in the network. As a result, we cannot set
up the desired lightpath. On the other hand, if node B can convert wavelengths, then
we can set up the lightpath as shown in Figure 7.12(b).
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Figure 7.13 A realistic “all-optical” network node combining optical core crosscon-
nects with electrical core crossconnects. Signals are switched in the optical domain when-
ever possible but routed down to the electrical domain whenever they need to be groomed,
regenerated, or converted from one wavelength to another.

Note that the configurations of Figure 7.11(a), (b), and (c) all provide wavelength
conversion and signal regeneration either in the OXC itself or by making use of the
transponders in the attached OLTs. Figure 7.11(a) also provides low-speed grooming,
assuming that the electrical core has been designed to support that capability. In
order to provide grooming, signal regeneration, and wavelength conversion, the
configuration of Figure 7.11(d) is modified to include an electrical core crossconnect
as shown in Figure 7.13. This configuration allows most of the signals to be switched
in the optical domain, minimizing the cost and maximizing the capacity of the
network, while allowing us to route the signals down to the electrical layer whenever
necessary. As we discussed earlier, we could save optical switch ports by switching
wavelength bands or even entire fibers at a time.

Looking at Figure 7.13, note that the optical switch does not have to switch
signals from any input port to any output port. For example, it does not need to
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Figure 7.14 An optical core wavelength plane OXC, consisting of a plane of optical
switches, one for each wavelength. With F fibers and W wavelengths on each fiber, each
switch is a 2F × 2F switch, if we want the flexibility to drop and add any wavelength at
the node.

switch a signal entering at wavelength λ1 to an output port that is connected to a
multiplexer that takes in wavelength λ2. This allows some potential simplification
by making use of wavelength planes.

Figure 7.14 shows a wavelength plane OXC. The signals coming in over different
fiber pairs are first demultiplexed by the OLTs. All the signals at a given wavelength
are sent to a switch dedicated to that wavelength, and the signals from the outputs
of the switches are multiplexed back together by the OLTs. In a node with F WDM
fiber pairs and W wavelengths on each fiber pair, this arrangement uses F OLTs
and W 2F × 2F switches. This allows any or all signals on any input wavelength
to be dropped locally. In contrast, the configuration of Figure 7.13 uses F OLTs
and a 2WF × 2WF switch to provide the same capabilities. Consider, for example,
F = 4, W = 32, which are realistic numbers today. In this case, the configuration of
Figure 7.14 uses 4 OLTs and thirty two 8 × 8 switches. In contrast, Figure 7.11(b)
requires 4 OLTs and a 256 × 256 switch. As we saw in Section 3.7, larger optical
switches are significantly harder to build than small ones and will need to use tech-
nologies like analog beam-steering micromirrors, whereas small optical switches can
be realized using a variety of different technologies.
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Based on the discussion above, it would appear that the wavelength plane ap-
proach offers a cheaper alternative to large-scale nonblocking optical switches. How-
ever, we did not consider how to optimize the number of add/drop terminations
(which would be transponders or O/E interfaces on electrical switch cores). Both
Figure 7.13 and Figure 7.14 assume that there are sufficient ports to terminate all
WF signals. This is almost never the case, as only a fraction of traffic will need to be
dropped, and the terminations are expensive. Moreover, observe that if we indeed
do need WF terminations on an electrical switch, the best solution is to use the
electrical core configuration of Figure 7.11(a), without having the wavelength plane
switches!

If we have a total of T terminations, with all of them having tunable lasers, and
we would like to drop any of the WF signals, this requires an additional T ×WF

optical switch between the wavelength plane switches and the terminations, as shown
in Figure 7.15. In contrast, with a large nonblocking switch, we would simply connect
the T terminations to T ports of this switch, resulting in a (WF + T ) × (WF + T )

switch overall. This situation somewhat reduces the appeal of a wavelength plane
approach.

To summarize, the wavelength plane approach needs to take into account the
number of fibers, fraction of add/drop traffic, number of terminations, and their tun-
ing capabilities as separate parameters in the design. With a large-scale switch, we
can partition the ports in a flexible way to account for variations in all these param-
eters; the only constraint is in the total number of ports available. See Problem 7.7
for another example of these types of trade-offs.

Summary

We studied the basic network elements constituting WDM networks in this chap-
ter. We refer the reader back to Chapter 3 to get an understanding of the various
technologies that are used to build these elements.

The WDM network provides circuit-switched lightpaths that can have varying
degrees of transparency associated with them. Wavelengths can be reused in the
network to support multiple lightpaths as long as no two lightpaths are assigned the
same wavelength on a given link. Lightpaths may be protected by the network in
the event of failures. They can be used to provide flexible interconnections between
users of the optical network, such as IP routers, allowing the router topology to be
tailored to the needs of the router network.

An optical line terminal (OLT) multiplexes and demultiplexes wavelengths and is
used for point-to-point applications. It typically includes transponders, multiplexers,
and optical amplifiers. Transponders provide the adaptation of user signals into the



462 WDM Network Elements

Optical

switch

�1

Optical

switch

�2

Optical

switch

�3

Optical

switch

�4

�1 �2 �
 �� �1 �2 �
 ��

OXC

OLT OLT

……

Optical switch

Local add/drop

Tunable transponders

From/to clients

T
RT

R T
RT

R T
RT

R

Figure 7.15 Dealing with add/drop terminations in a wavelength plane approach. An
additional optical switch is required between the tunable transponders and the wave-
length plane switches. Here, T denotes a transmitter, assumed to be a tunable transmitter
on the WDM side, and R denotes a receiver.

optical layer. They also consitute a significant portion of the cost and footprint in
an OLT. In some cases, transponders can be eliminated by deploying interfaces that
provide already-adapted signals at the appropriate wavelengths in other equipment.

An optical add/drop multiplexer (OADM) drops and adds a selective number of
wavelengths from a WDM signal, while allowing the remaining wavelengths to pass
through. OADMs provide a cost-effective way of performing this function, compared
to using OLTs interconnected back to back, or relying on other equipment to handle
the passthrough traffic. OADMs are typically deployed in linear or ring topologies.

Several types of OADMs are possible with a range of capabilities based on the
number of wavelengths they can add and drop, the ease of dropping and adding
additional wavelengths, static or reconfigurable, and so on. We studied the basic
architectural flavors of OADMs: parallel, serial, and band drop. Each of these has
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its pros and cons. We also looked at reconfigurable OADM architectures, which use
tunable filters and/or multiplexers, as well as tunable lasers, in order to provide the
maximum possible flexibility in the network.

An optical crossconnect (OXC) is the other key network element in the optical
layer. OXCs are large switches used to provision services dynamically as well as
provide network restoration. OXCs are typically deployed in a mesh network con-
figuration. As with OADMs, several variants of OXCs exist, ranging from OXCs
with electrical switch cores capable of grooming traffic at STS-1 rates to all-optical
OXCs that can switch wavelengths, bands of wavelengths, and entire fibers. Op-
tical core crossconnects can also be surrounded by optical-to-electrical-to-optical
converters to provide some of the grooming and wavelength conversion capabilities
offered by electrical core crossconnects, but are not suited for grooming traffic at
fine granularities such as STS-1 rates. Each has its role in the network.

Further Reading

Information regarding the various types of OLTs, OADMs, and OXCs is not easy
to come by because many of the commercial implementations are proprietary in
nature. Browsing through network equipment vendors’ Web pages will provide some
illustration of the capabilities of the different products in this space.

Several early testbeds explored various forms of these network elements. For in-
stance, [Ale93, Kam96] used a static all-optical OXC that provided a fixed intercon-
nection pattern without any switching or wavelength conversion. [Cha94, CEG+96]
explored a parallel WADM architecture as well as an OXC with an electrical
switch core. [Hil93] developed an all-optical OXC without wavelength conversion.
[WASG96, Gar98] developed a parallel WADM as well as a small all-optical OXC
without wavelength conversion. See also [HH96, OWS96, Der95, MS96, Ber96a,
Ber96b, Bac96, RS95, Chb98, KWK+98] for other relevant testbeds and archi-
tectures. The use of wavelength bands has been discussed in various contexts in
[Ste90, GRW00, SS99]. For a discussion of optical crossconnects and a comparison
of them to electrical crossconnects, see [GR00, GRL00].

Early multidegree ROADMs used broadcast and select architectures where sig-
nals were either passed through or blocked using liquid crystal dynamic channel
equalizers (DCEs) (also referred to as dynamic gain equalizers (DGEs)) or dynamic
spectral equalizers (DSEs)) [VTM+03] [PCH+03]. The broadcast and select archi-
tecture for a degree-2 ROADM was reported in [BSAL02, HB08]. The examples of
multidegree ROADMs of this chapter can be found in [RC08, HB08].
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Problems

7.1 Consider a ring network with two intermediate adjacent nodes A and B, each with
an OADM.

(a) Consider the case where the OADM at node A adds wavelength λ1 and the
OADM at node B drops the adjacent wavelength λ2. Suppose the minimum
received power is set at −30 dBm and the transmit power is set at 0 dBm.
Adjacent channel crosstalk at the receiver must be less than 15 dB. Assume
that signals are added and dropped by the OADMs with no loss. What is the
crosstalk suppression required at the OADM for the adjacent channel? How
does this change with the link loss between the two nodes?

(b) Next consider the case in which both OADMs drop and add wavelength
λ1. We are worried about the case where some of the λ1 power, instead
of being dropped at the node, “leaks” through. The intrachannel crosstalk
at the receiver must be at least −30 dB below the desired signal. For the
same assumptions as above, what is the intrachannel crosstalk suppression
required at the OADM? How does this change with the link loss between
the two nodes?

7.2 This problem illustrates some of the difficulties facing network planners when they
have to use OADMs that are constrained in what channels they can add and drop.
Consider a four-node linear network with nodes A, B, C, and D in that order. We
have three wavelengths λ1, λ2, λ3 available and are given OADMs that drop two fixed
channels. That is, we can put in OADMs that drop either λ1, λ2, or λ2, λ3, or λ1, λ3.
Now consider the situation where we need to set up the following lightpaths: AB,
BC, CD, AC, BD. What OADMs would you deploy at each of the nodes? Suppose
at a later point the lightpath traffic changes and now we need to replace lightpaths
AC and BD by AD and BC. What changes would you have to make to support this
new traffic?

7.3 Consider a linear network with serial OADMs. Assume that the transmit power
is 0 dBm; the minimum received power is −30 dBm; and each OADM has a
passthrough loss of 2 dB, a loss of 1 dB for the drop path, and a loss of 1 dB for the
add path. Assume that the adjacent channel suppression offered by each OADM is
20 dB and that at the receiver the adjacent channel power must be at least 15 dB less
than the desired signal power.

(a) Write a computer program that takes as its input the set of lightpaths in the
network and their wavelengths, the loss between each pair of adjacent nodes,
and determines whether each lightpath is feasible or not. The program should
also determine any wavelength conflicts, that is, if two lightpaths overlap and
are assigned the same wavelength.
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(b) What is the maximum number of OADMs that a lightpath can pass through
before it needs to be regenerated? Plot this number as a function of the total
link loss in the network.

(c) Plot the output of your program for a network with five nodes numbered
sequentially from 1 to 5, link loss of 5 dB between nodes, and the following
sets of lightpaths and wavelength assignments: (1, 5, λ1), (2, 4, λ2), (3, 5, λ3),
(1, 4, λ4).

7.4 This problem explores architectures for constructing fully reconfigurable OADMs.
Consider the parallel architecture shown in Figure 7.7(d). How would you build
a fully reconfigurable parallel OADM like this one, wihtout using a large optical
switch? You are allowed to use tunable filters, passive splitters and combiners, and
small (2 × 2) optical switches. These solutions need to meet properties (1) and (2)
specified for the ideal OADM described in Section 7.3. With respect to property (3),
you still need to keep the loss fixed, regardless of how many channels are dropped or
added, but you are allowed to have a reasonably high value for this loss. Compare
the pros and cons of your solution versus the one in Figure 7.7(d).

7.5 You have to design a five-node ring network with a hub node and four remote nodes.
Each remote node needs two wavelengths of traffic to/from the hub node on both
sides of the ring; that is, you will need to dedicate two wavelengths to each remote
node and terminate all the wavelengths at the hub node. You have to pick between
two systems.

The first system uses eight channels in two bands, each with four channels. It
provides band OADMs, which can drop one out of the two bands. Once a band is
dropped, all four wavelengths in the band have to be regenerated. A band OADM
costs $20,000, and a single-channel regenerator costs $10,000. No optical amplifiers
are required with this system.

The second system also uses eight channels but has no bands. It provides SC-
OADMs, which can drop any single wavelength. Each SC-OADM costs $10,000. For
this system, two optical line amplifiers are required, each costing $30,000. Whose
system would you select based on just equipment cost?

7.6 This problem illustrates the need for large OXCs and also illustrates the value of
using wavelength bands.

Consider an all-optical OXC with 256 ports deployed in the configuration shown
in Figure 7.11(d). Each WDM line system carries 32 wavelengths; 75% of the light-
paths pass through the node, while the remaining 25% are dropped and added onto
routers attached to the OXC. Each lightpath added and dropped onto a router takes
up two OXC ports.

(a) How many WDM line systems can the OXC support?



466 WDM Network Elements

(b) Next suppose that 25% of the lightpaths passing through need to be con-
verted from one wavelength to another. This is done by sending the lightpath
to one of a pool of regenerators/wavelength converters attached to the OXC.
Each such regenerator uses two ports in the OXC. Thus a lightpath needing
to be converted uses four OXC ports. Now, how many WDM line systems
can the OXC support?

(c) Now suppose the WDM line systems are designed with eight bands, each
with four wavelengths. Assume that all the lightpaths passing through can be
passed through at the band level without having to be demultiplexed down to
the individual channel. For lightpaths that are dropped and added, the entire
band is dropped and demultiplexed after the bands are passed through the
OXC. No wavelength conversion is needed. How many WDM line systems
can the OXC support?

7.7 Consider the wavelength plane switch architecture of Figure 7.14. Consider the
situation where we have a total of four fibers and 40 wavelengths on each fiber.
We must design the node such that any four signals can be dropped. (Note that
this implies we could potentially drop all the wavelengths on a particular fiber
while passing through all the wavelengths on the other fibers.) The wavelengths are
dropped onto transponders, which have tunable lasers. The 40 wavelengths are split
into five bands of 8 wavelengths each, and a tunable laser can tune over a single
band.

(a) Draw a block diagram of this node and indicate the minimum number of
transponders needed. Compare this against an approach using large non-
blocking switches.

(b) Now suppose we have tunable lasers that can tune over two bands instead
of one. How does the situation change?
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8
c h a p t e r

Control and Management

N etwork management is an important part of any network. However attractive
a specific technology might be, it can be deployed in a network only if it can be

managed and interoperates with existing management systems. The cost of operating
and managing a large network is a recurring cost and in many cases dominates the
cost of the equipment deployed in the network. As a result, carriers pay a lot of
attention to minimizing life cycle costs, as opposed to worrying just about up-front
equipment costs. We start with a brief introduction to network management concepts
in general and how they apply to managing optical networks. We follow this with
a discussion of optical layer services and how the different aspects of the optical
network are managed.

8.1 Network Management Functions

Classically, network management consists of several functions, all of which are im-
portant to the operation of the network:

1. Performance management deals with monitoring and managing the various
parameters that measure the performance of the network. Performance man-
agement is an essential function that enables a service provider to provide
quality-of-service guarantees to their clients and to ensure that clients comply

469
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with the requirements imposed by the service provider. It is also needed to pro-
vide input to other network management functions, in particular, fault manage-
ment, when anomalous conditions are detected in the network. This function is
discussed further in Section 8.5.

2. Fault management is the function responsible for detecting failures when they
happen and isolating the failed component. The network also needs to restore
traffic that may be disrupted due to the failure, but this is usually considered a
separate function and is the subject of Chapter 9. We will study fault management
in Section 8.5.

3. Configuration management deals with the set of functions associated with manag-
ing orderly changes in a network. The basic function of managing the equipment
in the network belongs to this category. This includes tracking the equipment
in the network and managing the addition/removal of equipment, including any
rerouting of traffic this may involve and the management of software versions
on the equipment.

Another aspect of configuration management is connection management,
which deals with setting up, taking down, and keeping track of connections
in a network. This function can be performed by a centralized management
system. Alternatively, it can also be performed by a distributed network con-
trol entity. Distributed network control becomes necessary when connection
setup/take-down events occur very frequently or when the network is very large
and complex.

Finally, the network needs to convert external client signals entering the op-
tical layer into appropriate signals inside the optical layer. This function is adap-
tation management. We will study this and the other configuration management
functions in Section 8.6.

4. Security management includes administrative functions such as authenticating
users and setting attributes such as read and write permissions on a per-user
basis. From a security perspective, the network is usually partitioned into do-
mains, both horizontally and vertically. Vertical partitioning implies that some
users may be allowed to access only certain network elements and not other
network elements. For example, a local craftsperson may be allowed to access
only the network elements he is responsible for and not other network elements.
Horizontal partitioning implies that some users may be allowed to access some
parameters associated with all the network elements across the network. For ex-
ample, a user leasing a lightpath may be provided access to all the performance
parameters associated with that lightpath across all the nodes that the lightpath
traverses.
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Security also involves protecting data belonging to network users from being
tapped or corrupted by unauthorized entities. This part of the problem needs
to be handled by encrypting the data before transmission and providing the
decrypting capability to legitimate users.

5. Accounting management is the function responsible for billing and for developing
lifetime histories of the network components. This function is the same for optical
networks, compared to other networks, and we will not be discussing this topic
further.

For optical networks, an additional consideration is safety management, which
is needed to ensure that optical radiation conforms to limits imposed for ensuring
eye safety. This subject is treated in Section 8.7.

8.1.1 Management Framework

Most functions of network management are implemented in a centralized manner
by a hierarchy of management systems. However, this method of implementation is
rather slow, and it can take several hundreds of milliseconds to seconds to communi-
cate between the management system and the different parts of the network because
of the large software path overheads usually involved in this process. Decentralized
methods are usually much faster than centralized methods, even in small networks
with only a few nodes. Therefore, certain management functions that require rapid
action may have to be decentralized, such as responding to failures and setting up
and taking down connections if these must be done rapidly. For example, a SONET
ring can restore failures within 50 ms, and this is possible only because this process
is completely decentralized. For this reason, restoration is viewed as more of an au-
tonomous control function rather than an integrated part of network management.

Another reason for decentralizing some of the functions arises when the network
becomes very large. In this case, it becomes difficult for a single central manager to
manage the entire network. Furthermore, networks could include multiple domains
administered by different managers. The managers of each domain will need to
communicate with managers of other domains to perform certain functions in a
coordinated manner.

Figure 8.1 provides an overview of how network management functions are im-
plemented on a typical network. Management is performed in a hierarchical manner,
involving multiple management systems in many cases. The individual components
to be managed are called network elements. Network elements include optical line
terminals (OLTs), optical add/drop multiplexers (OADMs), optical amplifiers, and
optical crossconnects (OXCs). Each element is managed by its element management
system (EMS). The element itself has a built-in agent, which communicates with
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Figure 8.1 Overview of network management in a typical optical network, showing
the network elements (OLTs, OADMs, OXCs, amplifiers), the management systems, and
the associated interfaces.

its EMS. The agent is implemented in software, usually in a microprocessor in the
network element.

The EMS is usually connected to one or more of the network elements and
communicates with the other network elements in the network using a data commu-
nication network (DCN). In addition to the DCN, a fast signaling channel is also
required between network elements to exchange real-time control information to
manage protection switching and other functions. The DCN and signaling channel
can be realized in many different ways, as will be discussed in Section 8.5.5. One
example is the optical supervisory channel (OSC), shown in Figure 8.1, a separate
wavelength dedicated to performing control and management functions, particularly
for line systems with optical amplifiers.

Multiple EMSs may be used to manage the overall network. Typically, each EMS
manages a single vendor’s network elements. For example, a carrier using WDM line
systems from vendor A and crossconnects from vendor B will likely use two EMSs,
one for managing the line systems and the other for managing the crossconnects, as
shown in Figure 8.1.

The EMS itself typically has a view of one network element at a time and may
not have a comprehensive view of the entire network, and also of other types of
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network elements that it cannot manage. Therefore the EMSs in turn communicate
with a network management system (NMS) or an operations support system (OSS)
through a management network. The NMS has a networkwide view and is capable
of managing different types of network elements from possibly different vendors.
In some cases, it is possible to have a multitiered hierarchy of management sys-
tems. Multiple OSSs may be used to perform different functions. For example, the
regional Bell operating companies (RBOCs) in the United States, such as Verizon,
Southwestern Bell, and Bellsouth, use a set of OSSs from Telcordia Technologies:
network monitoring and analysis (NMA) for fault management, trunk inventory
and record keeping system (TIRKS) for inventorying the equipment in the network,
and transport element management system (TEMS) for provisioning circuits. These
systems date back a few decades, and introducing new network elements into these
networks is often gated by the time taken to modify these systems to support the
new elements.

In addition to the EMSs, a simplified local management system is usually provided
to enable craftspeople and other service personnel to configure and manage individual
network elements. This system is usually made available on a laptop or on a simple
text-based terminal that can be plugged into individual elements to configure and
provision them.

8.1.2 Information Model

The information to be managed for each network element is represented in the form
of an information model (IM). The information model is typically an object-oriented
representation that specifies the attributes of the system and the external behavior
of the network element with respect to how it is managed. It is implemented in
software inside the network element as well as in the element and network man-
agement systems used to manage the network element, usually in an object-oriented
programming language.

An object provides an abstract way to model the parts of a system. It has certain
attributes and functions associated with it. The functions describe the behavior of the
object or describe operations that can be performed on the object. For example, the
simplest function is to create a new object of a particular type. There may be many
types, or classes, of objects representing different parts of a system. An important
concept in object-oriented modeling is inheritance. One object class can be inherited
from another parent object class if it has all the attributes and behaviors of the parent
class but adds additional attributes and behaviors. To provide a concrete example
in our context, an OLT typically consists of one or more racks of equipment. Each
rack consists of multiple shelves and multiple types of shelves. Each shelf has several
slots into which line cards can be plugged. Many different types of line cards exist,
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such as transponders, amplifiers, and multiplexers. With respect to this, there may
be an object class called rack, which has as one of its attributes another object class
called shelf. Multiple types of shelves may be represented in the form of inherited
object classes from the parent object shelf. For example, there may be a common
equipment shelf and a transponder shelf, which are inherited from the generic shelf
object.

A shelf object has as one of its attributes another object called slot. Each line card
object is associated with a slot. Multiple types of line cards may be represented in the
form of inherited object classes from the parent object line card. For example, the
transponder shelf may house multiple transponder types (say, one to handle SONET
signals and another to handle Gigabit Ethernet signals). The common equipment
shelf may house multiple types of cards, such as amplifier cards, processor cards,
and power supply cards.

Each object has a variety of attributes associated with it, including the set of
parameters that can be set by the management system and the set of parameters that
can be monitored by the management system. As an example, each line card object
normally has a state attribute associated with it, which is one of in service, out of
service, or fault, and there are detailed behaviors governing transitions between these
states.

Another example that is part of a typical information model is the concept
of connection trails, which are used to model lightpaths. Again multiple types of
trails may be defined, and each trail has a variety of associated attributes, including
attributes that can be configured, as well as others that can be used to monitor the
trail’s performance.

8.1.3 Management Protocols

Most network management systems use a master-slave sort of relationship be-
tween a manager and the agents managed by the manager. The manager queries
the agent to obtain the status of parameters in the network element (called the
get operation). For example, the manager may query the agent periodically for
performance monitoring information. The manager can also change the values of
variables in the network element (called the set operation) and uses this method
to effect changes within the network element. For example, the manager may
use this method to change the configuration of the switches inside a network el-
ement such as a multidegree ROADM. In addition to these methods, sometimes
it is necessary for the agent to initiate a message to its manager. This is essen-
tial if the agent detects problems in the network element and wants to alert its
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manager. The agent then sends a notification message to its manager. Notifica-
tions also take the form of alarms if the condition is serious and are sometimes
called traps.

There are multiple standards relating to network management and perhaps thou-
sands of acronyms describing them. Here is a brief summary. In most cases, the phys-
ical management interface to the network element is usually through an Ethernet or
RS-232 serial interface.

The Internet world uses a management framework based on the simple network
management protocol (SNMP). SNMP is an application protocol that runs over a
standard Internet Protocol stack. The manager communicates with the agents using
SNMP. The information model in SNMP is called a management information base
(MIB).

In North America, the carrier world has been using a simple textual (or ASCII)
command and control language called Transaction Language-1 (TL-1). TL-1 was
invented in the days when the primary means of managing network elements was
through a simple terminal interface using textual command sets. However, it is still
widely used today and will probably remain for a while, as many of the existing
legacy management systems still mainly support only TL-1.

Another management framework for the carrier world is called the telecommu-
nications management network (TMN). TMN defines a hierarchy of management
systems and object-oriented ways to model the information to be managed, and
also specifies protocols for communicating between managers and their agents. The
protocol is called the common management information protocol (CMIP), which
usually runs over an open systems interconnection (OSI) protocol stack; the asso-
ciated management interface is called a Q3 interface. Adaptations have also been
defined for running CMIP over the more commonly used TCP/IP protocol stack. The
specific object model is based on a standard called guidelines for description of man-
aged objects (GDMO). The first two concepts of TMN—namely, the hierarchical
management view and the object-oriented way of modeling information—are widely
used today, but the specific protocols, interfaces, and object models defined in TMN
have not yet been widely adopted, mostly because of the perceived complexity of the
entire system.

Yet another management framework that allows network elements from different
vendors to come with their own element management systems is based on the com-
mon object request broker (CORBA) model. CORBA is a software industry standard
developed to allow diverse systems to exchange and jointly process information and
communicate with each other. This framework uses CORBA as the interface between
the element management systems and a centralized network management system.
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8.2 Optical Layer Services and Interfacing

The optical layer provides lightpaths to other layers such as the SONET/SDH,
IP/MPLS, and Ethernet layers, as well as the electronic layer of the Optical Trans-
port Network (OTN), which includes the the optical channel transport unit (OTU)
and optical channel data unit (ODU) sublayers (see Section 6.2). In this context, the
optical layer can be viewed as a server layer, and the higher layer that makes use of
the services provided by the optical layer as the client layer. From this perspective,
we need to specify clearly the service interface between the optical layer and its client
layers. The key attributes of such a managed lightpath service are the following:

Lightpaths need to be set up and taken down as required by the client layer and
as required for network maintenance.

Lightpath bandwidths need to be negotiated between the client layer and the
optical layer. Typically, the client layer specifies the amount of bandwidth needed
on the lightpath.

An adaptation function may be required at the input and output of the optical
network to convert client signals to signals that are compatible with the optical
layer. This function is typically provided by transponders, as we discussed in
Section 7.1. The specific range of signal types, including bit rates and protocols
supported, need to be established between the client and the optical layer.

Lightpaths need to provide a guaranteed level of performance, typically specified
by the bit error rate (typical requirements are 10−12 or less). Adequate perfor-
mance management needs to be in place inside the network to ensure this.

Multiple levels of protection may need to be supported, as we will see in Chap-
ter 9, for example, protected, unprotected, and protected on a best-effort basis,
in addition to being able to carry low-priority data on the protection bandwidth
in the network. In addition, restoration time requirements may also vary by
application.

Lightpaths may be unidirectional or bidirectional. Almost all lightpaths today are
bidirectional. However, if more bandwidth is desired in one direction compared
to the other, it may be desirable to support unidirectional lightpaths.

A multicasting, or a drop-and-continue, function may need to be supported. Mul-
ticasting is useful to support distribution of video or conferencing information.
In a drop-and-continue situation, a signal passing through a node is dropped
locally, but a copy of it is also transmitted downstream to the next node. As we
will see in Chapter 9, the drop-and-continue function is particularly useful for
network survivability when multiple rings are interconnected.
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Jitter requirements exist, particularly for SONET/SDH connections. In order to
meet these requirements, 3R regeneration may be needed in the network. Using
2R regeneration in the network increases the jitter, which may not be acceptable
for some signals. We discussed 3R and 2R in the context of transparency in
Section 1.5.

There may be requirements on the maximum delay for some types of traffic. This
may place restrictions on maximum allowed propagation delay (or equivalent
link length) on links. This will need to be accounted for while designing the
lightpaths.

Extensive fault management needs to be supported so that root-cause alarms can
be reported and adequate isolation of faults can be performed in the network.
This is important because a single failure can trigger multiple alarms. The root-
cause alarm reports the actual failure, and we need to suppress the remaining
alarms. Not only are they undesirable from a management perspective, but they
may also result in multiple entities in the network reacting to a single failure,
which cannot be allowed. We will look at examples of this later.

Enabling the delivery of these services requires a control and management in-
terface between the optical layer and the client layer. This interface allows the
client to specify the set of lightpaths that are to be set up or taken down and
set the service parameters associated with those lightpaths. The interface also en-
ables the optical layer to provide performance and fault management information
to the client layer. This interface can take on one of two facets. The simple inter-
face used today is through the management system. A separate management system
communicates with the optical layer EMS, and the EMS in turn then manages the
optical layer.

The present method of operation works fine as long as lightpaths are set up fairly
infrequently and remain nailed down for long periods of time. It is quite possible that,
in the future, lightpaths are provisioned and taken down more dynamically in large
networks. In such a scenario, it would make sense to specify a signaling interface
between the optical layer and the client layer. For instance, an IP router could signal
to an associated optical crossconnect to set up and take down lightpaths and specify
their levels of protection through such an interface. Different philosophies exist as to
whether or not such an interface is desirable. Some carriers are of the opinion that
they should decouple optical layer management from its client layers and plan and
operate the optical network separately. This approach makes sense if the optical layer
is to serve multiple types of client layers and allows them to decouple its management
from a specific client layer. Others would like tight coupling between the client and
optical layers. This makes sense if the optical layer primarily serves a single client
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Figure 8.2 Layers within OTN. The optical layers are the optical channel layer (OCh), optical
multiplex section (OMS) layer, and the optical transmission section (OTS) layer. The electronic
layers are the optical channel data unit (ODU) layer and the optical channel transport unit (OTU).

layer, and also if there is a need to set up and take down connections rapidly as we
discussed above. We will discuss this issue further in Section 8.6.

8.3 Layers within the Optical Layer

The optical layer is a complicated entity performing several functions, such as mul-
tiplexing wavelengths, switching and routing wavelengths, and monitoring network
performance at various levels in the network. In order to help delineate management
functions and in order to provide suitable boundaries between different equipment
types, it is useful to further subdivide the optical layer into several sublayers.

We will use the Optical Transport Network (OTN) architecture introduced in
Section 6.2 as a model of a layered optical network, as shown in Figure 8.2. In
Section 6.2, we primarily discussed the electronic layer of OTN. Now we turn our
attention to the optical layer.

At the top is the optical channel (OCh) layer. This layer takes care of end-to-
end routing of the lightpaths. We have been using the term lightpath to denote an
optical connection. More precisely, a lightpath is an optical channel trail between
two nodes that carries an entire wavelength’s worth of traffic. A lightpath traverses
many links in the network, wherein it is multiplexed with many other wavelengths
carrying other lightpaths. It may also get regenerated along the way. Note that we do
not include any electronic time division multiplexing functions in the optical layer.
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Thus, a 10 Gb/s connection between two nodes that is carried through without any
electronic multiplexing/demultiplexing would be considered a lightpath.

Each link between OLTs or OADMs represents an optical multiplex section
(OMS) carrying multiple wavelengths. Each OMS in turn consists of several link
segments, each segment being the portion of the link between two optical amplifier
stages. Each of these portions is an optical transmission section (OTS). The OTS
consists of the OMS along with an additional optical supervisory channel (OSC),
which we will study in Section 8.5.7.

OTN’s optical layer provides optical links to the electronic layer through the
OCh layer. In the OTN architecture, the electronic layer above OTN’s OCh layer is
its optical channel transport unit (OTU) layer, which deals with individual optical
links. The electronic sublayer above the OTU layer is the optical channel data unit
(ODU) layer, which is for connections composed of multiple optical links. Note that
the OTN electronic layer can be replaced with other client layer protocols such as
SONET. SONET’s section layer has the same role as OTN’s OTU layer, and SONET’s
line and path layers have similar roles as OTN’s ODU layer.

In principle, once the interfaces between the different layers are defined, it is
possible for vendors to provide standardized equipment ranging from just optical
amplifiers to WDM links to entire WDM networks. Just as importantly, the layers
help us break down the management functions necessary in the network, as we will
see in this chapter and in Chapter 9. For example, dropping and adding wavelengths
is a function performed at the optical multiplex section layer. Monitoring optical
power on each wavelength also belongs to this layer, but monitoring total power
belongs to either the OTS layer or the OMS layer, depending on whether or not the
optical supervisory channel is included.

The preceding definition of an optical layer does not include networks that may
be able to provide more sophisticated optical packet-switched services. We will study
photonic packet-switched networks in Chapter 12 that can potentially provide such
services. However, these types of networks are several years away from commercial
realization.

8.4 Multivendor Interoperability

Service providers like to deploy equipment from multiple vendors that operate to-
gether in a single network. This is desirable to reduce the dependence on any single
vendor as well as to drive down costs and is one of the driving factors behind network
standards. For instance, without standards, we would need special interoperability
between every pair of vendors, rather than just dealing with a single standardized
interface to which all vendors conform. Another important effect of standards is that
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Figure 8.3 Interoperability between WDM systems from different vendors, show-
ing all-optical subnets from different vendors interconnected through transponder/
regenerators.

they allow operations personnel to get trained on a single type of equipment and
then become capable of managing that type of equipment from a variety of vendors,
in contrast to being trained separately to deal with each vendor’s equipment.

However, interoperability between WDM equipment from different vendors is
easier said than done. The SONET standards were established in the late 1980s,
and it took more than a decade to achieve interoperability between equipment from
different vendors. In the case of WDM, achieving interoperability at the optical level
is made particularly difficult by the fact that the interface is a fairly complex analog
interface, rather than a simple digital interface. The set of parameters that we would
need to standardize to achieve interoperability include optical wavelength; optical
power; signal-to-noise ratio; bit rate; and the supervisory channel wavelength, bit
rate, and its contents. Different vendors use significantly different parameters in their
link design and make different compromises among the various impairments that we
studied in Chapter 5. For example, vendor A might choose to use directly modulated
lasers and dispersion compensation inside the network to eliminate dispersion. Ven-
dor B instead might choose to use externally modulated lasers and avoid dispersion
compensation inside the network. This would make it difficult to have vendor A’s
equipment and vendor B’s equipment on opposite sides of the same WDM link. Even
if some interoperability can be achieved, it is quite difficult to locate and isolate faults
in such an environment.

Rather than trying to solve this complex problem, the practical solution toward
interoperability is to use regenerators or transponders to interconnect disparate all-
optical subnetworks, as shown in Figure 8.3. Although this approach may result in
higher equipment costs, it provides clear-cut boundaries between all-optical subnets,
making it easier to locate and identify faults. Each all-optical subnet would include
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equipment from a single vendor. For example, a subnet could simply be a WDM link
with some intermediate add/drops. Therefore, a service provider could deploy vendor
A’s equipment on one link and vendor B’s equipment on another link and have them
interoperate through transponders. The interface between the transponders could be
either SONET/SDH or OTN, which we will study in Section 8.5.7.

In addition to accomplishing interoperability at the data level, we also need to
have interoperability as far as the control and signaling protocols are concerned,
particularly if we are using the distributed methods discussed in Section 8.6.2.

8.5 Performance and Fault Management

As we stated earlier, the goal of performance management is to enable service
providers to provide guaranteed quality of service to the users of their network.
This usually requires monitoring of the performance parameters for all the connec-
tions supported in the network and taking any actions necessary to ensure that the
desired performance goals are met. Performance management is closely tied in to
fault management. Fault management involves detecting problems in the network
and alerting the management systems appropriately through alarms. If a certain pa-
rameter is being monitored and its value falls outside its preset range, the network
equipment generates an alarm. For example, we may monitor the power levels of an
incoming signal and declare a loss-of-signal (LOS) alarm if we see the power level
drop below a certain threshold. In other cases, alarms could be triggered by outright
failures, such as the failure of a line card or other components in the system.

Fault management also includes restoring service in the event of failures, a subject
that we will cover in detail in Chapter 9. This function is considered an autonomous
network control function because it is typically a distributed application without net-
work managment intervention (except for configuring various protection parameters
up front, reporting events, and performing maintenance operations).

8.5.1 The Impact of Transparency

The lightpaths provided by the optical layer need to be managed just like SONET
and SDH connections are managed. To a large extent, the amount of management
that can be provided depends on the level of transparency provided by the optical
layer. As we have seen in Chapter 1, different levels of transparency are possible,
based on the range of signals, bit rates, and protocols that can be carried on a
lightpath.

In a purely transparent network, a lightpath will be capable of carrying ana-
log and digital signals with arbitrary bit rates and protocol formats. This is the
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utopian vision of optical networking and would allow service providers to offer a
range of services without any constraints and provide future-proofing in case the
service mix changes over time or when new services are added. However, such
a network is very difficult to engineer and manage. It is difficult to engineer be-
cause the various physical layer impairments that must be taken into account in
the network design are critically dependent on the type of signal (analog versus
digital) and the bit rate. It is difficult to manage because the management sys-
tem may have no prior knowledge of the protocols or bit rates being used in
the network. Therefore, it is not possible to access overhead bits in the transmit-
ted data to obtain performance-related measures. This makes it difficult to mon-
itor the bit error rate. Other parameters such as optical power levels and optical
signal-to-noise ratios can be measured. However, the acceptable values for these
parameters depend on the type of signal. Unless the management system is told
what type of signal is being carried on a lightpath, it will not be able to determine
whether the measured power levels and signal-to-noise ratios fall within acceptable
limits.

At the other exteme, we could design a network that carries data at a fixed bit
rate (say, 2.5 Gb/s or 10 Gb/s) and of a particular format (say, SONET only). Such
a network would be very cost-effective to build and manage. However, it does not
offer service providers the flexibility they need to deliver a wide variety of services
using a single network infrastructure and is not future-proof at all.

Most optical networks deployed today fall somewhere in between these two
extremes. The network is designed to handle digital data at arbitrary bit rates up to
a certain specified maximum (say, 10 Gb/s) and a variety of protocol formats such as
SONET/SDH and OTN. These networks make use of a number of unique techniques
to provide management functions, as we will see next.

8.5.2 BER Measurement

The bit error rate (BER) is the key performance attribute associated with a lightpath.
The BER can be detected only when the signal is available in the electrical domain,
typically at regenerator or transponder locations. As we saw in Chapter 6, framing
protocols used in SONET, SDH, and Optical Transport Network include overhead
bytes. Part of this overhead consists of parity check bytes by which the BER can be
computed. This provides a direct measure of the BER. As long as the client signal
data is encapsulated using the SONET/SDH or OTN overhead, we can measure the
BER and guarantee the performance within the optical layer.

Given the complexity of optical physical layer designs, it is difficult to estimate
the BER accurately based on indirect measurements of parameters such as the optical
signal power or the optical signal-to-noise ratio. These parameters may be used to
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provide some measure of signal quality and may be used as triggers for events such
as maintenance or possibly protection switching (which could be based, for example,
on loss of power and signal detection) but not to measure BER.

8.5.3 Optical Trace

Lightpaths pass through multiple nodes and through multiple cards within the equip-
ment deployed at each node. It is desirable to have a unique identifier associated with
each lightpath. For example, this identifier may include the IP address of the origi-
nating network element along with the actual identity of the transponder card within
that network element where the lightpath terminates. This identifier is called an op-
tical path trace. The trace enables the management system to identify, verify, and
manage the connectivity of a lightpath. In addition it provides the ability to perform
fault isolation in the event that incorrect connections are made.

Recall that trace information is also used in the client layer. SONET/SDH has
trace information in its section and path overheads, and OTN has trace information
in its OTU and ODU overheads. We will look at different ways of carrying the trace
information in Section 8.5.7.

8.5.4 Alarm Management

In a network, a single failure event may cause multiple alarms to be generated all over
the network and incorrect actions to be taken in response to the failed condition.
Consider, in particular, a simple example. When a link fails, all lightpaths on that
link fail. This could be detected at the nodes at the end of the failed link, which
would then issue alarms for each individual lightpath as well as report an entire
link failure. In addition, all the nodes through which these lightpaths traverse could
detect the failure of these lightpaths and issue alarms. For example, in a network
with 32 lightpaths on a given link, each traversing through two intermediate nodes,
the failure of a single link could trigger a total of 129 alarms (1 for the link failure
and 4 for each lightpath at each of the nodes associated with the lightpath). It is
clearly the management system’s job to report the single root-cause alarm in this
case, namely, the failure of the link, and suppress the remaining 128 alarms.

Alarm suppression is accomplished by using a set of special signals, called the
forward defect indicator (FDI) and the backward defect indicator (BDI). Figure 8.4
shows the operation of the FDI and BDI signals. When a link fails, the node down-
stream of the failed link detects it and generates a defect condition. For instance, a
defect condition could be generated because of a high bit error rate on the incoming
signal or an outright loss of light on the incoming signal. If the defect persists for a
certain time period (typically a few seconds), the node generates an alarm.
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Figure 8.4 Forward and backward defect indicator signals and their use in a network.

Immediately upon detecting a defect, the node inserts an FDI signal downstream
to the next node. The FDI signal propagates rapidly, and nodes further downstream
receive the FDI and suppress their alarms. The FDI signal is also referred to as
the alarm indication signal (AIS). A node detecting a defect also sends a BDI signal
upstream to the previous node, to notify that node of the failure. If this previous node
did not send out an FDI, it then knows that the link to the next node downstream
has failed.

Note further that separate FDI and BDI signals are needed for different sublayers
within the optical layer, for example, to distinguish between link failures and failures
of individual lightpaths, or to distinguish between the failure of a section of the link
between amplifier locations and that of the entire link. Figure 8.5 illustrates one
possible use of these different indicator signals in an OTN network. Suppose there
is a link cut between OLT A and amplifier B as shown. Amplifier B detects the cut.
It immediately inserts an OMS-FDI signal downstream indicating that all channels
in the multiplexed group have failed and also an OTS-BDI signal upstream to OLT
A. The OMS-FDI is transmitted as part of the overhead associated with the OMS
layer, and the OTS-BDI is transmitted as part of the overhead associated with the
OTS layer.

Note that an OMS-FDI is transmitted downstream and not an OTS-FDI. This
is because the defect information needs to be propagated all the way downstream
to the network element where the OMS layer is terminated, which, in this case, is
OADM D. Amplifier C downstream receives the OMS-FDI and passes it on. OADM
D, which is the next node downstream, receives the OMS-FDI and determines that
all the lightpaths on the incoming link have failed. Some of these lightpaths are
dropped locally, and others are passed through. For each lightpath passed through,
the OADM generates OCh-FDIs and sends them downstream. The OCh-FDIs are
transmitted as part of the OCh overhead. At the end of the all-optical subnet, at OLT
E, the wavelengths are demultiplexed and terminated in transponders/regenerators.
Therefore the OCh layer is terminated here. OLT E receives the OCh-FDIs. OLT
E then generates ODU-FDI indicators for each failed OTN connection and sends
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Figure 8.5 Using hierarchical defect indicator signals in a network. Defect indicators are used at
the OTS, OMS, OCh, and ODU sublayers.

that downstream to the ultimate destination of each connection as part of the ODU
overhead. Finally, the only node that issues an alarm is node B.

Another major reason for using the defect indicator signals is that defects are
used to trigger protection switching. For example, nodes adjacent to a failure detect
the failure and may trigger a protection-switching event to reroute traffic around
the failure. At the same time, nodes further downstream and upstream of the failure
may think that other links have failed and decide to reroute traffic as well. A node
receiving an FDI knows whether or not it should initiate protection switching. For
example, if the protection-switching method requires the nodes immediately adjacent
to the failure to reroute traffic, other nodes receiving the FDI signal will not invoke
protection switching. On the other hand, if protection switching is done by the nodes
at the end of a lightpath, then a node receiving an FDI initiates protection switching
if it is the end point of the associated lightpath.

8.5.5 Data Communication Network (DCN) and Signaling

The element management system (EMS) communicates with the different network
elements through the DCN. This DCN is usually a standard TCP/IP or OSI network
(see Chapter 6). The DCN should be reliable so that it will continue to transport
control information if there is a failure in the network. This means that the CDN
should have enough topological connectivity to remain connected after failures. The
DCN can be transported in several ways:

1. Through a separate out-of-band network outside the optical layer. Carriers can
make use of their existing TCP/IP or OSI networks for this purpose. If such a



486 Control and Management

Table 8.1 Different ways of realizing the DCN for different network elements. The OADM is
assumed to have transponders for channels that are dropped and added, but not for channels that
are passed through.

Network Element Out-of-Band OSC Rate-Preserving Overhead

OLT with transponders Yes Yes Yes
OADM Yes Yes Yes (for dropped channels)
Amplifier No Yes No
OXC with regenerators Yes No Yes
All-optical OXC (no regenerators) Yes No No

network is not available, dedicated leased lines could be used for this purpose.
This option is viable for network elements that are located in big central offices
where such connectivity is easily available, but not viable for network elements
such as optical amplifiers that are located in remote huts in the field.

2. Through the OSC on a separate wavelength (see Section 8.5.7). This option
is available for WDM line equipment that processes the optical transmission
section and multiplex section layers, where the optical supervisory channel is
made available. For example, optical amplifiers are managed using this approach.
However, this option is not available to equipment that only looks at the optical
channel layer, such as optical crossconnects.

3. Through the rate-preserving inband optical channel layer overhead techniques to
be described in Section 8.5.7. This option is useful for equipment that only looks
at the optical channel layer and does not process the multiplex and transmission
section layers, such as optical crossconnects. Also, it is available only at locations
where the lightpath is processed in the electrical domain, that is, at regenerator
or transponder locations.

Table 8.1 summarizes the applicability of different DCN options available for
each type of network element. We assume that OADMs are part of the line system that
includes OLTs and amplifiers. Access to the optical supervisory channel is typically
restricted to elements within a line system due to the proprietary nature of the OSC.

In addition to the DCN, in many cases, a fast signaling network is needed between
network elements. This allows the network elements to exchange critical informa-
tion between them in real time. For instance, the FDI and BDI signals need to be
propagated quickly to the nodes along a lightpath. Other such signals include infor-
mation needed to implement fast protection switching in the network, the topic of
Chapter 9. Just as with the DCN, the signaling network can be implemented using
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dedicated out-of-band connections, the optical supervisory channel, or through one
of the overhead techniques.

8.5.6 Policing

One function of the management system is to monitor the wavelength and power
levels of signals being input to the network to ensure that they meet the requirements
imposed by the network. As we discussed above, the acceptable power levels will
depend on the signal types and bit rates. The types and bit rates are specified by the
user, and the network can then set thresholds for the parameters as appropriate for
each signal type and monitor them accordingly. This includes threshold values for the
parameters at which alarms must be set off. The thresholds depend on the data rate,
wavelength, and specific location along the path of the lightpath, and degradations
may be measured relative to their original values.

Another more important function is to monitor the actual service being utilized
by the user. For example, the service provider may choose to provide two services,
say, a Gigabit Ethernet service and an OC-192 service, by leasing a transparent
lightpath to the user. The two services may be tariffed differently. With a purely
transparent network, it is difficult to prevent a user who opts for the Gigabit Eth-
ernet service from sending OC-192 traffic. What this implies is that services based
on leasing wavelengths will likely be tariffed based on a specified maximum bit
rate, with the user being allowed to send any signal up to the specified maximum
bit rate.

8.5.7 Optical Layer Overhead

Supporting the optical path trace, defect indicators, and BER measurement requires
the use of some sort of overhead in the optical layer. We have alluded indirectly
to some of these overheads earlier, for example, use of the SONET/SDH overhead
to measure the BER and use of the optical supervisory channel to carry some of
the defect indicator signals. In this section, we describe four different methods for
carrying the optical layer overhead. These methods are illustrated in Figure 8.6 and
compared in Table 8.2. The pilot tone approach and the optical supervisory channel
are useful to carry overhead information within an all-optical subnetwork. At the
boundaries of each subnetwork, the signal is regenerated (3R) by converting into
the electrical domain and back. The rate-preserving overhead can be used to carry
overhead information across an entire optical network through multiple all-optical
subnetworks.
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Figure 8.6 Different types of optical layer overhead techniques. The OSC is used hop by hop. The
pilot tone is inserted by a transmitter and can be monitored at elements in an all-optical subnet until
it is terminated at a receiver. The rate-preserving overhead is used end to end across multiple subnets
through intermediate regenerators.

Table 8.2 Applications of different optical layer overhead techniques. The dif-
ferent techniques apply to different sublayers within the optical layer—namely,
the optical transmission section (OTS), optical multiplex section (OMS), or op-
tical channel (OCh) layers. Also shown are the electronic sublayers of OTN:
optical channel transport unit (OTU) and optical channel data unit (ODU)
sublayers. The trace and defect indicator (DI) signals are defined at multiple
sublayers. Note that SONET/SDH unused overhead bytes can also implement
rate-preserving overhead, though not shown in the table.

All-Optical Subnet End-to-End

Application OSC Pilot Tone Rate-Preserving

Trace OTS OCh OTU
ODU

DIs OTS None OTU
OMS ODU
OCh

Performance None Optical power BER
monitoring
Client signal Any Any Any
compatibility
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Pilot Tone or Subcarrier Modulated Overhead

Here, the overhead is realized by modulating the optical carrier (wavelength) of a
lightpath with an additional subcarrier signal, as described in Section 4.2. This signal
is also sometimes called a pilot tone. As long as the modulation depth of this signal
is kept small compared to the data, typically between 5 and 10%, and the subcarrier
frequency is chosen carefully, the data is relatively unaffected as a result. The pilot
tone itself may be amplitude or frequency modulated at a low rate, say, a few kilobits
per second, to carry additional overhead information.

At intermediate locations, a small fraction of the optical power can be tapped off
and the pilot tones extracted without receiving and retransmitting the entire signal.
Note that the pilot tones on each wavelength can be extracted from the composite
WDM signal carrying all the wavelengths without requiring each wavelength to be
demultiplexed.

The pilot tone frequency needs to be chosen carefully. First, it should have min-
imal overlap with the data bandwidth. For instance, a lightpath carrying SONET
data at 2.5 Gb/s has relatively little spectral content below 2 MHz, and a pilot tone
in the 1–2 MHz range can be added with minimal impact to the data. The pilot tone
frequency also needs to lie above the gain modulation cutoff of the erbium-doped op-
tical amplifiers, which is typically around 100 kHz (see Section 3.4.3). Tones below
this frequency will cause the amplifier gain to vary with the pilot tone amplitude,
causing this modulation to be imposed on other channels as undesirable “ghost”
tones or crosstalk. The pilot tone frequency can also be chosen to lie above the data
band, in this example, say, above 2.5 GHz, but it is relatively more expensive to
process signals at higher frequencies than at lower frequencies.

The advantages of the pilot tone approach are that it is relatively inexpensive and
that it allows monitoring of the overhead in transparent networks without requiring
knowledge of the actual protocol or bit rate of the signal. The disadvantages are
that it cannot be used to monitor the BER, and the pilot tone can be modified only
at the transmitter or at a regenerator and not at the intermediate nodes. Thus it
can be used for the OCh trace function inside a transparent subnetwork between
regenerator points, but cannot be used to insert FDI and BDI signals at intermediate
nodes without a regenerator. The trace function can be accomplished using pilot tones
in several possible ways. For example, each lightpath could have a unique pilot tone
frequency, which by itself serves as the trace. Alternatively, we could have a unique
pilot tone frequency for each wavelength, and the pilot tone can be modulated with
a digital signal containing a unique lightpath identifier.

Optical Supervisory Channel

In systems with line amplifiers, a separate OSC is used to convey information asso-
ciated with monitoring the state of the amplifiers along the link, particularly if these
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Figure 8.7 The optical supervisory channel, which is terminated at each amplifier lo-
cation.

amplifiers are in remote locations where other direct access is not possible. The OSC
is also used to control the line amplifiers, for example, turning them on or turning
them off for test purposes. It can also be used to carry the DCN, as well as some of
the overhead information.

The OSC is carried on a wavelength different from the wavelengths used for
carrying traffic. It is separated from the other wavelengths at each amplifier stage
and received, processed, and retransmitted, as shown in Figure 8.7.

The choice of the exact wavelength for the OSC involves a number of trade-
offs. Figure 8.8 shows the usage of various wavelength bands in the network for
carrying traffic, for pumping the erbium or Raman amplifiers, and for the OSC. The
OSC could be located within the same band as the traffic-bearing channels, or in a
separate band located away from the traffic-bearing channels. In the latter situation,
it is easier to filter out and reinsert the OSC at each amplifier location. However, we
need to locate the OSC away from the Raman pumps if they are used in the system.

Perhaps the only advantage of locating the OSC in the same band as the traffic-
bearing channels is a slight reduction in amplifier noise. For instance, if a two-stage
amplifier design is used, the in-band OSC can be filtered out after the first stage along
with the amplifier noise that is present at this wavelength.

For WDM systems operating in the C-band, the popular choices for the OSC
wavelength include 1310 nm, 1480 nm, 1510 nm, or 1620 nm. Using the 1310 nm
band for the OSC precludes the use of this band for carrying traffic. The 1480 nm
wavelength was considered only because of the easy availability of lasers at that
wavelength—it happens to be one of the wavelengths used to pump an erbium-
doped fiber amplifier (EDFA). For the same reason, however, there can be some
undesirable interactions between the OSC laser and the EDFA pump, so this is not a
popular choice.

After going through some of these trade-offs, the ITU has adopted the 1510 nm
wavelength as the preferred choice. This wavelength is outside the EDFA passband,
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Figure 8.8 Usage of wavelengths in the network. Traffic is carried on the O (original), S (short), C
(conventional), or L (long) wavelength bands. Raman pumps, if used, are located about 80–100 nm
below the signal.

does not coincide with an EDFA pump wavelength, and lies outside the C- and L-
bands. Note, however, that this wavelength falls in the S-band and may also overlap
with Raman pumps for the L-band.

Yet another choice used by some vendors is the 1620 nm wavelength, on the
outer edge of the L-band. This choice avoids most of the problems above, except
that we have to be careful about separating this channel from a traffic-bearing
channel toward the edge of the L-band.

The OSC can be used to carry OTS traces and defect indicators, as well as OMS
and OCh defect indicators.

Rate-Preserving Overhead

The idea here is to make use of the existing SONET/SDH and OTN overhead. In the
case of SONET/SDH, this overhead includes several bytes that are currently unused.
Some of these bytes can be used by the optical layer. These bytes can also be used to
add forward error correction (FEC), which improves the optical layer link budget.
This technique can be used only at locations where the signal is available in electrical
form, that is, at regenerator locations or at the edges of the network. Unlike the pilot
tone method, it cannot be used inside a transparent optical subnetwork.

The advantages of this method are the following. First, it can be used with
the existing equipment in the network. For example, a new network element with
this capability can communicate with other network elements of the same type
through intermediate WDM and SONET equipment that is already present in the
network. Second, it retains the existing hierarchy of bit rates in the SONET/SDH
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standards. This allows existing SONET/SDH chipsets, such as clock recovery circuits,
receivers, modulators, and overhead processing chips, to be used without requiring
the development of a new set of components to support the new rates.

The disadvantages of this method are the following: First, the number of unused
bytes available is limited and may not offer sufficient bandwidth to carry all the
optical layer overhead and FEC. Second, while the SONET/SDH standards specify
the set of unused bytes, several vendors have already made use of some of these bytes
for their own proprietary reasons, which makes it difficult to determine which set of
bytes are truly unused!

OTN solves the problems of using SONET/SDH overhead. It has built-in for-
ward error correction. It can be used to encapsulate a variety of different signals,
such as Fibre Channel, Gigabit Ethernet, and 10 Gigabit Ethernet. It has optical
channel transport unit (OTU) and optical channel data unit (ODU) traces and defect
indicators as well as providing other overheads for management, such as those used
by automatic protection-switching (APS) protocols for signaling between network
elements during failures. OTN frames also have unused overhead bytes that can be
used to carry additional overhead information.

8.5.8 Client Layers

We will describe some of the performance and fault management features in the client
layer protocols described in Chapter 6. The performance and fault management
mechanisms of the SONET/SDH and the electronic layer of OTN have already
been discussed. Since SONET/SDH and OTN provide constant bit rate service,
they use bit error rate (BER) as a performance measure as well as loss of signal.
Network elements are informed of error and fault events through defect indicators
(see Subsection 8.5.4). They also have trace information in their overhead.

Protocols that provide packet transport services such as Ethernet or MPLS have
performance measures that are packet oriented, such as packet loss rate, packet
delay, and packet delay variation (jitter). To detect if a connection (link or path) is
up, “hello” or continuity check messages are sent periodically through the connection
between the end nodes. If these messages are not received, then it is assumed that the
connection is down. Remote defect indicators and AIS signals are used by one end
of a link to inform the other end that it has detected a failure or error. Management
occurs at different levels. At the lowest level, individual links are managed, while at
the highest level end-to-end connections are managed. In the middle level, segments
of an end-to-end connection can be managed such as when a segment goes through
another network operator. In addition, end-to-end management can be customer
oriented or service provider oriented.
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8.6 Configuration Management

We can break down configuration management functions into three parts: manag-
ing the equipment in the network, managing the connections in the network, and
managing the adaptation of client signals into the optical layer.

8.6.1 Equipment Management

In general, the principles of managing optical networking equipment are no different
from those of managing other high-speed networking equipment. We must be able to
keep track of the actual equipment in the system (for example, number and location
of optical line amplifiers) as well as the equipment in each network element and its
capabilities. For example, in a terminal of a point-to-point WDM system, we may
want to keep track of the maximum number of wavelengths and the number of
wavelengths currently equipped, whether or not there are optical pre- and power
amplifiers, and so forth.

Among the considerations in designing network equipment is that we should be
able to add to existing equipment in a modular fashion. For instance, we should be
able to add additional wavelengths (up to a designed maximum number) without
disrupting the operation of the existing wavelengths. Also, ideally the failure of
one channel should not affect other channels, and the failed channel should be
capable of being serviced without affecting the other channels. An issue that comes
up in this regard is the use of arrayed multiwavelength components versus separate
components for individual wavelengths, such as multiwavelength laser arrays instead
of individual lasers for each wavelength. Using arrayed components can reduce the
cost and footprint of the equipment. However, if one element in the array fails,
the entire array will have to be replaced. This reduces the system availability, as
replacing the array will involve disrupting the operation of multiple channels, and
not just a single channel. Using arrays also increases the replacement cost of the
module. Therefore there is always a trade-off between obtaining reduced cost and
footprint on one front against system availability and replacement cost on the other
front.

We may also want to start out by deploying the equipment in the form of a
point-to-point link and later upgrade it to handle ring or other network configura-
tions. We may also desire flexibility in associating specific port cards in the equipment
with specific wavelengths. For example, it is better to have a system where we can
choose the wavelength transmitted out of a port card independently of what slot it
is located in.
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Another problem in WDM systems is the need to maintain an inventory of
wavelength-specific spare cards. For example, each channel may be realized by using
a card with a wavelength-specific laser in it. Thus you would need to stock spare
cards for each wavelength. This can be avoided by using a wavelength-selectable (or
tunable) laser on each card instead of a wavelength-specific laser.

8.6.2 Connection Management

The optical network provides lightpaths, or more generally, circuit-switched connec-
tions, to its user. Connection management deals with setting up connections, keeping
track of them, and taking them down when they are not needed anymore.

The traditional telecommunications way of providing this function is through a
centralized management system, or rather a set of systems. However, this process
has been extremely cumbersome and slow. The process usually involves configuring
equipment from a variety of vendors, each with its own management system, and
usually one network element at a time. Moreover, interoperability between manage-
ment systems, while clearly feasible, has been difficult to achieve in practice. Finally,
service providers in many cases deploy equipment only when needed. The net result
of this process is that it can take months for a service provider to turn up a new
connection in response to a user request. Given this fact, it is not surprising that
once a connection is set up, it remains in effect for a fairly significant period of time,
ranging from several months to years!

As optical networks evolve, connections are getting more dynamic and networks
are becoming bigger and more complex. Service providers would like to provide
connections to their customers rapidly, ideally in seconds to minutes, and not impose
long-term holding time commitments on these connections. In other words, users
would dial up bandwidth as needed.

Supporting all this requires carriers to predeploy equipment (and bandwidth)
ahead of time in the network and having methods in place to be able to turn on
the service rapidly when needed. This is becoming a significant competitive issue in
differentiating one carrier from another. This method of operation also stimulates
what is called bandwidth trading, where carriers trade their unused bandwidth with
other carriers for increasingly shorter durations to improve the utilization of their
networks and maximize their revenue.

Distributed Control

For the reasons given above, we are seeing a trend toward a more distributed form of
control for connection management. Distributed control protocols have been used
in IP/MPLS and Ethernet networks. They have a fair degree of success with respect
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to standardization and accomplishing interoperability across vendor boundaries.
These protocols can be reused to control and manage optical networks. An exam-
ple is the Generalized MPLS (GMPLS) protocols that support optical connections.
The developers of GMPLS recognized that a label-switched path (LSP) is a virtual
circuit-switched path. Much of the control and management of an LSP can be ap-
plied to an arbitrary circuit-switched connection, for example, a TDM connection,
a wavelength-switched connection (i.e., a lightpath), or fiber-switched connection.
Then an LSP rather than being a trail of labels will be a trail of generalized labels
(e.g., time slots, wavelengths, or fibers).

The Automatic Switched Transport Network (ASTN) is an architecture for
managing connections including optical connections. It has similar objectives with
GMPLS, but while GMPLS development is on implementations to realize an opti-
cal network, ASTN development is on a framework. Thus, ASTN is considered a
top-down approach, while GMPLS is a bottom-up approach.

Distributed connection control has several components:

Topology management. Each node in the network maintains a database of the net-
work topology and the current set of resources available, as well as the resources
used to support traffic. In the event of any changes in the network, for example, a
link capacity change, the updated topology information needs to be propagated
to all the network nodes. We can use the same techniques used in IP networks for
this purpose. Nodes periodically, or in the event of changes, flood the updated
information to all the network nodes. We can use an Internet routing and topol-
ogy management protocol such as OSPF or IS-IS (see Section 6.5), with suitable
modifications to represent optical layer topology information, and update it au-
tomatically. OSPF–Traffic Engineering (OSPF-TE) and IS-IS–Traffic Engineering
(IS-IS-TE) are enhancements of OSPF and IS-IS that include attributes of the links
such as available bandwidth.

As we mentioned earlier, nodes monitor their links by periodically send-
ing “hello” or continuity check messages through their link ports. A node can
conclude that a link is up as long as it receives such messages. Through these
messages, nodes can discover their current neighbors. The messages may also
carry attributes of the link such as the available bandwidth and delay. Nodes will
share their link state information with other nodes by flooding the information
through the network as we described above.

Network administrators may need to know the status of an end-to-end con-
nection traversing multiple links. Ping or loopback messages can be sent from
one end of a connection and are returned by the other end. These messages are
used to verify if a connection is still up and can be used in troubleshooting. Also,
Traceroute or link trace messages can be sent from one end of the connection to
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discover the path of the connection. The path is a list of links or nodes of the
connection. This is useful to a network administrator when paths are computed
in a distributed fashion and unavailable in a centralized database. Even if the
path information is stored, the traceroute or link trace can be used to verify the
path.

Link management. As we described above, monitoring the status of the link can be
accomplished with periodic “hello” or continuity check messages. In addition, the
performance of the link can be monitored by keeping statistics on packet losses
and bit error rates. If the performance grades below an acceptable threshold,
a failure indication signal can be sent to the other end of the link. A failure
indication signal can also be sent when the performance is degrading to indicate
imminent failure. Then an early warning can allow a switchover to an alternate
link before the link fails.

Networks may also allow link bundling, where multiple parallel channels
between two nodes operate as a single logical link. This will reduce the amount of
overhead in the routing protocol and keep track of the network topology. Then
end nodes must be able manage the channels including set up and tear down
the channels, map the data to the channels, and support routing and resource
allocation. The Link Management Protocol (LMP) of GMPLS is an example of
this.

Route computation. When a connection is requested from the network, the network
needs to find a route and obtain resources along the route to support this connec-
tion. This can be done by applying a routing algorithm on the topology database
of the network. The routing algorithm should take into account the various con-
straints imposed by the network, such as wavelength conversion ability and the
capacity available on each link of the network. In the case of capacity availabil-
ity, the minimum available capacity may be a constraint as well as the maximum
available capacity. For example, a link may be a bundle of wavelengths. If we
were to consider setting up a lightpath connection through the link then the
wavelength capacity would be the link’s minimum available capacity because the
lightpath would use an entire wavelength in the link. In addition to computing
routes for carrying the working traffic, the algorithm may also have to compute
protection or back up routes for the connection, which are used in the event of
failures. We discuss route computation in Section 10.2.2.

Signaling protocol. Once routes are computed, the connection needs to be set up.
This process involves reserving the resources required for the connection and set-
ting the actual switches inside the network to set up the connection. The process
requires nodes to exchange messages with other nodes. Typically, the destination
or source of the connection signals to each of the nodes along the connection path
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to perform this function. Protocols based on MPLS Internet signaling protocols
such as RSVP and LDP (see Section 6.5) can be used for this purpose. They will
set up paths for connections without considering link attributes, such as avail-
able capacity. In addition, they will set up connections along shortest paths. The
extensions RSVP Traffic Engineering (RSVP-TE) and Constraint-based Routing
LDP (CR-LDP) can take into account link attributes, and allow explicitly routed
paths (see Section 6.6.3). Information sent by signaling protocols, such as the
attributes of a link, are often in a type-length-value (TLV) format.

The same protocols can also be used to take down connections when they
are no longer needed. In the case of IP/MPLS and GMPLS-based network archi-
tectures, connections have a “soft state.” This means that the connections have
a lifetime, and while the connections are in use, their lifetimes are refreshed pe-
riodically with refresh messages. Discontinuing refresh messages will eventually
discontinue the connection by time out.

The process of setting up or taking down a connection must be executed
carefully. For example, if the connection is simply taken down by the source
and destination, then the intermediate nodes may sense the loss of light on the
connection as a failure condition and trigger unwanted alarms and protection
switching. This can be avoided by suitable coordination among the nodes along
the route of the lightpath.

GMPLS has enhancements of MPLS to support setting up lightpaths. Whereas
MPLS is designed to set up unidirectional LSPs, GMPLS can set up bidirectional
LSPs. This is important since most lightpaths are bidirectional. In addition,
GMPLS allows an upstream node to impose restrictions on the type of labels
or generalized labels that can be used in setting up an LSP over the next link or
the entire path. This can be applied to set up lightpaths that have restrictions on
wavelength conversion. Also, when setting up an LSP, a particular egress port
can be specified.

Signaling network. Nodes need a signaling channel to exchange control information
with other nodes. We described the many options available to realize this in
Section 8.5.5.

Interaction with Other Layers

One important aspect of the connection management protocols is in how they interact
with the client layers of the optical layer. With IP routers as the dominant clients
of the optical layer, and because the optical layer control protocols are based on
Internet protocols, the issue of how these protocols interact in particular with the IP
layer becomes a crucial issue.
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Different types of interactions are likely needed for different scenarios, such
as metro versus long-haul networks, incumbent versus new service providers, mul-
tiservice versus IP service-centric providers, and facility ownership versus leasing
providers.

Figure 8.9 shows a variety of models of how the client and optical layers interact.
Figure 8.9(a) is the overlay model, where the optical layer has its own control
plane, and the higher layers have their own independent control planes. The optical
layer provides a user network interface (UNI), through which higher (client) layers
can request connections from the optical layer. Within the optical layer, different
subnetworks can interoperate through a standardized network-to-network interface
(NNI). This approach allows the connection control software for the optical layer to
be tailored specifically to the optical layer without having to worry about developing
a single unified piece of control software. It also allows the optical layer and client
layers to scale and evolve independently. Details of the optical network topology
can be hidden from the client layer through the UNI. We can use this model to
interconnect a variety of clients, including IP, Ethernet, and SONET/SDH clients, with
the optical layer. The model is also appropriate for supporting private line lightpath
service, transport bandwidth brokering, carrier’s carrier trunking, and optical virtual
private networks. Finally, this model can be applied to incumbent or new multiservice
carriers who either own or lease their transport facilities.

An enhanced version of the overlay model is the overlay plus model, shown in
Figure 8.9(b), which allows closer interaction between the layers. In this case, there is
a trusted intermediate intelligent controller between the two layers that has available
to it a suitably abstracted version of specific client and optical layer topology and
status information. The controller can use this information to request and release
lightpaths based on specific policies, such as specific service level agreements made
between the client and optical layers. These requests can be rapidly invoked to
avoid network abnormalities such as congestion and failures, increase infrastructure
utilization, coordinate protection and restoration options, and automate engineering
by rebalancing the network and forecasting needed resource (such as node and link
capacity) upgrades for both the IP and optical layers.

Figure 8.9(c) shows the peer model, where IP routers and optical layer elements,
such as OXCs and OADMs, run the same control plane software. This would allow
routers to look at OXCs as if they were routers, effectively treating the IP layer and
optical layer as peers. An OXC would simply be a special type of router, analogous
to a label-switched router (LSR). Routers would have full topology awareness of
the optical layer and could therefore control optical layer connections directly. Al-
though this is an elegant approach, it is made complicated by the fact that optical
layer elements impose significantly different constraints with respect to routing and
protection of connections, compared to the IP layer. In this case, we need to find
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Figure 8.9 Different control plane models for interconnecting client layers with the
optical layer. (a) Overlay model, (b) overlay+ model, (c) peer model, and (d) augmented
model.

a way to suitably abstract optical layer routing constraints into a form that can be
used by route computation engines residing on IP routers.

Figure 8.9(d) shows another enhanced version of the overlay model, called an
augmented model, where the IP layer has access to summarized routing, addressing,
and topology information of the optical layer, but still operates as a separate control
plane from the optical layer.

The models in Figure 8.9(c) and (d) tend to apply mainly to new IP-centric
providers or IP-centric business units within established carriers who own their
transport facilities. These models allow (or require) significantly more trust and
closer coupling between the IP and optical layers, compared to the overlay models
of Figure 8.9(a) and (b).

8.6.3 Adaptation Management

Adaptation management is the function of taking the client signals and converting
them to a form that can be used inside the optical layer. This function includes the
following:
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Converting the signal to the appropriate wavelength, optical power level, and
other optical parameters associated with the optical layer. This is done through
the use of transponders, which convert the signal to electrical form and retransmit
the signal using a WDM-specific laser. In the other direction, the WDM signal is
received and converted into a standardized signal, such as a short-reach SONET
signal.

Adding and removing appropriate overheads to enable the signal to be managed
inside the optical layer. This could include one or more of the overhead techniques
that we studied in Section 8.5.7.

Policing the client signal to make sure that the client signal stays within bound-
aries that have been agreed upon as part of the service agreement. We discussed
this in Section 8.5.

The WDM network must support different types of interfaces to accommodate a
variety of different users requiring different functions. Figure 8.10 shows the different
possible adaptation interfaces.

1. Compliant wavelength interface: One interface might be to allow the client to
send in light at a wavelength that is supported in the network. In this case, the user
would be expected to comply with a variety of criteria set by the network, such
as the signal wavelength, power, modulation type, and so on. These wavelengths
may be regarded as compliant wavelengths. In this case, the interface might
be a purely optical interface, with no optoelectronic conversions required (a
significant cost savings). For example, you might envision that SONET or IP
equipment must incorporate WDM-capable lasers at wavelengths suitable for
the WDM network. It would also be possible to directly send a wavelength from
the WDM network into SONET equipment. Here the user complies with the
requirements imposed by the network.

2. Noncompliant wavelength interface: This is the most common interface and
encompasses a variety of different types of attached client equipment that use
optical transmitters and/or receivers not compatible with the signals used inside
the WDM network. For example, this would include SONET equipment using
1.3 μm lasers. Here until all-optical wavelength conversion (and perhaps all-
optical regeneration) becomes feasible, optoelectronic conversion must be used,
along with possibly regeneration, to convert the signal to a form suitable for
the WDM network. This is likely to be the interface as well when we need
to interconnect WDM equipment from different vendors adhering to different
specifications, as we discussed in Section 8.4.

3. Subrate multiplexing: Additional adaptation functions include time division mul-
tiplexing of lower-speed streams into a higher-speed stream within the WDM
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Figure 8.10 Different types of interfaces between a WDM optical network and its
clients.

equipment prior to transmission. For example, the WDM equipment could in-
clude multiplexing of SONET OC-48 streams into OC-192 streams. This could
reduce costs by eliminating the separate equipment that would normally be
needed to perform this function.

The level of transparency offered by the network also affects the type of adap-
tation performed at the edges of the network. The network needs to be capable
of transporting multiple bit rates. In general, the optical path can be engineered to
support signals up to a specified maximum bit rate. The adaptation devices and re-
generators used within the network need to be capable of supporting a variety of bit
rates as well. An important enabler for this purpose is a programmable clock data
recovery chip that can be set to work at a variety of bit rates. The chips available
today are capable of handling integral multiples of bit rates. They are also capable
of handling a narrow range of bit rates around a mean value. For example, a single
chip could deal with SONET OC-24 signals or with Gigabit Ethernet signals, which
are both around 1.25 Gb/s but not exactly at the same rate.

8.7 Optical Safety

The semiconductor lasers used in optical communication systems are relatively
low-power devices; nevertheless, their emissions can cause serious damage to the
human eye, including permanent blindness and burns. The closer the laser wave-
length is to the visible range, the more damage it can do, since the cornea is more
transparent to these wavelengths. For this reason, systems with lasers must obey
certain safety standards. Systems with lasers are classified according to their emis-
sion levels, and the relevant classes for communication systems are described next.
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In some cases, these safety issues can limit the allowable optical power used in the
system.

A Class I system cannot emit damaging radiation. The laser itself may be a
high-power laser, but it is prevented from causing damage by enclosing it in a suitably
interlocking enclosure. The maximum power limit in a fiber for a Class I system is
about 10 mW (10 dBm) at 1.55 μm and 1 mW (0 dBm) at 1.3 μm. Moreover, the
power must not exceed this level even under a single failure condition within the
equipment. A typical home CD player, for example, is a Class I system.

A Class IIIa system allows higher emission powers—up to 17 dBm in the 1.55 μm
wavelength range—but access must be restricted to trained service personnel. Class
IIIa laser emissions are generally safe unless the laser beam is collected or focused
onto the human eye. A Class IIIb system permits even higher emission powers, and
the radiation can cause eye damage even if not focused or collected.

Under normal operation, optical communication systems are completely “en-
closed” systems—laser radiation is confined to within the system and is not seen
outside. The problem arises during servicing or installation, or when there is a fiber
cut, in which case the system is no longer completely enclosed and emission powers
must be kept below the levels recommended for that particular system class. Commu-
nication systems deployed in the enterprise world must generally conform to Class I
standards since untrained users are likely to be using them. Systems deployed within
carrier networks, on the other hand, may likely be Class IIIa systems, since access to
these systems is typically restricted to trained service personnel.

The safety issue thus limits the maximum power that can be launched into a fiber.
For single-channel systems without optical power amplifiers using semiconductor
lasers, the emission levels are small enough (−3 to 0 dBm typically) that we do
not have to worry much about laser safety. However, with WDM systems, or with
systems using optical power amplifiers, we must be careful to regulate the total power
into the fiber at all times.

Simple safety mechanisms use shuttered optical connectors on the network equip-
ment. This takes care of regulating emissions if a connector is removed from the
equipment, but cannot prevent emissions on a cut fiber further away from the equip-
ment. This is taken care of by a variety of automatic shutdown mechanisms that
are designed into the network equipment. These mechanisms detect open connec-
tions and turn off lasers and/or optical amplifiers (the spontaneous emission from
amplifiers may itself be large enough to cause damage). Several techniques are used
to perform this function. If an amplifier senses a loss of signal at its input, it turns
off its pump lasers to prevent any output downstream. There is some handshaking
needed between the two ends of a failed link to handle unidirectional cuts. If one end
senses a loss of signal, it turns off its transmitter or amplifier in the other direction.
This in turn allows the other end to detect a loss of signal and turn off its transmitter
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Figure 8.11 Open fiber control protocol in the Fibre Channel standard.

or amplifier. Another technique is to look at the back-reflected light. In the event
of a fiber cut, the back-reflection increases and can be used to trigger a shutdown
mechanism.

After the failure is repaired, the system can be brought up manually. More
sophisticated open fiber control mechanisms allow the link to be brought back up
automatically once the failure is repaired. These mechanisms typically pulse the
link periodically to determine whether the link has been repaired. The pulse power
is maintained below the levels specified for the safety class. Here we describe a
particular protocol that has been chosen for the Fibre Channel standard.

8.7.1 Open Fiber Control Protocol

Figure 8.11 shows a block diagram of a system with two nodes A and B using the
open fiber control (OFC) protocol. Figure 8.12 shows the finite-state machine of the
protocol.

The protocol works as follows:

1. Under normal operating conditions, A and B are in the ACTIVE state. If the link
from A to B fails, receiver B detects a loss of light and turns off laser B, and B
enters the DISCONNECT state. Receiver A subsequently detects a loss of light
and turns off its laser and also enters the DISCONNECT state. Similarly, if the
link from B to A fails, or if both links fail simultaneously, A and B both enter the
DISCONNECT state.

2. In the DISCONNECT state, A transmits a pulse of duration τ every T seconds.
B does the same. If A detects light while it is transmitting a pulse, it enters the
STOP state and is called the master. If A detects light while it is not transmitting
a pulse, it transmits a pulse for τ seconds and then enters the STOP state and is
called the slave—likewise for B.
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Figure 8.12 State machine run by each node for the open fiber control protocol in the
Fibre Channel standard.

3. Upon entering the STOP state, the node turns off its laser for a period of
τ ′ seconds. It remains in this state until a loss of light condition is detected
on the incoming link. If this happens within the τ ′ seconds, it moves into the
RECONNECT state. Otherwise, it moves back into the DISCONNECT state.

4. Upon entering the RECONNECT state, if the node is the master, it sends out
a pulse of duration τ . If light is detected on the incoming link within this time
period, the node enters the ACTIVE state. Otherwise, it shuts off its transmitter
and enters the DISCONNECT state. If the node is the slave, it monitors the link
for a period of τ seconds, and if light is detected on the incoming link within this
period, it turns on its laser and enters the ACTIVE state. Otherwise, it goes back
to the DISCONNECT state.

This is a fairly complex protocol. A simpler version of this protocol would not
have the STOP and RECONNECT states. Instead, the nodes would directly enter
the ACTIVE state from the DISCONNECT state upon detecting light. The reason
for having the other states is to try to ensure that both nodes have functioning safety
circuitry. If one of the nodes does not turn off its laser during the STOP period, it is
assumed that the safety circuitry is not working and the other node goes back to the
DISCONNECT state.

In order for the protocol to work, τ , τ ′, and T must be chosen carefully. In
the DISCONNECT state, the average power transmitted is τP/T , where P is the
transmitted power when the laser is turned on. This must be less than the allowed
emission limits for the safety class. The values chosen for τ and τ ′ depend on the
link propagation delay (see Problem 8.5).
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Since the Class I safety standard also specifies that emission limits must be main-
tained during single-fault conditions, the open fiber control circuitry at each node is
duplicated for redundancy.

Summary

Network management is essential to operate and maintain any network. Operating
costs dominate equipment costs for most telecom networks, making good network
management imperative in ensuring the smooth operation of the network. The main
functions of network management include configuration (of equipment and connec-
tions in the network), performance monitoring, and fault management. In addition,
security and accounting are also management functions. Most functions of manage-
ment are performed through a hierarchy of centralized management systems, but
certain functions, such as restoration against failures, or the use of defect indicators
to suppress alarms, are done in a distributed fashion. Several management protocols
exist, the main ones being TL-1, SNMP, and CMIP.

It is useful to break down the optical layer into three sublayers: the optical
channel layer, which deals with individual connections or lightpaths and is end
to end across the network; the optical multiplex section layer, which deals with
multiplexed wavelengths on a point-to-point link basis; and the optical transmission
section layer, which deals with multiplexed wavelengths and the optical supervisory
channel between adjacent amplifiers.

The level of transparency offered by the optical network affects the amount of
management that can be performed. Key performance parameters such as the bit
error rate can only be monitored in the electrical domain. Fast signaling methods
need to be in place between network elements to perform some key management
functions. These include the use of defect indicator signals to prevent the generation
of unwanted alarms and protection-switching action, and other signaling bytes to
control rapid protection switching. Optical path trace is another indicator that can
be used to verify and manage connectivity in the network. Several methods exist for
exchanging management information between nodes, including the optical supervi-
sory channel, pilot tones, and the use of certain overhead bytes in the SONET/SDH
and OTN overhead.

Connection management in the optical network is slowly migrating from a cen-
tralized management-plane-based approach to a more distributed connection control
plane approach using protocols similar to those used in IP and MPLS networks.

Eye safety considerations are a unique feature of optical fiber communication
systems. These considerations set an upper limit on the power that can be emitted
from an open fiber, and these limits make it harder to design WDM systems, since
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they apply to the total power and not to the power per channel. Safety is maintained
by using automated shutdown mechanisms in the network that detect failures and
turn off lasers and amplifiers to prevent any laser radiation from exiting the system.

Further Reading

Network management is a vast subject, and several books have been written on the
subject—see, for instance, [Sub00, Udu99, Bla95, AP94] for good introductions to
the field, including descriptions of the various standards. [McG99, Wil00, Mae98]
provide overviews of issues in optical network management.

There is currently a lot of interest in the standards bodies in standardiz-
ing many of the items we discussed in this chapter. The standards groups cur-
rently engaged in this are the International Telecommunications Union (ITU) study
groups 13 and 15 (www.itu.ch), the American National Standards Institute (ANSI)
T1X1.5 subcommittee (www.ansi.org), the Optical Internetworking Forum (OIF)
(www.oiforum.com), the Internet Engineering Task Force (IETF) (www.ietf.org),
and Telcordia Technologies (www.telcordia.com). The ITU defines the standards,
including both SDH and the optical layer. ANSI provides the North American input
to the ITU. IETF is the standards body for the Internet and is actively involved in
defining optical layer control protocols. The OIF serves as a discussion forum for
data communications equipment vendors, optical networking vendors, and service
providers. Telcordia defined many of the SONET standards. NSIF has defined many
of the management interfaces for facilitating interoperability in SONET. We have
provided a list of relevant standards documents in Appendix C.

See [Hil93, HFKV96, HK97] for a sampling of papers describing implementa-
tions of pilot tones for signal tracing and monitoring. [Epw95] uses pilot tones to
control the gain of optical amplifiers.

ITU G.709 defines the associated maintenance signals of OTN such as the path
trace and the defect indicators. Telcordia’s GR-253 defines an equivalent set of signals
for SONET.

ASTN is being developed by the ITU [ITU01]. It was previously referred to as
automatic switched optical network (ASON) [VSN+01].

The IETF provides RFCs for GMPLS [Int04], LDP [ADF+01], RSVP [BZB+97],
and RSVP-TE [ABG+01]. There are a number of books on these topics, for example,
[FB06]. See [CGS93] for some early work on distributed connection management,
and [RS97, Wei98] for related work on optical networks. See also [GR00, AR01]
for a discussion of the various types of control plane models. Surveys of Ethernet
operations and management can be found in [MSC05, RSPJ08].
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Figure 8.13 A combined SONET/WDM optical network for Problem 8.2.

Laser safety is covered by several standards, including ANSI, the International
Electrotechnical Commission (IEC), the U.S. Food and Drug Administration (FDA),
and the ITU [Ame88, Int93, Int00, US86, ITU99, ITU96].

Problems

8.1 Which sublayer within the optical layer would be responsible for handling the fol-
lowing functions?

(a) Setting up and taking down lightpaths in the network
(b) Monitoring and changing the digital wrapper overhead in a lightpath
(c) Rerouting all wavelengths (except the optical supervisory channel) from a

failed fiber link onto another fiber link
(d) Detecting a fiber cable cut in a WDM line system
(e) Detecting failure of an individual lightpath
(f) Detecting bit errors in a lightpath

8.2 Consider the SONET network operating over the optical layer shown in Figure 8.13.
Trace the path of the connection through the network, and show the termination of
different layers at each network element.

8.3 Consider the network shown in Figure 8.14. Suppose the link segment between OLT
A and amplifier B fails.

(a) Assume that each node detects loss of light in 2 ms and waits 5 ms before it
sends an FDI signal downstream. Also, each node waits for 2 s after the loss
of light is detected before it triggers an alarm. Assume that the propagation
delay on each link segment (segment defined as the part of the link between
adjacent amplifiers or between an OLT and adjacent amplifier) is 3 ms.
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Figure 8.14 Example for Problem 8.3.

Draw a time line indicating the behavior of each node in the network after
the failure, including the transmission of OCh-FDI and OMS-FDI signals.

(b) Now assume that each node detects loss of light in 2 ms, immediately sends
an FDI signal downstream, and waits an additional 2 s after the loss of light
is detected before it triggers an alarm. Assume the same propagation delay
values as before. Redraw the time line indicating the behavior of each node
in the network after the failure, including the transmission of OCh-FDI and
OMS-FDI signals.

What do you observe as the difference between the two methods proposed
above?

8.4 Consider an OXC connected to multiple OLTs.
(a) If the OXC has an electronic switch core with optical-to-electrical conver-

sions at its ports, what overhead techniques can it use? How would it commu-
nicate with other such OXCs in the network? What performance parameters
could it monitor?

(b) If the OXC is all optical, with no optical-to-electrical conversions, what
overhead techniques can it use? How would it communicate with other such
OXCs in the network? What performance parameters could it monitor?

8.5 Consider the open fiber control protocol in the Fibre Channel standard.
(a) How would you choose the parameters τ and τ ′ as a function of the maximum

link propagation delay dprop?
(b) What is the time taken for a node to go from the DISCONNECT state to the

ACTIVE state, assuming a successful reconnection attempt, that is, it never
has to go back to the DISCONNECT state?
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c h a p t e r

Network Survivability

Providing resilience against failures is an important requirement for many
high-speed networks. As these networks carry more and more data, the amount

of disruption caused by a network-related outage becomes more and more significant.
A single outage can disrupt millions of users and result in millions of dollars of lost
revenue to users and operators of the network.

As part of the service-level agreement between a carrier and its customer leasing a
connection, the carrier commits to providing a certain availability for the connection.
A common requirement is that the connection be available 99.999% (five 9s) of the
time. This requirement corresponds to a connection downtime of less than 5 minutes
per year.

A connection is often routed through many nodes in the network between its
source and its destination, and there are many elements along its path that can fail.
The only practical way of obtaining 99.999% availability is to make the network
survivable, that is, able to continue providing service in the presence of failures.
Protection switching is the key technique used to ensure survivability. These protec-
tion techniques involve providing some redundant capacity within the network and
automatically rerouting traffic around the failure using this redundant capacity. A
related term is restoration. Some people apply the term protection when the traffic
is restored in the tens to hundreds of milliseconds, and use the term restoration to
schemes where traffic is restored on a slower time scale. However, in this chapter we
do not distinguish between protection and restoration.

Protection is usually implemented in a distributed manner without requiring
centralized control in the network. This is necessary to ensure fast restoration of
service after a failure.

511
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We will be concerned with failures of network links, nodes, and individual chan-
nels (in the case of a WDM network). In addition, the software residing in today’s
network elements is immensely complex, and reliability problems arising from soft-
ware bugs have become a serious issue. This issue is usually dealt with by using
proper software design and is hard to protect against in the network.

In most cases failures are triggered by human error, such as a backhoe cutting
through a fiber cable, or an operator pulling out the wrong connection or turning
off the wrong switch. Links fail mostly because of fiber cuts; this is the most likely
failure event. There are estimates that long-haul networks annually suffer 3 fiber cuts
for every 1000 miles of fiber [Gro03]. For a large network of 30,000 miles of fiber
cable, that would be 90 cuts per year.

The next most likely failure event is the failure of active components inside net-
work equipment, such as transmitters, receivers, or controllers. In general, network
equipment is designed with redundant controllers. Moreover, failure of controllers
does not affect traffic but only impacts management visibility into the network.

Node failures are yet another possibility. Entire central offices can fail, usually
because of catastrophic events such as fires, flooding, or earthquakes. These events
are rare, but they cause widespread disruption when they occur. Examples include
the fire at the Toronto central office of Bell Canada in 1999 and the obliteration,
flooding, and power outages at central offices due to Hurricane Katrina in 2005.
Another source of node failures is switch or router failures due to software failures.

Protection schemes are also used extensively to allow maintenance actions in the
network. For example, in order to service a link, typically the traffic on the link is
switched over to an alternate route using the protection scheme before it is serviced.
The same technique is used when nodes or links are upgraded in the network.

In most cases, the protection schemes are engineered to protect against a
single failure event or maintenance action. If the network is large, we may
need to provide the capability to deal with more than one concurrent fail-
ure or maintenance action. One way to handle this problem is to break up
the network into smaller subnetworks and restrict the operation of the protec-
tion scheme to within a subnetwork. This allows one failure per subnetwork
at any given time. Another way to deal with this issue is to ensure that the
mean time to repair a failure is much smaller than the mean time between fail-
ures. This ensures that, in most cases, the failed link will be repaired before an-
other failure happens. Some of the protection schemes that we will study do,
however, protect the network against some types of simultaneous multiple fail-
ures.

The restoration times required depend on the application/type of data being
carried. For SONET/SDH networks, the maximum allowed restoration time is 60 ms.
(Note that SONET/SDH protection switching is 50 ms, but this does not include the
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additional 10 ms time allocated to detect or discover the failure.) This restoration
time requirement came from the fact that some equipment in the network drops
voice calls if the connection is disrupted for a period significantly longer than 60 ms.
Over time, operators have become accustomed to achieving restoration on these time
scales. However, in a world dominated by data, rather than voice traffic, the 60 ms
number may not be a rigid requirement, and operators may be willing to tolerate
somewhat larger restoration times, particularly if they see other benefits as a result,
such as higher bandwidth efficiency, which in turn would lead to lower operating
costs. On the other hand, the restoration time requirements could get more stringent
as data rates in the network increase. A downtime of 1 second at 10 Gb/s corresponds
to losing over a gigabyte of data. Most IP networks today provide services on a best-
effort basis and do not guarantee availability. That is, they try to route traffic in
the network as best as they can, but packets can have random delays through the
network and can be dropped if there is congestion.

Survivability can be addressed within many layers in the network. Protection
can be performed at the physical layer, or layer 1, which includes the SONET/SDH,
Optical Transport Network (OTN), and the optical layers. Protection can also be
performed at the link layer, or layer 2, which includes MPLS, Ethernet, and Resilient
Packet Ring. Finally, protection can also be performed at the network layer, or layer
3, such as the IP layer. There are several reasons why this is the case. For instance,
each layer can protect against certain types of failures but probably not protect
against all types of failures effectively. In this chapter, we will focus primarily on
layer 1 restoration, but will also briefly discuss the protection techniques applicable
to layers 2 and 3.

The rest of this chapter is organized as follows. We start by outlining the basic
concepts behind protection schemes. Many of the protection techniques used in
today’s telecommunication networks were developed for use in SONET and SDH
networks, and we will explore these techniques in detail. We will also look at how
protection is implemented in some of today’s protocols in the client layer and in
particular Ethernet, IP, MPLS, and Resilient Packet Rings. Next we will look at
protection functions in the optical layer in detail, and then discuss how protection
functions in the different layers of the network can work together.

9.1 Basic Concepts

A great variety of protection schemes are used in today’s networks, and the notions of
working paths and protect paths are fundamental to understanding them. Working
paths carry traffic under normal operation; protect paths provide an alternate path
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to carry the traffic in case of failures. Working and protection paths are usually
diversely routed so that both paths are not lost in case of a single failure.

Protection schemes are designed to operate over a range of network topolo-
gies. Some work on point-to-point links. Ring topologies are especially popular in
SONET/SDH. A ring is the simplest topology offering an alternate route around a
failure. In the optical layer, many protection schemes have been designed to operate
over true mesh topologies.

The schemes are designed to succeed under likely physical failure scenarios.
Typically, it is assumed that the most likely failures are single failures rather than
double failures. Multiple failures may also be considered, but with proper design,
the probability of having multiple failures can be made very small. A physical failure
will lead to one or more links failing at the client layers. Single-component failures,
for example, transceiver failure, can lead to single-link failures. A fiber cut can lead
to multiple link failures at the client layer if fibers carry multiple wavelengths. Links
that fail together due to a single failure event are referred to as shared risk link groups
(SRLGs). Single switch or router failures also lead to SRLGs since all links incident
to the switch or router will fail.

Protection may be dedicated or shared. In dedicated protection, each working
connection is assigned its own dedicated bandwidth in the network over which it
can be rerouted in case of a failure. In shared protection, we make use of the fact
that not all working connections in the network fail simultaneously (for example,
if they are in different parts of the network). Therefore, by careful design, multiple
working connections can share protection their bandwidth. This helps reduce the
amount of bandwidth needed in the network for protection. Another advantage of
shared protection is that the protection bandwidth is available to carry low-priority
traffic under normal conditions. This low-priority traffic is discarded in the event of
a failure when the bandwidth is needed to protect a connection.

Protection schemes can either be revertive or nonrevertive. In both schemes, if
a failure occurs, traffic is switched from the working path to the protect path. In
a nonrevertive scheme, the traffic remains on the protect path until it is manually
switched back onto the original working path, usually by a user through the network
management system. In a revertive scheme, once the working path is repaired, the
traffic is automatically switched back from the protect path onto the working path.
Reversion allows the network to return to its original state once the failure is restored.
Dedicated protection schemes may be revertive or nonrevertive; however, shared
protection schemes are usually revertive. Since multiple working connections share
a common protection bandwidth, the protection bandwidth must be freed up as
soon as possible after the original failure has been repaired, so that it can be used to
protect other connections in the event another failure occurs.
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To confound terminology further, the protection switching can be unidirectional
or bidirectional. This is not to be confused with unidirectional transmission or bidi-
rectional transmission over a fiber. Figure 9.1 illustrates the two schemes for the case
where two fiber pairs are used on the point-to-point link, with each fiber carrying
traffic in one direction (unidirectional transmission). In unidirectional protection
switching, each direction of traffic is handled independent of the other. Thus in
the event of a single fiber cut, only one direction of traffic is switched over to the
protection fiber, and the other direction remains on the original working fiber. In
bidirectional switching, both directions are switched over to the protection fibers.
For the case where bidirectional transmission is used, the switching mostly becomes
bidirectional by default because both directions of traffic are lost when a fiber is cut
(both directions may not be lost if there is an equipment failure, rather than a fiber
cut).

Unidirectional protection switching is used in conjuction with dedicated protec-
tion schemes since it can be implemented very easily by switching the traffic at the
receiving end from the working to the protect path, without requiring a signaling
protocol between the receiver and the transmitter. For example, in Figure 9.1, if a
fiber carrying traffic from left to right is cut, without affecting the fiber carrying
traffic from right to left, the transmitter on the left is not aware that there has been
a failure. In the case of unidirectional dedicated protection, if traffic is transmitted
simultaneously on the working and protect paths, the receiver at the end of the paths
simply selects the better of the two arriving signals. However, if bidirectional switch-
ing is required, the receiver needs to inform the transmitter that there has been a cut.
This requires a signaling protocol, called an automatic protection-switching (APS)
protocol.

A simple APS protocol works as follows: if a receiver in a node detects a fiber
cut, it turns off its transmitter on the working fiber and then switches over to the
protection fiber to transmit traffic. The receiver at the other node then also detects
the loss of signal on the working fiber and switches its traffic over to the protection
fiber. Actual APS protocols used in SONET and optical networks are quite a bit more
complicated because they have to deal with many different possible scenarios than
the one described here.

In a bidirectional communication system, where traffic is transmitted in both
directions over a single fiber, a fiber cut will be detected by both the source and the
destination. Although no APS protocol is required to deal with fiber cuts, an APS
protocol will still be needed to deal with unidirectional equipment failures and to
support other maintenance functions.

In the case of shared protection schemes, an APS protocol is required to coordi-
nate access to the shared protection bandwidth. Therefore most shared protection
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Figure 9.1 Unidirectional and bidirectional protection switching. (a) The link is shown
under normal operation. (b) Unidirectional protection switching. After a unidirectional
fiber cut, only the affected direction of traffic is switched over to the protection fiber.
(c) Bidirectional protection switching. After a undirectional fiber cut, both directions of
traffic are switched over to the protection fibers.

schemes use bidirectional protection switching because it is easier to control and
manage in a more complex network than unidirectional switching.

There is also the question of how and where the traffic is rerouted in the event
of a failure. Here we distinguish between path switching, span switching, and ring
switching. Figure 9.2 illustrates these concepts. In path switching (Figure 9.2(b)),
the connection is rerouted end to end from its source to its destination along an
alternate path. In span switching (Figure 9.2(c)), the connection is rerouted on
a spare link between the nodes adjacent to the failure. In ring switching (Fig-
ure 9.2(d)), the connection is rerouted on a ring between the nodes adjacent to
the failure.
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Connection

Figure 9.2 Path, span, and ring switching. (a) Working path for the connection under
normal operation. (b) Path switching, where the connection is rerouted end to end on
an alternate path. (c) Span switching, where the connection is rerouted on a spare link
between the nodes adjacent to the failure. (d) Ring switching, where the connection is
rerouted on a ring between the nodes adjacent to the failure.

Finally, different protection schemes operate at different layers in the network (for
example, SONET/SDH, MPLS, IP, and Ethernet) and at different sublayers within
a layer. For example, some schemes protect one connection at a time, and other
schemes protect all connections on a failed fiber together. In SONET/SDH networks,
the former schemes operate at the path layer, and the latter schemes operate at the
line (multiplex section in SDH) layer. In many cases, path layer schemes operate
end to end, rerouting traffic along an alternate path all the way from the source
to the destination. In contrast, line layer schemes are almost all localized—that is,
they reroute traffic around the failed link. Similarly, in the optical layer, we have
schemes operating either at the optical channel layer or the optical multiplex section
layer.
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9.2 Protection in SONET/SDH

A major accomplishment of SONET and SDH network deployment was to provide
a significant improvement in the availability and reliability of the overall network.
This was done through the use of an extensive set of protection techniques. Similar
schemes are used in both SONET and SDH, but their nomenclature is different. We
will specify both nomenclatures but use the SONET nomenclature for the most part.

A taxonomy of the different protection schemes is given in Table 9.1. We will start
by describing the different types of protection mechanisms that are used for simple
point-to-point links, and then discuss how these can be applied for networks. Each
protection scheme can be associated with a specific layer in the network. As we saw
in Chapter 6, the SONET layer includes a path layer and a line layer. Both path layer
and line layer protection schemes are used in practice. Equivalently, SDH networks
use both channel layer and multiplex section (MS) layer protection schemes. A path
layer protection scheme operates on individual paths or connections in the network.
For example, in an OC-48 (2.5 Gb/s) ring supporting STS-1 (51 Mb/s) connections,
a path layer scheme would treat each STS-1 connection independently and switch
them independently of each other. A line layer scheme on the other hand, operates on
the entire set of connections at once and generally does not distinguish between the
different connections that are part of the aggregate signal. In the former example, a
line layer protection scheme in an OC-48 ring would switch all the connections within
the OC-48 together. (There are some exceptions to this statement. The bidirectional
line-switched rings (BLSRs) that we will study later do allow bits to be set for each
connection. In the event of a failure, only those connections that are specified are
switched. This is needed to ensure that some connections can be left unprotected if
so desired, and also to handle node failures, as we will see in Section 9.2.4.)

9.2.1 Point-to-Point Links

Two fundamental types of protection mechanisms are used in point-to-point links:
1+ 1 protection and 1:1 or, more generally, 1:N protection, as shown in Figure 9.3.
Both operate in the line or multiplex section layer.

In 1 + 1 protection, traffic is transmitted simultaneously on two separate fibers
(usually over disjoint routes) from the source to the destination. Assuming unidirec-
tional protection switching, the destination simply selects one of the two fibers for
reception. If that fiber is cut, the destination simply switches over to the other fiber
and continues to receive data. This form of protection is very fast and requires no
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Figure 9.3 Different types of protection techniques for point-to-point links: (a) 1 + 1
protection, where the signal is simultaneously transmitted over two paths; (b) 1:1 pro-
tection, where the signal is transmitted over a working path under normal conditions
but switched to a protect path after a failure; and (c) 1:N protection, which is a more
generalized form of 1:1 protection, where N working paths share a single protection path.
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Table 9.1 A summary of protection schemes in SONET and SDH. N denotes the number of
working interfaces that share a single protection interface. The schemes operate either in the path
layer or in the SONET line layer/SDH multiplex section (MS) layer. Path layer ring schemes include
unidirectional path-switched ring (UPSR) or 1+ 1 subnetwork connection protection (SNCP). Line
layer ring schemes include bidirectional line-switched ring (BLSR) or, equivalently, multiplexed
section-shared protection ring (MS-SPRing).

Protection Scheme
SONET Term 1 + 1 1:N UPSR BLSR
SDH Term 1 + 1 1:N SNCP MS-SPRing

Type Dedicated Shared Dedicated Dedicated Shared
Topology Point-point Point-point Ring Ring/mesh Ring
Layer Line/MS Line/MS Path/– –/path Line/MS

signaling protocol between the two ends. Note that since connections are usually
full duplex, there is actually a pair of fibers between the two nodes, say, node A and
node B for the working traffic. One fiber carries traffic from A to B, and the other
carries traffic from B to A. Likewise, there is another pair of fibers for protection
traffic. Node A’s receiver and node B’s receiver can make the switching decisions
independently.

In 1:1 protection, there are still two fibers from the source to the destination.
However, traffic is transmitted over only one fiber at a time, say, the working fiber. If
that fiber is cut, the source and destination both switch over to the other protection
fiber. As we discussed earlier, an APS protocol is required for signaling between the
source and destination. For this reason, 1:1 protection is not as quick as unidi-
rectional 1 + 1 protection in restoring traffic because of the added communication
overhead involved. However, it offers two main advantages over 1 + 1 protection.
The first is that under normal operation, the protection fiber is unused. Therefore,
it can be used to transmit lower-priority traffic. This lower-priority traffic must be
discarded if the working fiber is cut. SONET and SDH equipment in the field does
provide support for this lower-priority or extra traffic. This capability is not widely
used today, but carriers in the past have used this capability on occasion to carry
“lower-priority” data traffic or even voice traffic, when their networks are tem-
porarily over capacity. This is likely to change in the future with the advent of data
services, as we shall see in Section 9.4. Best-effort data services, in particular, can use
this capability.

Another advantage is that the 1:1 protection can be extended so as to share a
single protection fiber among many working fibers. In a more general 1:N protection
scheme, N working fibers share a single protection fiber. This arrangement can handle
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the failure of any single working fiber. Note that in the event of multiple failures,
the APS protocol must ensure that only traffic on one of the failed fibers is switched
over to the protection fiber.

In the previous discussion we talked about how the protection is done,
but skimmed over what the triggers are for initiating protection switching. In
SONET/SDH, the incoming signal is continously monitored. Protection switching
is initiated if a signal fail or a signal degrade condition is detected on the line. A
signal fail represents a hard failure and is detected typically as a loss of signal or as a
loss of the SONET/SDH frame. Out of the 60 ms allowed for restoration, detecting
the failure and initiating protection switching must be performed within 10 ms.

9.2.2 Self-Healing Rings

Ring networks have become very popular in the carrier world as well as in enterprise
networks. A ring is the simplest topology that is 2-connected, that is, provides two
separate paths between any pair of nodes that do not have any nodes or links in
common except the source and destination nodes. This allows a ring network to
be resilient to failures. Rings are also efficient from a fiber layout perspective—
multiple sites can be interconnected with a single physical ring. In contrast, a hubbed
approach would require fibers to be laid between each site and a hub node, and
would require two disjoint routes between each site and the hub, which is a more
expensive proposition.

Much of the carrier infrastructure today uses SONET/SDH rings. These rings are
called self-healing because they incorporate protection mechanisms that automati-
cally detect failures and reroute traffic away from failed links and nodes onto other
routes rapidly. The rings are implemented using SONET/SDH add/drop multiplex-
ers (ADMs), which we studied in Section 6.1. These ADMs selectively drop and add
traffic from/to the ring as well as protect the traffic against failures.

The different types of ring architectures differ in two aspects: in the directionality
of traffic and in the protection mechanisms used. A unidirectional ring carries work-
ing traffic in only one direction of the ring (say, clockwise), as shown in Figure 9.4.
Working traffic from node A to node B is carried clockwise along the ring, and
working traffic from B to A is also carried clockwise, on a different set of links in the
ring. A bidirectional ring carries working traffic in both directions. Figure 9.5 shows
a four-fiber bidirectional ring. Working traffic from A to B is carried clockwise, and
working traffic from B to A is carried counterclockwise along the ring. Note that in
both unidirectional and bidirectional SONET/SDH rings, all connections are bidi-
rectional and use up the same amount of bandwidth in both directions. The two



522 Network Survivability

ADM

ADM

ADM

ADM A

B

C

D

Working fiber

Protection fiber

Working connection A to B Working connection B to A

Protect connection B to A

Protect connection A to B

Figure 9.4 A unidirectional path-switched ring (UPSR). One of the fibers is considered
the working fiber and the other the protection fiber. Traffic is transmitted simultane-
ously on the working fiber in the clockwise direction and on the protection fiber in the
counterclockwise direction. Protection is done at the path layer.

directions of a connection are routed differently based on the type of ring, as we
discussed earlier.

The SONET/SDH standards dictate that in SONET/SDH rings, service must be
restored within 60 ms after a failure. This time includes several components: the
time needed to detect the failure, for which 10 ms is allocated; the time needed to
signal to other nodes in the network (if needed), including the propagation delays;
the actual switching time; and the time to reacquire the frame synchronization after
the switchover has occurred.

Three ring architectures have been widely deployed: two-fiber unidirectional
path-switched rings (UPSR), four-fiber bidirectional line-switched rings (BLSR/4),
and two-fiber bidirectional line-switched rings (BLSR/2). In SDH, the 1 + 1 path
protection has been defined to operate in a more general mesh topology and is called
subnetwork connection protection (SNCP). SDH multiplex section shared protection
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Figure 9.5 A four-fiber bidirectional line-switched ring (BLSR/4). The ring has two
working fibers and two protection fibers. Traffic between two nodes is transmitted nor-
mally on the shortest path between them, and either span or ring switching is used to
restore service after a failure.

ring/4 (MS-SPRing/4) and MS-SPRing/2 are similar to BLSR/4 and BLSR/2, respec-
tively. Table 9.2 summarizes the features of the different architectures, which we will
discuss in detail in the following sections.

9.2.3 Unidirectional Path-Switched Rings

Figure 9.4 shows a UPSR. One fiber is used as the working fiber and the other as the
protection fiber. Traffic from node A to node B is sent simultaneously on the working
fiber in the clockwise direction and on the protection fiber in the counterclockwise
direction. The protection is performed at the path layer for each connection as
follows. Node B continuously monitors both the working and protection fiber and
selects the better signal between the two for each SONET connection. Under normal
operation, suppose node B receives traffic from the working fiber. If there is a link
failure, say, of link AB, then B will switch over to the protection fiber and continue
to receive the data. Note that the switchover is done on a connection-by-connection
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Table 9.2 Comparison of different types of self-healing rings.

Parameter UPSR BLSR/4 BLSR/2
SNCP MS-SPRing/4 MS-SPRing/2

Fiber pairs 1 2 1
TX/RX pairs/node 2 4 2
Protection type Dedicated Shared Shared
Protection capacity = Working = Working = Working

capacity capacity capacity
Link failure Path Span/ring Ring

switch switch switch
Node failure Path Ring Ring

switch switch switch
Restoration speed Faster Slower Slower
Implementation Simple Complex Complex

basis (see Problem 9.8). Observe that this is essentially like the 1+ 1 scheme that we
studied earlier, except that it is operating at the path layer in a ring rather than at
the line layer in a point-to-point configuration.

Note that this protection scheme easily handles failures of links, transmitters/
receivers, or nodes. It is simple to implement and requires no signaling protocol or
communication between the nodes. The capacity required for protection purposes
is equal to the working capacity. This will turn out to be the case for the other ring
architectures as well.

The main drawback with the UPSR is that it does not spatially reuse the fiber
capacity. This is because each (bidirectional) connection uses up capacity on every
link in the ring and has dedicated protection bandwidth associated with it. Thus,
there is no sharing of the protection bandwidth between connections. For example,
suppose each connection requires 51 Mb/s (STS-1) of bandwidth and the ring op-
erates at 622 Mb/s (OC-12). Then the ring could support a total of twelve 51 Mb/s
connections. The BLSR architectures that we will study next do incorporate spatial
reuse and can support aggregate traffic capacities higher than the transmission rate.

UPSRs are popular topologies in lower-speed local exchange and access net-
works, particularly where the traffic is primarily hubbed from the access nodes into
a hub node in the carrier’s central office. In this case, we will see that the traffic-
carrying capacity that a UPSR can support is the same as what the more complicated
ring architectures incorporating spatial reuse can support. This makes the UPSR an
attractive option for such applications due to its simplicity and, thus, lower cost.
Typical ring speeds today are OC-3 (STM-1) and OC-12 (STM-4). There is no spec-
ified limit on the number of nodes in a UPSR or on the ring length. In practice, the
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ring length will be limited by the fact that the clockwise and counterclockwise path
taken by a signal will have different delays associated with them, which in turn, will
affect the restoration time in the event of a failure.

A UPSR is essentially 1+ 1 protection implemented at the path layer in a ring.

9.2.4 Bidirectional Line-Switched Rings

BLSRs are much more sophisticated than UPSRs and incorporate additional protec-
tion mechanisms, as we will see below. Unlike UPSRs, they operate at the line or
multiplex section layer. The BLSR equivalent in the SDH world is called a multiplex
section shared protection ring (MS-SPRing).

Figure 9.5 shows a four-fiber BLSR. Two fibers are used as working fibers, and
two are used for protection. Unlike a UPSR, working traffic in a BLSR can be carried
on both directions along the ring. For example, on the working fiber, traffic from
node A to node B is carried clockwise along the ring, whereas traffic from B to A is
carried counterclockwise along the ring. Usually, traffic belonging to both directions
of a connection is routed on the shortest path between the two nodes in the ring.
However, in certain cases [Kha97, LC97], traffic may be routed along the longer
path to reduce network congestion and make better use of the available capacity.

A BLSR can support up to 16 nodes, and this number is limited by the 4-bit
addressing field used for the node identifier. The maximum ring length is limited to
1200 km (6 ms propagation delay) because of the requirements on the restoration
time in the case of a failure. For longer rings, particularly for undersea applications,
the 60 ms restoration time has been relaxed.

A BLSR/4 employs two types of protection mechanisms: span switching and ring
switching. In span switching, if a transmitter or receiver on a working fiber fails, the
traffic is routed onto the protection fiber between the two nodes on the same link,
as shown in Figure 9.6. (Span switching can also be used to restore traffic in the
event of a working fiber cut, provided the protection fibers on that span are routed
separately from the working fibers. However, this is usually not the case.) In case of
a fiber or cable cut, service is restored by ring switching, as illustrated in Figure 9.7.
Suppose link AB fails. The traffic on the failed link is then rerouted by nodes A and
B around the ring on the protection fibers. Ring switching is also used to protect
against a node failure.

A BLSR/2, shown in Figure 9.8, can be thought of as a BLSR/4 with the protection
fibers “embedded” within the working fibers. In a BLSR/2, both of the fibers are used
to carry working traffic, but half the capacity on each fiber is reserved for protection
purposes. Unlike a BLSR/4, span switching is not possible here, but ring switching
works in much the same way as in a BLSR/4. In the event of a link failure, the traffic
on the failed link is rerouted along the other part of the ring using the protection
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Figure 9.6 Illustrating span switching in a BLSR/4. Traffic is switched from the working
fiber pair to the protection fiber pair on the same span.

capacity available in the two fibers. As with 1:1 protection on point-to-point links,
an advantage of BLSRs is that the protection bandwidth can be used to carry low-
priority traffic during normal operation. This traffic is preempted if the bandwidth
is needed for service restoration.

BLSRs provide spatial reuse capabilities by allowing protection bandwidth to
be shared between spatially separated connections. The spatial reuse achievable in a
best-case scenario is illustrated in Figure 9.9. As in the UPSR example above, consider
a BLSR/2 operating at 622 Mb/s (OC-12), supporting 51 Mb/s STS-1 connections.
The figure shows a ring with four nodes and STS-1 connections between each pair of
adjacent nodes. Note that all four of these connections can be protected by dedicating
51 Mb/s of bandwidth around the ring that is shared by all these connections. This
is because these connections do not overlap spatially and thus do not need to be
restored simultaneously, as long as we are dealing with only single-failure conditions.
In this example, the 622 Mb/s ring could thus support a total of 24 such 51 Mb/s
connections (6 connections per link; note that only half the capacity is available for
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Figure 9.7 Illustrating ring switching in a BLSR/4. Traffic is rerouted around the ring
by the nodes adjacent to the failure.

working traffic, over four links), as compared to just 12 for an equivalent UPSR. This
capacity increases as the number of nodes in the rings increases. An 8-node OC-12
BLSR/2 could support 48 STS-1 connections in the example above.

Thus BLSRs are more efficient than UPSRs in protecting distributed traffic pat-
terns. Their efficiency comes from the fact that the protection capacity in the ring
is shared among all the connections, as we saw above. For this reason, BLSRs are
widely deployed in long-haul and interoffice networks, where the traffic pattern is
more distributed than in access networks. Today, these rings operate at OC-12 (STM-
4), OC-48 (STM-16), and OC-192 (STM-64) speeds. Most metro carriers have de-
ployed BLSR/2s, while many long-haul carriers have deployed BLSR/4s. BLSR/4s
can handle more failures than BLSR/2s. For example, a BLSR/4 can simultaneously
handle one transmitter failure on each span in the ring. It is also easier to service
than a BLSR/2 ring because multiple spans can be serviced independently without
taking down the ring. However, ring management in a BLSR/4 is more complicated
than in a BLSR/2 because multiple protection mechanisms have to be coordinated.
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Figure 9.8 A two-fiber bidirectional line-switched ring (BLSR/2). The ring has two
fibers and half the bandwidth. Ring switching is used to restore service after a failure.

BLSRs are significantly more complex to implement than UPSRs. They require
extensive signaling between the nodes for many reasons, as we will see below. This
signaling is done using the K1/K2 bytes in the SONET overhead (see Chapter 6).

Handling Node Failures in BLSRs

So far, we have dealt primarily with how to handle failures of links, such as those
occurring from a fiber cut. Failures of nodes are usually less likely because, in many
cases, redundant configurations (such as dual power supplies and switch fabrics) are
used. However, nodes may still fail because of some catastrophic events or human
errors. Handling node failures complicates the BLSR restoration mechanism. The
failure of a node is seen by all its adjacent nodes as failures of the links that connect
them to the failed node. If each of these adjacent nodes performs restoration assuming
that it is a single link failure, there can be undesirable consequences. One example is
shown in Figure 9.10. Here, when node 1 fails, nodes 6 and 2 assume it is a link failure
and attempt to reroute the traffic around the ring (ring switching) to restore service.
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Figure 9.9 Spatial reuse in a BLSR. Multiple working connections can share protection
bandwidth around the ring as long as they do not overlap on any link.

This causes erroneous connections, as shown in the figure. The only way to prevent
such occurrences is to ensure that the nodes performing the restoration determine
the type of failure before invoking their restoration mechanisms. This would require
exchanging messages between the nodes in the network. In the preceding example,
nodes 6 and 2 could first try to exchange messages around the ring to determine
whether they have both recorded link failures and, if so, invoke the appropriate
restoration procedure. This restoration procedure can avoid these misconnections
by not attempting to restore any traffic that originates or terminates at the failed
node. This is called squelching. Thus each node in a BLSR maintains squelch tables
that indicate which connections need to be squelched in the event of node failures.
The price paid for this is a slower restoration time because of the coordination
required between the nodes to determine the appropriate restoration mechanism to
be invoked.



530 Network Survivability

1

2

3

6

5

4

1

2

3

6

5

4

(a) (b)

Figure 9.10 Erroneous connections due to the failure of a node being treated by its adjacent nodes as
link failures: (a) Normal operation, with a connection from node 5 to node 1 and another connection
from node 1 to node 4. (b) After node 1 fails, nodes 6 and 2 invoke ring switching independently.
This causes a connection to be set up erroneously between node 5 and node 4. This problem can be
prevented by first identifying the failed node and then not restoring any connections that originate
or terminate at the failed node.

Low-Priority Traffic in BLSRs

Just as we saw with 1:1 protection earlier, BLSRs can use the protection bandwidth to
carry low-priority or extra traffic, under normal operation. This extra traffic is lost
in the event of a failure. However, this feature requires additional signaling between
the nodes in the event of a failure to indicate to the other nodes that they should
operate in protection mode and throw away the low-priority traffic.

9.2.5 Ring Interconnection and Dual Homing

A single ring is only a part of the overall network. The entire network typically
consists of multiple rings interconnected with each other, and a connection may have
to be routed through multiple rings to get to its destination. The interconnection of
these rings is thus an important aspect to be considered. The simplest way for rings
to interoperate is to connect the drop sides of two ADMs on different rings back to
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Figure 9.11 Back-to-back interconnection of SONET/SDH rings. This simple intercon-
nection is vulnerable to the failure of one of the two nodes that form the interconnect, or
of the link between these two nodes.
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Figure 9.12 Dual homing to handle hub node failures. Each end node is connected to
two hub nodes so as to be able to recover from the failure of a hub node or the failure of
any interconnection between the hub nodes. The ADMs in the nodes have a “drop-and-
continue” feature, which allows them to drop a traffic stream as well as have it continue
onto the next ADM.
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back, as shown in Figure 9.11. The interconnection is done using signals typically
at lower bit rates than the line bit rate. For instance, two OC-12 UPSRs may be
interconnected by DS3 signals. In many cases, a digital crossconnect is interspersed
between the two rings to provide additional grooming and multiplexing capabilities.

The problem with this approach is that if one of the ADMs fails, or there is a
problem with the cabling between the two ADMs, the interconnection is broken. A
way to deal with this problem is to use dual homing. Dual homing makes use of two
hub nodes to perform the interconnection, as shown in Figure 9.12. For traffic going
between the rings, connections are set up between the originating node on one ring
and both of the hub nodes. Thus if one of the hub nodes fails, the other node can
take over, and the end user does not see any disruption to traffic. Similarly, if there is
a cable cut between the two hub nodes, alternate protection paths are now available
to restore the traffic.

Rather than set up two separate connections between the originating node and
the two hub nodes, the architecture uses a multicasting or drop-and-continue feature
present in the ADMs. Consider the connection shown between an end node and
the two hub nodes (hub 1 and hub 2) in Figure 9.12. In the clockwise direction of
the ring, the ADM at hub 1 drops the traffic associated with the connection but
also simultaneously allows this traffic to continue along the ring, where it is again
dropped at hub 2. Likewise, along the counterclockwise direction, the ADM at hub
2 uses its drop-and-continue feature to drop traffic from this connection as well as
pass it through to hub 1. Note that additional bandwidth is used up between the two
hub nodes on each ring to support this capability.

Dual homing is being deployed in business access networks to interconnect access
UPSRs with interoffice BLSRs as well as to interconnect multiple BLSRs. It can also
be applied to interconnections between two subnetworks, not necessarily two rings
(although rings are the major application). In general, for dual homing to work, the
dual node interconnect itself must be a protected subnetwork, so that alternate paths
are available if any of the hub nodes or the links interconnecting them fails.

9.3 Protection in the Client Layer

We will describe survivability mechanisms in other client layer networks and in
particular IP, MPLS, Ethernet, and Resilient Packet Ring (RPR) networks. MPLS,
Ethernet, and RPR protocols have carrier grade protection switching of 60 ms to re-
store a failed connection. MPLS has a fast reroute mechanism that protects segments
of a connection. MPLS and Ethernet has path switching for path connections (see
Figure 9.2(b)) which is often referred to as linear protection.
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RPR has been designed for a ring topology and is protected by ring switching (see
Figure 9.2(d)). Ethernet and MPLS also have protection switching schemes when they
operate on ring topologies. In SONET/SDH BLSR, RPR, and MPLS ring networks,
working traffic can be routed on either side of the ring, and can therefore follow
shortest paths. This helps to reduce traffic loads on links. On the other hand, Ethernet
ring networks operate as spanning trees by deactivating one link on a ring. Thus,
packets are routed only on one side of the ring, leading to longer packet paths and
higher traffic loads on links.

9.3.1 Protection in Resilient Packet Rings

Resilient Packet Rings (RPRs) have two mechanisms for survivability as shown
in Figure 9.13. In Figure 9.13(a), node A has a new packet to transmit to node
B. Normally, node A will insert the packet into ringlet 0. However, since a fault
has occurred between nodes X and Y, node A inserts the packet into ringlet 1.
This mechanism is referred to as steering and is mandatory. The nodes know when
to steer because they maintain the current topology information by exchanging
topology information in control messages. The topology information is exchanged
periodically and whenever there is a topological change such as a link failure.

There may be significant delays before steering is invoked by a node due to the
delays in passing control messages. In the meantime, a large number of packets may
be lost. Another protection mechanism that has a faster switching time is shown in
Figure 9.13(b). Here, a packet destined to node B on ringlet 0 reaches a link failure
between nodes X and Y. It is switched back on the other ringlet 1 and continues
until it reaches the other end of the failed link. Then it continues on its original
ringlet 0. This mechanism is referred to as wrapping and is optional. Note that while
following ringlet 1, the packet passes by but is not dropped at its destination node
B. It is dropped at destination node B only while it is on ringlet 0. This helps to
avoid misordering packets right after the failure occurs. Wrapping achieves faster
protection switching because it only uses information at adjacent links to determine
when to switch. On the other hand, it uses more bandwidth than steering. Note that
wrapping reroutes traffic that is similiar to the way SONET/SDH BLSR networks
reroute traffic when there is a failure.

There are two modes to handle packets: strict and relaxed. In the strict mode,
packets must be delivered in order and wrapping is not used. Under this mode, when
a failure is detected, all nodes stop adding packets and discard transit packets. The
nodes wait until their image of the topology becomes stable, that is, unchanged.
Then they resume adding and forwarding packets, and steering packets wherever
appropriate. The strict mode is the default mode. In relaxed mode, packets may be
delivered out of order. This is used if both wrapping and steering are employed.
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Figure 9.13 Resilient packet ring protection: (a) steering and (b) wrapping.

The order of protection is to wrap first to minimize losing packets and then steer to
efficiently use bandwidth.

9.3.2 Protection in Ethernet

In switched Ethernet networks, the spanning tree protocol (STP) has a built-in pro-
tection mechanism. The original STP blocks links so that the remaining active links
form a spanning tree as discussed in Subsection 6.4.2. If a tree link fails, then the
STP will configure another spanning tree. However, the reconfiguration may take
tens of seconds.

The rapid spanning tree protocol (RSTP) incorporates a number of enhancements
to the basic STP to speed up the reconfiguration time. One of the improvements is
shown in Figure 9.14(a). The figure shows a spanning tree of the original STP. There
is a single root switch. Each nonroot switch has a root port, which leads to the
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Figure 9.14 (a) Ethernet spanning tree with alternate ports. (b) Recovering from a
failure using an alternate port.

shortest path toward the root switch. The corresponding link is part of the tree,
and the port at the other end of the link is called a designated port. All other ports
are blocked. In RSTP, each nonroot switch can designate one of the blocked ports
as the alternate port to its root port. When the root port fails, the alternate port
can be unblocked quickly to become the new root port as shown in Figure 9.14(b).
Note that the alternate port must be chosen carefully so that the new configuration
remains a spanning tree. These enhancements also apply to VLANs.

Carrier Transport

To support carrier grade services of 60 ms protection switching times, Ethernet
has path protection switching (linear protection) and protection switching for ring
topology networks.

ITU G.8031 standard has path protection switching for unidirectional and bidi-
rectional connections: 1+1 undirectional, 1+1 bidirectional, and 1:1 bidirectional
connections. Working and protection paths have VLAN IDs. VLAN IDs are impor-
tant to avoid misconnections during protection switching. Note that a bidirectional
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connection is realized by two unidirectional connections in opposite directions and
having the same working and protection paths.

For 1+1 protection switching, the traffic is copied on both the working and pro-
tection paths, and a receiver switches to the protection path if it detects a signal
failure. For 1+1 bidirectional protection switching, there is the additional require-
ment that both ends have their receivers switched over to the protection path when
there is a failure on the working path. An APS protocol coordinates this as follows.
When an end node of a connection detects a signal failure on the working path, it
will switch over to the protection path, and send a request to the other end node to
switchover to the protection path. When an end node has received such a request
but has not yet switched to the protection path, it will switch to the protection path
and send a message to inform the other end node about its current switching status.

Ethernet can be deployed in ring configurations with the ITU G.8032 Ethernet
Ring Protection (ERP). ERP replaces spanning tree protocol with a simpler ring
automatic protection-switching (R-APS) protocol. R-APS takes advantage of the
ring topology to simplify information exchange and computation, and ultimately
reduce protection-switching delays.

In ERP, one of the links in the ring becomes the ring protection link (RPL).
Normally, the RPL blocks Ethernet packets to avoid routing loops. This leaves the
network topology as a path of active links, which is a tree topology. The block is
accomplished by the end nodes of the RPL blocking their ports connected to the
RPL. One of the end nodes is designated as the RPL’s owner.

When a link fails, its end nodes will block the port to the link after detecting
the failure. The end nodes will send a message about the failure along their other
working port. When the owner of the RPL receives this message, the owner will
unblock the link. This restores the topology to a path of active links.

When the failed link is recovered, the end nodes keep the link’s port in the blocked
state and send a message about the recovery on their other working port. When the
RPL owner receives this message, it blocks the RPL. It then sends a message to an
end node of the recovered link to unblock the link. When the end node receives this
message, it unblocks the recovered link.

9.3.3 Protection in IP

The IP layer has historically provided best-effort services. As we studied in Sec-
tion 6.5, IP, by its very nature, uses dynamic, hop-by-hop routing of packets. Each
router maintains a routing table of the next-hop neighbor for each destination, and
incoming packets are routed based on this table. If there is a failure in the network,
the intradomain routing protocol (OSPF or IS-IS) operates in a distributed manner
and updates these routing tables at each router within the domain. In practice, it can
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Figure 9.15 An example to illustrate routing loops in an IP network after a failure.
It takes many iterations before the routing tables at the nodes converge to the correct
routes. In the meantime, there can be routing loops.

take seconds after the failure is detected before the routing tables at all the routers
converge and have consistent routing information. During this process, packets con-
tinue to be routed based on the current versions of the routing tables at the routers,
which can be inconsistent and incorrect. This causes packets to be routed incorrectly
and possibly loop within the network. Potentially, packets could therefore be lost
or undergo long delays on the order of seconds after a failure is detected. Even if a
router decides to route a packet along an alternate route, following the detection of
a failure, packets could still loop within the network, as shown in Figure 9.15. In
this example, consider packets destined for router D. Suppose link CD fails. Node
C would then attempt to route packets destined for D to router B, hoping to find an
alternate path to reach router D. Router B, however, still thinks that the best way to
get to router D is through router C and would route that packet back to router C.
This is the case until the routing tables at the routers have all converged.

The slow recovery from failures is due to the fundamental nature of IP routing—
the fact that it is distributed, next-hop-based dynamic routing. To avoid the slow
recovery, one could avoid link failures altogether by protecting every IP link using
protocols at lower layers. So if a failure occurs, then the IP link will recover on its
own and not require the IP routing to change. For this approach to be successful,
the recovery time of an individual IP link must be faster than the IP network to
commence its recovery process. For example, IP links can be realized by protected
MPLS tunnels or SONET paths that have 60 ms protection switching. This may be
too short for the IP layer to detect a link failure. As an example of an IP over MPLS
configuration, we can cite IP routers that are connected to each other directly using
protected MPLS LSPs. Note that these IP routers are at the edge of the network,
whereas the core of the network is made up entirely of MPLS label-switched routers
(LSRs).
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The other aspect of protection in the IP layer has to do with the time taken by
the IP layer to detect failures in the first place. In a typical implementation used in
intradomain routing protocols [AJY00], adjacent routers exchange periodic “hello”
packets between themselves. If a router misses a certain number of these packets,
it declares the link to have failed and initiates rerouting. By default, the routers
send hello packets every 10 seconds and declare the link down if they miss three
successive hello packets. Thus it could take up to 30 seconds to detect a failure. The
process can be speeded up by exchanging hello packets more frequently; however, the
minimum interval is currently specified to be 1 second. More typically, core routers
detect failures in about 10 seconds. Alternatively, a separate set of packets can be
exchanged periodically for this purpose [HYCG00]. However, these packets can get
queued up in buffers if a lot of other packets are waiting and so may have to be
processed at higher priority levels than regular packets.

Another option is to rely on the underlying SONET or optical layer to detect the
failure and inform the IP layer. This can be done by having the line card inside a
router look at the framing and communicate failure detection information up into
the routing protocol. However, this is not usually architected into today’s routers.

9.3.4 Protection in MPLS

MPLS label-switched paths (LSPs) can be protected by fast reroute protection switch-
ing, which has carrier grade protection switching times of 60 ms. In MPLS fast
reroute, a node along a protected LSP can have a precomputed, backup MPLS tun-
nel that starts from the node, avoids the failure, and merges back into the protected
LSP downstream along LSP. If it is one hop downstream, then the backup tunnel is
referred to as a next hop backup tunnel; if it is two hops downstream, the backup
tunnel is referred to as a next-next hop backup tunnel. Next hop backup tunnels
protect the LSP from link failures, and next-next hop backup tunnels protect the LSP
from node and link failures.

The start of a backup tunnel is referred to as the point of local repair (PLR) and its
end is referred to as the merge point (MP). An example of an MPLS protection tunnel,
where the tunnel’s PLR is node A and its MP is node C, is shown in Figure 9.16.
This tunnel is a next-next hop backup tunnel and will protect the LSP from a failure
at link AB or at node B. If one of these failures occurs, then node A will detect the
failure and switch the LSP traffic to the tunnel. Since the detection of failure is local,
the protection switching can be short, in the tens of milliseconds.

To be fully protected, an LSP can have many protection tunnels, one for each
possible point of failure. It could have up to H backup tunnels where H is the number
of hops in the path. Figures 9.17(a) and (b) present examples of MPLS protection
tunnels when there are only single-link failures and single-node failures, respectively.
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Figure 9.16 MPLS fast reroute protection tunnel for link AB with PLR node A and MP
node C.

Note that in Figure 9.17(b) the next to the last node only requires a next hop backup
tunnel.

There are two implementations of MPLS fast reroute: one-to-one backup and
facilty backup. In one-to-one backup, each protection tunnel is realized by setting
up a label-switched path, which we refer to as a detour. When a failure is detected
at the PLR of a detour, the PLR will switch traffic away from the failure and onto
the detour. It will also swap labels of the packets, leaving the label of the detour. The
traffic follows the detour until it reaches the MP of the detour. The MP will recognize
the label of the detour and switch the traffic back to the LSP. It will also swap labels
of the packets, leaving the label of the LSP.

Facility backup takes advantage of the MPLS label stack. A protection tunnel is
again realized by a label-switched path, but it can be used by more than one LSP.
We will refer to this tunnel as a bypass tunnel. Let us use Figure 9.16 as an example,
where the protection tunnel is a bypass tunnel. When PLR A detects a failure, it will
switch traffic away from the failure and onto the bypass tunnel. It will also push the
label of the protection tunnel onto the label stacks of the packets. The traffic then
follows the bypass tunnel until it reaches the MP of the tunnel. There the bypass
tunnel’s label is removed from the label stacks of the packets, and the traffic continues
on the LSP. This bypass tunnel can be used by any LSP that traverses nodes (A,B,C).
An advantage of facility backup is that it reduces the number of LSPs in the network.

Transport MPLS

Transport MPLS (T-MPLS) protection schemes are designed for carrier networks. The
two schemes defined are path protection switching (linear protection) and protection
switching for ring network topologies.

For path protection switching, there are 1+1 unidirectional connections and 1:1
bidirectional connections. If connectivity check messages (hello messages) are used,
they are sent on both the working and protection paths. The protection switching can
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Figure 9.17 MPLS fast reroute protection tunnel examples: (a) a mix of next hop and
next-next hop backup tunnels for single link failures, and (b) next-next hop backup
tunnels for single node failures with the exception of the last backup tunnel.

also be applied to protecting just a segment of a connection known as a subnetwork
connection.

In the case of a 1+1 unidirectional connection, if the destination end node detects
failure in the working path, then it switches over to the protection path. In the case
of a 1:1 bidirectional connection, a failure will require coordination between the end
nodes, and so there is an APS protocol. When an end node detects a failure in the
working path, it switches over to the protection path and sends a request to the other
end node to switchover. When the other end node receives the request, it switches
over to the protection path and sends a message to inform the first node of its action.

In T-MPLS ring protection, there are two types of protection switching: wrapping
and steering. This is similar to the protection rerouting in Resilient Packet Rings
(see Figure 9.13). For each working LSP there is a protection tunnel going in the
opposite direction around the ring. In the case of wrapping, the protection tunnel
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goes completely around the ring forming a closed loop. Label swapping is allowed
for working LSPs and their protection tunnels. When a node detects a failure, it
transmits a request to protection switch to the other node adjacent to the failure.
In the case of wrapping, when the node detects a failure or a request to protection
switch, it switches traffic to the protection tunnel. In the case of steering, the source
and destination nodes of the LSP switch to the protection tunnel.

Note that MPLS fast reroute can also be implemented on a ring network topology.
A comparison of the MPLS fast reroute and T-MPLS ring protection can be found in
[YS08]. T-MPLS ring protection has higher complexity due to its APS and complexity
in configuration, but it keeps packets in order. In MPLS fast reroute, there is a
possibility of packet misordering.

9.4 Why Optical Layer Protection

The optical layer provides lightpaths for use by its client layers, such as the SONET,
IP, and 10-Gigabit Ethernet. We have seen that extensive protection mechanisms
are available in the SONET layer and other client layers. These layers were all
designed to work independently of each other and not rely on protection mechanisms
available in other layers. We will see below that there is a strong need for protection
in the optical layer, despite the existence of protection mechanisms in the client
layers.

SONET/SDH networks incorporate extensive protection functions. However,
other networks such as IP networks do not provide the same level of protection.
As we saw in Section 9.3.3, IP traffic for the most part is “best-effort” traffic.
One way to protect data networks is to rely on optical layer protection, which
can be quite cost-effective and efficient.

Significant cost savings can be realized by making use of optical layer protection
instead of client layer protection. We illustrate this with two examples.

Consider an example of a WDM ring network with lightpaths carrying higher-
layer traffic. Figure 9.18 illustrates an example where there is no optical layer pro-
tection. Two SONET line terminals (LTEs) are connected to each other through
lightpaths provided by the optical layer, as are two IP routers. For simplicity we
look at a undirectional lightpath from LTE A to LTE B and another lightpath
from router C to router D. These two lightpaths are protected by the SONET and
IP layers, respectively, using 1+ 1 protection. The working connection from LTE
A to LTE B is established on wavelength λ1 along the shortest path in the ring,
and the other protection connection is established, say, on the same wavelength
λ1 around the ring. Likewise, the working connection from router C to router D
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Figure 9.18 A WDM ring built using optical add/drop multiplexers (OADMs), sup-
porting two interconnected SONET line terminals (LTEs) and two interconnected IP
routers using protection provided by the SONET and IP layers, respectively. The SONET
and IP boxes do not share protection bandwidth.

may be established on λ1 on the shortest path. However, the protection connec-
tion from router C to router D, which needs to be routed around the ring, must
be allocated another wavelength, say, λ2. Thus two wavelengths are required to
support this configuration.

Figure 9.19 shows what can be gained by having the optical layer do the
protection instead. Now we can eliminate the individual 1+ 1 protection for the
SONET LTEs and the IP routers and make them share a common protection
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Figure 9.19 Benefit of optical layer protection. The configuration is the same as that of
Figure 9.18. However, the optical layer now uses a single wavelength around the ring to
protect both the SONET and IP connections.

wavelength around the ring. Only a single wavelength is required to support this
configuration. Note, however, that this arrangement can handle only a single
link cut, whereas the earlier arrangement of Figure 9.18 can handle some com-
binations of multiple fiber cuts (see Problem 9.11). Similarly, the arrangement
of Figure 9.18 can support two simultaneous transmitter failures, whereas the
arrangement of Figure 9.19 can support only a single such failure. Nevertheless,
if we are primarily interested in handling one failure at any given time, the optical
layer protection scheme of Figure 9.19 offers a clear savings in capacity.
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Consider what would happen if we had to support N such pairs (N being
the number of links in the ring), with each of them being adjacent on the ring.
Without optical layer protection, N protection wavelengths would be required.
With optical layer protection, only one wavelength would be needed. Optical
layer protection is more efficient because it shares the protection resources across
multiple pairs of client layer equipment. In contrast, client layer protection mech-
anisms cannot share the protection resources between different or independent
clients.

Another example of an IP network operating over WDM links is shown in
Figure 9.20. Consider two network configuration options. Figure 9.20(a) shows
the IP routers interconnected by two diversely routed WDM links. In this case,
the optical layer protects no protection, and the IP layer completely handles the
protection against fiber cuts as well as equipment failures (for example, router
port failure). Note that the configuration shown requires three working ports
and three protect ports on each router.

Figure 9.20(b) shows a better way of realizing a network with the same
capabilities by making use of protection within the optical layer. In this case, fiber
cuts are handled by the optical layer. A simple bridge-and-switch arrangement
is used to connect two diversely routed fiber pairs in a single WDM system. In
general, it is more efficient to have fiber cuts handled by the optical layer, since
a single switch then takes care of restoring all the channels, instead of having
each individual IP link take care of the restoration by itself. More importantly,
this arrangement can result in a significant savings in equipment cost. In contrast
with the previous configuration, this configuration requires each router to have
only a single protect port instead of three. If one of the working ports in the
router fails, the router directs the traffic onto the protect port. Note that the
optical layer cannot handle this type of failure.

This example also highlights another value of optical layer protection. Gen-
erally, the cost of a router port is significantly higher than the cost per port of
optical layer equipment. Therefore it is cheaper to reserve protection bandwidth
in the optical layer (effectively reserve ports on optical layer equipment), rather
than have additional ports in IP routers for this purpose.

The optical layer can handle some faults more efficiently than the client layers.
A WDM network carries several wavelengths of traffic on a single fiber. Without
optical layer protection, a fiber cut results in each traffic stream being restored
independently by the client layer. In addition, the network management system
is flooded with a large number of alarms for this single failure. Instead, if the
optical layer were to restore this failure, fewer entities have to be rerouted (albeit
larger entities), and hence the process is faster and simpler.
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Figure 9.20 Example showing the benefit of optical layer protection compared to pro-
tecting at the IP layer. (a) All the protection is handled by the routers. Two diversely
routed WDM links are used. Each IP router uses three working ports and three protect
ports to protect against both fiber cuts and equipment failures. (b) A single WDM line
system is deployed, with protection against fiber cuts handled by the optical layer. Equip-
ment failures are handled by the IP layer. The IP routers now use three working ports
and an additional protect port in case one of the working ports fails.

Optical layer protection can be used to provide an additional degree of resilience
in the network, for instance, to protect against multiple failures. An example of
this is shown in Figure 9.21. Consider a SONET BLSR operating over lightpaths
provided by the optical layer. Figure 9.21(a) shows normal operation of the net-
work. Figure 9.21(b) shows what happens to a sample SONET connection in
the event of a link failure. The BLSR does a ring switch and reroutes the connec-
tion around the ring. At this point, until the failed link is repaired, the network
cannot handle another failure. Repairing a failed link can take several hours to
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Figure 9.21 Optical layer protection used to enhance SONET protection. The thick lines indicate
fiber links, the thin lines indicate lightpaths provided by the optical layer between SONET ADMs,
and the dashed line indicates a SONET connection. (a) Normal operation before failure. A SONET
ring is realized using lightpaths provided by the optical layer. (b) Due to a fiber failure, a lightpath
connecting two adjacent SONET ADMs fails, causing the SONET ADMs to invoke ring switching to
rapidly restore the SONET connection. (c) The optical crossconnects (OXCs) perform optical layer
restoration and reroute the lightpath around the failure. To the SONET ring, it appears as if the failure
has been restored, and the ring reverts back to normal operation, ready to tackle another failure.
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days—a fairly long period during which the network is vulnerable to additional
failures. Optical layer protection can be used to remove this vulnerability. In Fig-
ure 9.21(c), the optical layer reroutes the lightpath on the failed link around the
failure over another optical path. At this point, as far as the BLSR is concerned,
it appears that the the failed link has been restored, and the ring reverts back to
normal operation. This allows the BLSR to handle additional failures while the
failed link is actually being repaired.

Finally, protection in SONET is currently based on rings (UPSR/BLSR). Ring-
based schemes require that the capacity in the network reserved for protection be
equal to the capacity used for working traffic. Within the optical layer, a variety
of mesh-based protection schemes are being developed. These offer the promise
of requiring significantly less protection capacity than ring-based schemes. Ad-
mittedly, these schemes could also be applied in the SONET layer.

However, optical layer protection does have its limitations:

Not all failures can be handled by the optical layer. If a laser in an attached
client terminal fails, the optical layer cannot do anything about it. Thus client
equipment failures need to be dealt with by the client layer.

The optical layer may not be able to detect the appropriate conditions that would
cause it to invoke protection switching. For instance, a transparent network
can only monitor the presence or absence of power (and in some cases, the
optical signal-to-noise ratio). Although it may also be able to measure power
degradations, it may not know what the reasonable values for the power levels
are because they vary widely depending on the type of signal being carried. Thus
it can only trigger protection switching upon detecting loss of light. The bit error
rate is a more precise indicator of signal quality, but a transparent network may
not be able to measure bit error rate.

The optical layer protects traffic in units of lightpaths, and it cannot protect part
of the traffic within a lightpath and not protect other parts. Such functions need
to be performed by the client layers.

Protection routes in the optical layer may be longer than the primary routes,
and the choice of alternate routes may be severely limited due to link budget
considerations.

We need to pay careful attention to the interworking of protection schemes
between the different layers. We will discuss some of these issues in Section 9.6.
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9.4.1 Service Classes Based on Protection

In Chapter 8, we observed that the optical layer can provide multiple classes of service
based on the type of protection provided. The main differences in these classes lie in
the level of connection availability provided and the restoration time for a connection.
These different classes will likely be supported using different protection schemes.
Costs to both the customer and service provider will also depend on the service
availability. A possible set of services is as follows:

Platinum. This provides the highest level of availability and the fastest restoration
times, comparable to SONET/SDH protection schemes, typically around 60 ms.
For example, a dedicated 1 + 1 protection scheme could be used to provide this
class of service. This class may be viewed as a premium service and is accordingly
priced.

Gold. This provides high availability and fast restoration times, typically in the range
of hundreds of milliseconds. For example, a shared mesh protection scheme can
provide this class of service.

Silver. This class sits below gold in terms of availability and restoration time. For
example, a protection scheme that provides “best-effort” restoration may fit
into this category. Another example would be a scheme wherein a connection is
reattempted from scratch in case of a failure.

Bronze. Here, the optical layer provides unprotected lightpaths. In the event of a
failure of the working path, the connection is lost.

Lead. This class of service would have the lowest availability and the lowest priority
among all the classes. For instance, we may support this class by using protection
bandwidth reserved for other classes of service. If that bandwidth is needed to
protect other higher-priority traffic, connections in this class are preempted.

What types of applications will use these service classes depends on the appli-
cation itself and the user. Telephony would use platinum-type service since there is
the expectation of high availability. Today, SONET/SDH is an example of platinum-
type service. Business customers may also use platinum service because they in turn
provide services that require high availability.

Carriers interconnecting Internet routers from Internet service providers are pro-
viding in some cases platinum services and in other cases bronze (unprotected) ser-
vices. In the latter case, the IP layer handles all the restoration functions. In the former
situation, it is quite possible that some of that traffic could be carried over lightpaths
with a lower quality of service. Lower quality of service means lower cost, and this
would be appropriate for ordinary consumers who are much more interested in low
prices than in high availability.
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Table 9.3 A summary of optical protection schemes operating in the optical mul-
tiplex section (OMS) layer. Both dedicated protection rings (DPRings) and shared
protection rings (SPRings) are possible.

Protection Scheme
1 + 1 1:1 OMS-DPRing OMS-SPRing

Type Dedicated Shared Dedicated Shared
Topology Point-point Point-point Ring Ring

As we have seen over the history of the Internet, new customer applications
and services are being created and developed all the time, and they have varying
requirements of availability and costs. It is important to have a collection of protec-
tion services that meets not only the requirements of current applications but also
unforseen future applications.

9.5 Optical Layer Protection Schemes

We next look at the different types of optical layer protection schemes. Conceptually,
the schemes are largely similar to their SONET and SDH equivalents. However, their
implementation is substantially different, for several reasons: the equipment cost for
WDM links grows with the number of wavelengths to be multiplexed and terminated;
link budget constraints need to be taken into account when designing the protection
scheme; and one may to deal with wavelength conversion constraints.

We saw in Chapter 8 that the optical layer consists of the optical channel (OCh)
layer (or path layer), the optical multiplex section (OMS) layer (or line layer), and
the optical transmission section (OTS) layer. Just as SONET protection schemes
fit into either the line layer (for example, BLSR) or the path layer (for exam-
ple, UPSR), optical protection schemes also belong to the OCh or OMS layers.
An OCh layer scheme restores one lightpath at a time, whereas an OMS layer
scheme restores the entire group of lightpaths on a link and cannot restore individ-
ual lightpaths separately. Table 9.3 provides an overview of schemes operating in
the optical multiplex section layer. Table 9.4 summarizes schemes operating in the
optical channel layer. These schemes have not yet been standardized, and there are
many variants. We have attempted to use a nomenclature that is consistent with SDH
terminology.

In SONET, there is not a significant cost associated with processing each connec-
tion separately in the path layer instead of processing all the connections together
in the line layer. The reason is that the processing is done using application-specific
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Table 9.4 A summary of optical protection schemes operating in
the optical channel layer.

Protection Scheme
1 + 1 OCh-SPRing OCh-Mesh

Type Dedicated Shared Shared
Topology Mesh Ring Mesh

integrated circuits, where the incremental cost of processing the path layer com-
pared to the line layer is not significant. In contrast, a significant difference in cost
can be associated with OCh layer schemes relative to OMS layer schemes. An OCh
layer scheme has to demultiplex all the wavelengths, whereas an OMS layer scheme
operates on all the wavelengths and thus requires less equipment.

As an example, consider the two protection schemes shown in Figure 9.22.
Figure 9.22(a) shows 1+1 OMS protection, whereas Figure 9.22(b) shows 1+1 OCh
protection. The OMS scheme requires two WDM terminals and an additional splitter
and switch. The OCh scheme, on the other hand, requires four WDM terminals and a
splitter and switch per wavelength. Thus its equipment cost is higher than the cost of
the OMS scheme. Indeed, this is the case if all channels are to be protected. However,
the cost of OCh protection can be reduced if not all channels need to be protected.
Assuming multiplexers, splitters, and switches can be added on a wavelength-by-
wavelength basis, the cost of OCh protection grows linearly with the number of
channels that are to be protected. The cost of an OMS protection scheme, on the
other hand, is independent of the number of channels to be protected. If only a small
fraction of the channels are to be protected, then OCh protection is not significantly
more expensive than OMS protection.

The choice of protection schemes is dictated primarily by the service classes to
be supported (as discussed below) and by the type of equipment deployed. In the
SONET/SDH world, protection is performed primarily by the SONET/SDH line
terminals (LTEs) and add/drop multiplexers (ADMs) and not by digital crosscon-
nects. This is the case primarily because digital crossconnects were more inefficient
at performing fast protection than the LTEs and ADMs, and partly because they op-
erated on lower-speed tributaries. However, we are likely to see protection functions
handled somewhat differently in the optical layer. Multiplexing equipment, such as
optical line terminals and add/drop multiplexers, can provide both OCh layer and
OMS layer protection in linear or ring configurations. On the other hand, opti-
cal crossconnects can provide protection in linear, ring, and mesh configurations.
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Figure 9.22 Comparison of (a) 1+ 1 OMS and (b) 1+ 1 OCh protection schemes.

Unlike their digital crossconnect counterparts in the SONET/SDH world, optical
crossconnects are designed to provide efficient protection. Depending on the type
of crossconnect (see Section 7.4), the protection could be done either at the opti-
cal channel layer (for crossconnects that groom at the wavelength level) or at the
STS-1 level (for electrical core crossconnects grooming at STS-1). Therefore one
possibility is to use simple unprotected WDM point-to-point systems and rely on
the optical crossconnects to perform the protection functions. Backbone networks
handling large numbers of wavelengths may opt for this choice, as may operators
who have already deployed a large quantity of unprotected WDM equipment in
their networks. The other possibility is to rely on the WDM line terminals and
add/drop multiplexers to perform this function. Metropolitan networks using small
numbers of channels and not requiring the use of crossconnects may opt for this
choice.
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9.5.1 1 + 1 OMS Protection

The 1 + 1 OMS protection scheme is perhaps the simplest optical layer protection
scheme (see Figure 9.22(a)). Because of its simplicity, it has been implemented by
several vendors in their OLTs. The composite WDM signal is bridged onto two
diverse paths using an optical splitter. At the other end, an optical switch is used to
select the better among the two signals, based primarily on detecting the presence or
absence of light signals. The split incurs an additional 3 dB loss, and the switch also
adds a small amount of loss (< 1 dB). An alternative implementation uses optical
amplifiers on each of the fibers and a passive combiner to combine both directions
at the receiver. At any time, one amplifier is turned on and the other is turned off.
This has the advantage of avoiding a single point of failure in the system (the selector
switch in other implementations) but may be more expensive to implement.

9.5.2 1:1 OMS Protection

The 1:1 OMS protection scheme is similar to the SONET 1:1 scheme discussed in
Section 9.2.1, and the benefits are similar: support for low-priority traffic and also
the ability to have N working systems share a single protection system. Compared
to the 1 + 1 scheme of Figure 9.22(a), a typical implementation uses a switch at the
transmitter, instead of a splitter, resulting in a somewhat lower total loss in the path.
Just as in the SONET equivalent, an APS protocol is needed to provide coordination
between the two ends of the link.

9.5.3 OMS-DPRing

The OMS-DPRing (dedicated protection ring) is similar to a SONET UPSR, except
that it operates at the OMS (or optical line) layer, whereas the UPSR operates in the
SONET path layer. It can also be thought of as an optical unidirectional line-switched
ring (ULSR).

One possible implementation of an OMS-DPRing [Bat98] is shown in Fig-
ure 9.23. Signals are coupled into and out of the ring via passive couplers. Each
node transmits on both directions of the ring. Note that different nodes must trans-
mit at different wavelengths; otherwise their transmissions would collide. Under
normal operation, the ring functions as a bus, with one pair of amplifiers turned off
on the entire ring and all the others turned on. If there is a link failure, the amplifiers
next to the failed link are turned off and the ones that were originally inactive are
now turned on to restore traffic. For example, in Figure 9.23(a), the amplifier pair
to the right of node A is turned off under normal operation and the other amplifiers
are turned on. In Figure 9.23(b), when link CD fails, the amplifier pair at C adjacent
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to the failed link is turned off, and the originally inactive amplifiers at node A are
turned onto create a new bus and restore traffic.

9.5.4 OMS-SPRing

The OMS-SPRing (shared protection ring) is analogous to a SONET BLSR/4 with
some changes. A possible implementation of a four-fiber ring is shown in Figure 9.24.
Two of the fibers have WDM equipment deployed, and the remaining two fibers
around the ring are used for protection purposes and do not have attached WDM
equipment. In the event of a cut, the signal is either span switched or ring switched
onto the protection fibers, as shown in Figure 9.25. In both cases, not having WDM
equipment on the protection fibers not only saves cost but also provides a relatively
lower-loss path around the ring for the protection traffic. Optical amplifiers may be
needed on the protection fibers depending on the link losses.

A two-fiber version of OMS-SPRing can also be realized by dedicating half the
wavelengths on each fiber for protection purposes. By making sure that protection
wavelengths on one fiber correspond to the working wavelengths on the other fiber,
the signals can be rerouted without requiring wavelength conversion. This scheme,
however, requires the two groups of wavelengths to be demultiplexed and multi-
plexed at each node, and thus is not strictly operating at the OMS layer.

9.5.5 1:N Transponder Protection

The OMS layer schemes that we discussed above handle link failures and node
failures but do not handle failures of the end equipment, particularly the transpon-
ders. The transponders may be protected in a 1:N configuration by having a spare
transponder for every N working transponders. One problem to overcome is that
transponders today operate at fixed wavelengths, and so the spare transponder will
operate at a different wavelength than the working transponder. When the signal is
switched over to the spare transponder, we also need to set up a new lightpath on
the new wavelength through the network. Alternatively, we could use a tunable laser
in the spare transponder.

9.5.6 1 + 1 OCh Dedicated Protection

In 1+ 1 OCh protection, two lightpaths on disjoint routes are set up for each client
connection. As shown in Figure 9.22(b), the client signal is split at the input and
the destination selects the better of the two lightpaths. As with SONET and SDH,
no signaling is required. This approach works in point-to-point, ring, and mesh
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Figure 9.23 OMS-DPRing protection. (a) Normal operation. One pair of amplifiers is
inactive (turned off) and the others are turned on, creating a bus. (b) After a failure, the
currently inactive amplifiers are turned on and an amplifier pair adjacent to the failure is
turned off to bring up the alternate path and restore traffic.
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Figure 9.24 OMS-SPRing shown under normal operation. Only the working fibers are
connected to optical add/drop multiplexers. The protection fibers are connected around
the ring.

configurations. In the context of a ring, the scheme is also called OCh-DPRing (OCh
dedicated protection ring) or optical UPSR.

Like SONET UPSRs, this approach is bandwidth inefficient in that the protection
bandwidth is not shared among multiple client connections. However, it is one of the
simplest protection schemes and therefore has been implemented by several vendors
in optical add/drop multiplexers and crossconnects.

Figure 9.26 shows another possible implementation of the bridge and select
functions within a node. Here, the signal entering the optical layer is split and sent
to two transponders, and then diversely routed across the network. At the receiving
end, the signal is terminated in two transponders, and the better signal is selected
afterward to be sent to the client. In Figure 9.22, the client signal is passed through
a transponder and split afterward. At the receiving end, one of the two signals is
selected by an optical switch before it is sent into a transponder and then onward
to the client. This uses half as many transponders as the previous option but does
not protect against a transponder failure. Aside from this aspect, there are several
other subtleties that affect the choice of one implementation versus the other, such
as the criteria for switching from one path to another, and potential restoration time
differences between the two approaches.
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Figure 9.25 OMS-SPRing after a failure. (a) Span switching. (b) Ring switching.
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Figure 9.26 Another implementation of 1 + 1 OCh protection. The signal from the
client equipment is split and sent to two transponders for transmission over diverse
paths, and at the destination the better copy is selected by an optical switch at the output
of the transponders.
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9.5.7 OCh-SPRing

The OCh-SPRing (shared protection ring) is somewhat similar to a SONET BLSR/4.
However, the BLSR operates at the line (multiplex section) layer, whereas this scheme
operates at the optical channel layer and not the optical multiplex section layer.
Working lightpaths are set up on the shortest path along the ring. When a working
lightpath fails, it is restored using either a span switch or a ring switch, just as in a
SONET BLSR/4. Nonoverlapping lightpaths in the ring can share a single wavelength
around the ring for protection, and this spatial reuse allows the OCh-SPRing to be
more efficient than an OCh-DPRing for distributed traffic. The operation of the
OCh-SPRing is essentially the same as that shown in Figures 9.5–9.7, where the
fibers now correspond to wavelengths and the connections correspond to lightpaths.
Just as with a BLSR, fast coordination between the ring nodes is needed in order to
support node failures or low-priority traffic.

9.5.8 OCh-Mesh Protection

Ring architectures are inherently suitable for sparse physical topologies and in situa-
tions where most of the traffic is confined within the ring. Many backbone networks
tend to be somewhat more densely connected than rings and are essentially meshed,
with traffic being fairly distributed. A typical North American long-haul carrier’s
backbone network may have, say, 50 nodes, with an average node having 3 to 4
adjacent nodes, with some nodes having as many as 5 to 10 adjacent nodes. For
such networks, mesh protection schemes offer more bandwidth-efficient protection
than rings. The bandwidth efficiency of a mesh relative to a ring depends on several
factors, including the network topology, the traffic pattern, and the type of mesh pro-
tection scheme used. In general, the more dense or meshed the topology, the greater
the benefit of mesh protection. Also, if traffic in the network is primarily localized,
then rings can do a good job. In contrast, if traffic in the network is distributed, then
rings are inefficient: many lightpaths will need to be partitioned into multiple rings,
and multiple rings will need to be interconnected and protected to support these
lightpaths. Efficiency improvements ranging from 20 to 60% have been reported for
mesh protection schemes relative to ring protection schemes [RM99a, RM99b]. Here
we provide a simple example to illustrate the efficiency of mesh protection relative to
ring protection. We will look at a more realistic detailed example in Section 13.2.6.

Example 9.1 Consider the network shown in Figure 9.27(a), with three light-
paths to be supported. Assume that all these lightpaths need to be protected.
Each lightpath uses one unit of capacity on each link that it traverses.
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Figure 9.27 Example to illustrate the bandwidth efficiency of mesh protection relative
to ring protection. (a) A mesh network with three lightpaths present. (b) Protecting the
lightpaths using 1 + 1 dedicated protection. (c) Protecting the lightpaths using OCh-
SPRing protection. (d) Protecting the lightpaths using OCh-mesh protection.

First, suppose we use 1+ 1 OCh dedicated protection. We would then set up
dedicated protection lightpaths as shown in Figure 9.27(b). In this case, a total
of eight units of protection capacity is needed in the network.

Next let us consider a configuration that uses shared ring protection (OCh-
SPRing). Here we have an interesting problem of how to configure the rings
themselves. One solution is to configure the rings as shown in Figure 9.27(c).
In this case, lightpaths X and Y each share the same bandwidth for protection,
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while lightpath Z has a separate ring for protection. This configuration requires
a total of eight units of capacity for protection, which is the same as for dedicated
protection above. Note, however, that the protection capacity can be reduced to
six units by having lightpaths X and Y share a ring but using dedicated protection
for lightpath Z. Another way to look at this is that by using the eight units of
capacity, we can support additional lightpaths that can share the ring used to
protect lightpath Z.

We now consider the case of shared mesh protection. Our mesh protection
scheme works as follows. We will use the same routes used by the 1+ 1 scheme
for routing the protection lightpaths. The big difference is that the protection
lightpaths are not set up ahead of time, but are only set up when there is a failure.
As long as two lightpaths don’t fail simultaneously, we can have them share the
same protection capacity in the network. In this case, only a single lightpath fails
at any given time, assuming we have to deal only with link failures. Therefore
we only need to provide sufficient protection bandwidth to protect one lightpath
at a time. We leave it to the reader to verify that the four units of capacity shown
in Figure 9.27(d) are sufficient.

Mesh protection schemes are not new. They were used in the 1980s in networks
with digital crossconnects. However, these protection schemes were centralized and
operated rather slowly, taking minutes to hours to restore traffic after a failure. Also
the protection was complex to manage, and there were no applicable standards. After
the standardization of SONET/SDH and due to the fast 60 ms ring protection offered
by SONET/SDH, these mesh-based restoration schemes were largely abandoned.

There are several reasons, however, to consider mesh protection schemes in the
optical layer of the network.

The processing power available to implement mesh protection has dramatically
increased over the past few decades, to the point where computationally inten-
sive functions such as determining new routes can be performed rapidly. The
communication bandwidth available for network control purposes has also gone
up dramatically. To protect a network providing terabits/second of capacity, it
is quite reasonable to dedicate several 2 Mb/s or 45 Mb/s lines in the network
for control traffic. This was not the case earlier, when this amount of bandwidth
would have been considered large relative to the actual traffic within the network.

Optical crossconnects and other optical layer equipment protect bandwidth at
much larger granularities (lightpaths) than digital crossconnects that operate at
DS1 or DS3 speeds. As a result, they have fewer entities to manage and protect.
However, this situation will change as traffic grows.
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Relatively fast signaling and routing protocols have been developed for other
forms of data networks, such as IP networks, and many of these protocols can
be adapted for use in the optical layer.

The 60 ms protection time requirement is not a hard number. Many carriers
interested in protecting data traffic will be satisfied with protection times on
the order of a few hundred milliseconds, making it easier to implement more
complex protection schemes.

In addition to the factors discussed above, the mesh protection schemes will have
to overcome some key issues in order to facilitate widespread deployment:

Part of the reason that SONET/SDH protection has been so successful is that the
protection schemes were standardized. This is yet to happen with mesh protection
schemes.

One advantage of ring-based schemes is that the network is partitioned into
multiple domains and each domain is protected independently. Thus one part
of the network does not affect the other parts. This implies that the network
can handle simultaneous multiple failures as long as they occur in different
domains. Moreover, one part of the network can be serviced without impacting
the protection scheme in the other parts. In order to get the full benefit of mesh
protection, we will need to treat the network in its entirety as a single domain.
Breaking up the network into smaller domains reduces the bandwidth efficiency
unless the individual domains are reasonably large.

Another dimension to this issue is the effect of software bugs or operator
errors. In ring-based networks, such problems are localized, whereas in mesh
networks, these problems can have a networkwide impact.

Mesh protection schemes are considerably more complex to manage than ring
protection schemes. In order to make them successful, vendors will need to
provide carriers with the appropriate management tools to hide the complexity
from the network operators. For instance, this could mean providing automated
tools to plan and compute primary and protection routes in the network, which
are otherwise fairly complex operations.

On the plus side, however, interconnecting rings is fairly complex, and mesh
protection allows for more flexible planning of capacity in the network—capacity
does not have to be nailed down upfront; instead it can be provisioned as needed
across the network.

The more efficient mesh protection schemes will require rapid networkwide sig-
naling mechanisms to be implemented to propagate information related to fail-
ures and to reroute lightpaths that are affected by a failure. This in turn implies
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that the nodes performing the protection switching will have to be designed
carefully to minimize processing latencies.

The more efficient mesh protection schemes require that protection routing tables
be maintained at the nodes. These routing tables provide information about the
network topology and protection paths in the network. The tables need to be
updated when lightpaths, links, or nodes are added or removed from the network.
Most importantly, these tables need to be consistent across all the nodes in the
network.

These protection routing tables are similar to the routing tables maintained
in IP networks, which work well even in very large IP networks with thousands
of nodes. However, we need to realize that routing tables in IP networks are
not always consistent. If the tables are inconsistent, routing pathologies, such as
looping, can be present in the network with fairly high probabilities. For example,
at the end of 1995, the likelihood of encountering a major routing pathology
in the Internet was 3.3% [Pax97]. These pathologies can cause packets to be
forwarded incorrectly in the network, but these packets eventually find their
way to their destination or are dropped by the network. In the latter event, the
packets are retransmitted by a higher-layer protocol (TCP). While this approach
works well in IP networks, we cannot afford to have routing pathologies in
transport networks because they could prevent restoration of service after a
failure. Therefore, fast and reliable topology update mechanisms need to be in
place to maintain the protection routing tables.

We now look at the different variations of mesh protection. One aspect of this is
whether the entire network is protected as a single domain or whether it is broken
down into multiple domains, with each domain protected independently and the
different domains then tied together. In a degenerate scenario, each domain could
be a single ring, in which case we get back to the usual mode of ring-based protec-
tion.

Another important aspect that differentiates protection schemes is whether the
protection routes are precomputed ahead of time (offline) or whether they are com-
puted after a failure has occurred (online). In both cases, another dimension to
consider is the degree of distributed implementation. This affects the complexity of
the signaling protocols required and has a direct impact on the speed of restoration.

Let us first consider the case where the protection routes are precomputed. In
this case, the protection route for a lightpath is computed at the time it is set up
and stored in the network. Sufficient bandwidth is allocated on all the links so as to
ensure the lightpath can be restored in the event of any possible failure. (Note that
this protection bandwidth is still shared among many lightpaths and is not dedicated
to a single lightpath. This is the distinction between 1 + 1 dedicated protection and
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shared protection.) Depending on the sophistication of the scheme used, there may
be one or many possible alternate routes for a given lightpath, based on the actual
failure scenario. For example, the simplest scenario is to compute a single disjoint
path through the network as the protection route. Alternatively, we may use multiple
protection routes, based on which link fails in the network. Clearly, the amount of
information needed to be stored in the network depends on the number of protection
routes per lightpath.

In a centralized implementation of this scheme, a central controller in the network
is notified if a failure occurs. The central controller then sets up all the alternate routes
for the lightpaths by signaling to all the affected network elements to reconfigure their
switches as needed. The problem with this approach is that the central controller is
a single point of failure and is likely to be a significant bottleneck, in terms of both
communication and processing speed.

Several variants of a distributed implementation are possible. In one variant, the
failure information is flooded to all the network nodes. Each node then looks up its
routing table and reconfigures its switch, based on the exact failure that occurred.
Another possibility is to signal the failure to the sources/destinations of all the affected
lightpaths. Each source-destination pair then sets up the alternate routing path by
signaling to the nodes along the new path.

Next let us consider computing routes on the fly. In this case, new routes are
computed after the failure has been discovered. One major issue that comes up in
this context is whether sufficient bandwidth is available in the network to handle
all the lightpaths that need to be restored. Without essentially precomputing the
routes, it is not possible to determine the amount of protection bandwidth needed
a priori. In this case, it is possible that some lightpaths are restored and others
are not.

Again this scheme can be implemented in a centralized or distributed manner.
The distributed implementation is more complex than for the case where routes are
precomputed. Here it is possible that multiple nodes acting independently may con-
tend for the same link or wavelength resource to restore two independent lightpaths.
These contentions will have to be dealt with, making the signaling scheme more com-
plex and the recovery possibly slower. A centralized implementation would avoid
such conflicts but would suffer even worse communication and processing bottle-
necks, compared to the centralized implementation for the case where the routes are
precomputed.

Based on our discussions so far, we see that mesh protection requires the fol-
lowing functions: route computation, topology maintenance, and signaling to set
up the protection routes. These functions have been implemented in IP networks.
For example, in IP networks, route computation is done using a Dijkstra shortest-
path-first algorithm, and the topology is maintained using a routing protocol such
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as OSPF (open shortest path first). Signaling has been used to establish paths in
MPLS networks. Several signaling protocols are available for this purpose, including
the resource reservation protocol–traffic engineering (RSVP-TE), private network–
network interface (PNNI) signaling protocol [ATM96], and Signaling System 7 (SS7)
[ITU93].

Generalized MPLS (GMPLS) is a protocol that has been expanded from the
MPLS protocol to control optical networks. In the next section we will present some
of its survivability mechanisms.

9.5.9 GMPLS Protection

GMPLS supports span and path protection schemes. For span protection switching,
there is 1+1 unidirectional, 1+1 bidirectional, and 1:1 bidirectional with extra traffic.
For 1+1 protection switching, end nodes transmit copies of their traffic on both the
working and protection links, and switch their receivers to the protection link when
they detect failure in the working link. For 1+1 bidirectional switching, a node that
detects a failure will send a request to the other end node to switch over to the
protection link, and an end node that receives such a request will switch over to the
protection link. In this way, both end nodes will receive on the protection link.

For 1:1 span protection switching with extra traffic, when an end node detects a
failure on the working link, it stops any extra traffic on the protection link and sends
a request to protection switch to the other end node. When a node receives such
a request, it stops any extra traffic, switches over to the protection link, and sends
a response message to the other end node. When an end node receives a response
message, it stops using the working link and begins using the protection link if it
has not done so already. Note that extra traffic is cleared from the protection link
before being used by regular traffic to avoid misconnections between regular and
extra traffic.

GMPLS has shared M:N protection switching, where N is the number of working
links and M is the number of protection links. One of the end nodes, referred to as
the master node, decides which links will be protected.

For path protection, there is 1+1 unidirectional, 1+1 bidirectional, N:1 bidirec-
tional with extra traffic path protection switching. The working and protection paths
are assumed to be disjoint. The protection switching is similar to 1+1 and 1:1 span
protection switching except that the end nodes of an LSP are notified of signal failure
by intermediate nodes of the LSP.

GMPLS supports path segment protection, where segments of an LSP can be
protected. This can be used to protect only portions of an LSP or the entire LSP,
by having the protected segments cover the LSP. It also supports mesh protection
switching with the preplanned rerouting without extra traffic and full rerouting
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protection mechanisms. The former has precomputed protection paths, and the latter
computes protection paths after the failure is detected.

For span and path protection switching, RSVP can be used to carry APS mes-
sages. For span protection, APS messages can also be carried by the GMPLS’s Link
Management Protocol or by the data plane such as SONET/SDH APS signaling.

9.6 Interworking between Layers

We have seen that protection functions can be done in the optical layer, SONET/SDH
layers, or in the service layer (IP/MPLS). How should protection in the network be
coordinated between all these layers?

By default, the protection mechanisms in different layers will work independently.
In fact, a single failure might trigger multiple protection mechanisms, all trying to
restore service simultaneously, which would result in a large number of unneces-
sary alarms flooding the management center. This results in allocating protection
bandwidth at each of the layers, which is inefficient.

An area of significant concern is that protection mechanisms in different layers
could potentially contend with each other, preventing or delaying service restoration,
although careful design can eliminate such occurrences. The following argument
shows that multilayer protection schemes will eventually converge and restore traffic
under the right assumptions.

Consider two network layers, a client layer operating over a server layer, each
with its own protection mechanisms. If the following conditions are met, the network
will always restore traffic in the event of a failure:

1. A viable protection path exists for each layer.

2. The server layer does not depend on the client layer to detect failures and invoke
its protection-switching functions.

3. The client layer protection is revertive in the sense that it will repeatedly try
switching to the other path if its current path fails.

Observe that since the server layer is independent of the client layer and does
not depend on client layer indicators, in the event of a failure, the server layer will
detect the failure and restore the traffic. After the failure occurs, there may be a
period of time when the client layer is unable to restore service because the server
layer is invoking its protection scheme. Ultimately, since the server layer converges,
the client layer will see either a working path or a protection path available for it,
and will therefore eventually converge.
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If any of the conditions above are not met, then the protection scheme may not
converge. For example, if the client layer protection is nonrevertive, it may switch
over once to the protection path, discover that path is not available, and not switch
back to its primary path.

While it is desirable to have some sort of coordination between protection mecha-
nisms in different layers, this may not always be possible. For example, the protection
mechanisms in different layers may actually be activated by different nodes. In some
cases, it may be possible to add a priority mechanism where one layer attempts
to restore service first, and only afterward does the second layer try. One auto-
matic way to ensure this is to have the restoration in one layer happen so quickly
that the other layer doesn’t even sense that a failure has occurred. For example,
consider a WDM network carrying IP traffic. As we saw in Section 9.3.3, it can
take several seconds for the IP layer to detect a failure. It is entirely feasible for
the optical layer to have completed its restoration within this time scale so that
the IP layer does not detect the failure. This may not, however, be feasible when
we have SONET rings operating over a WDM network. The SONET rings detect
failures very quickly and can initiate protection switching as early as 2.3 μs after a
failure occurs.

Another way to implement orderly restoration would be to impose an additional
hold-off time in the higher layer before it attempts restoration so as to provide
sufficient time for the lower layer to do its restoration. However, a large hold-off
time would increase the overall restoration time and is therefore not highly desirable
either. In general, it would make sense to have the priorities arranged so that the
layer that can provide the fastest restoration tries first.

Summary

Engineering the network for survivability is an important role in transport networks.
Protection techniques are well established in SONET and SDH and include point-
to-point, dedicated protection rings, and shared protection rings. These protection
techniques are used or are being developed in other networks in the client layer.

Point-to-point protection schemes work for simple systems with diverse fiber
routes between node locations. Dedicated protection rings are used primarily to
aggregate traffic from remote locations to one or two hub locations. Shared pro-
tection rings can be used in the core parts of the network where the traffic is more
distributed.

Optical layer protection is needed to protect the data services that are increas-
ingly being transported directly on the optical layer without the SONET/SDH layer
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being present. It can also be more efficient with respect to reducing the protection
bandwidth required (by sharing the bandwidth across multiple clients) and therefore
is more cost-effective.

Optical channel layer protection is needed if some channels are to be protected
while others are not. Optical multiplex section layer protection is more cost-effective
for those cases where all the traffic needs to be protected. Shared mesh protection
in the optical layer can lead to more bandwidth efficiency and flexibility compared
to traditional ring-based approaches.

Further Reading

There is a vast literature on protection in SONET and SDH networks. SONET rings
and protection schemes are described in ANSI T1.105.1 and Telcordia GR-253 and
GR-1230. ITU G.841 describes the equivalent SDH architectures. We also refer the
reader to the books by Sexton and Reid [SR97] and Wu [Wu92].

Providing reliable service in IP and MPLS networks is a topic of great interest
today. Several protection schemes have been developed, and this effort is continuing.
See, for example, [DR00, Section 7.4], [CO99], and several Internet drafts available
at www.ietf.org.

[DWY99, RM99a, RM99b, Ram01, MM00, Bar00, GR00a, GR00b, Dos99,
MBN99, Wu95, WO95, Tel98, GR96, GRS97] provide good coverage of the ma-
jor issues in optical layer protection schemes. Interworking of protection schemes
between different layers is covered in [Dem99, MB96].

The Carrier Ethernet protection discussed in this chapter is ITU-T Recommenda-
tion G.8031 [ITU06] for linear protection and G.8032 [ITU08] for ring protection.
A discussion of the ring protection and its future development can be found in
[RLY+08].

A complete discussion of GMPLS is in [FB06].
Transport MPLS has been developed by the ITU. The point-to-point protection

is ITU-T Recommendation G.8131 [ITU07b]. The ring protection is described in
ITU-T G.8132 [ITU07a], which is in draft form at the time of this writing. To
avoid compatibility problems with IETF’s MPLS technology, the IETF is developing
an MPLS technology for transport called MPLS Tranport Profile (MPLS-TP). In
[YS08] there is a comparison of MPLS fast reroute and T-MPLS G.8132 for ring
networks.

A complete discussion on network survivability can be found in [Gro03], which
includes a discussion of types and causes of failures as well as statistics.
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Figure 9.28 Network topology for Problem 9.6.

Problems

9.1 Consider a shared protection ring with two types of restoration possible. In the
first scheme, the connection is rerouted by the source and destination around the
ring in the event of a failure. In the second, the connection is rerouted around
the ring by the nodes adjacent to the failed link (as in a BLSR). Give an example of a
traffic pattern where the first scheme uses less ring bandwidth than the second. Give
another example where the two require the same amount of bandwidth.

9.2 Show that in a ring architecture if the protection capacity is less than the working
capacity, then service cannot be restored under certain single failure conditions.

9.3 Compare the performance of UPSRs and BLSR/2s in cases where all the traffic is
between a hub node and the other nodes. Assume the same ring speed in both
cases. Is a BLSR/2 any more efficient than a UPSR in traffic-carrying capacity in this
scenario?

9.4 Construct a traffic distribution for which the traffic-carrying capacity of a BLSR/4 is
maximized. What is this capacity as a multiple of the bit rate on the working fibers?

9.5 Assuming a uniform traffic distribution, compute the traffic-carrying capacity of a
BLSR/4 as a multiple of the bit rate on the working fibers.

9.6 Consider the topology shown in Figure 9.28 over which STS-1s are to be transported
as dictated by the bandwidth demands specified in the table below for each node
pair. Assume all the bandwidth requirements are bidirectional.

STS-1 B C D E
A 12 6 4 12
B 8 10 6
C 12 2
D 8
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Given the fiber topology and the STS-1–based bandwidth requirements, we will
utilize a two-fiber OC-N SONET ring architecture, but we need to determine which
SONET ring architecture is the most suitable for the given network—the UPSR or
the BLSR/2.

(a) Provide a detailed illustration of how the six STS-1s between nodes A and
C would be transported by a UPSR and a BLSR/2. Redraw Figure 9.28 to
begin each illustration.

(b) Suppose that a backhoe cuts the fiber pair between nodes B and C. Again,
redrawing Figure 9.28 and referencing your illustrations above, provide a
detailed illustration of how the six STS-1s between nodes A and C would be
transported just after this failure for the UPSR and the BLSR/2. Use dashed
lines to highlight any differences in the routing from normal operation.

(c) Using the bandwidth demands given in the table above, design best-case ring
routing plans for the UPSR and the BLSR/2. Illustrate the routing on the
network topology of Figure 9.28. In addition, specify the quantity of STS-1s
being transported over each fiber link for both cases.

(d) Assuming that we want to use a single OC-N ring, what would be the
minimum standard value of N in each case for the designed UPSR and
BLSR/2?

(e) Given all of this information, which ring architecture is better suited for this
application? Briefly explain your reasoning.

9.7 The UPSR, BLSR/4, and BLSR/2 are designed primarily to handle single failures.
However, they can handle some cases of simultaneous multiple failures as well.
Carefully characterize the types of multiple link/node failure combinations that these
different architectures can handle.

9.8 The 1 + 1 protection in a SONET UPSR is not implemented at a fiber level but at
an individual SONET connection level: for each connection, the receiver picks the
better of the two paths. An alternative and simpler approach would be to have the
receiver simply pick the better of the two fiber lines coming in, say, based on the
bit error rate. In this case, the receiver would not have to look at the individual
connections in order to make its decision, but rather would look at the error rate of
the composite signal on the fiber. Why doesn’t this work?

9.9 Suppose you had only two fibers but could use two wavelengths, say, 1.3 μm and
1.55 μm, over each fiber. This can be used to deploy a BLSR/4 ring in three different
ways: (1) the two working links could be multiplexed over one fiber and the two
protection links over the other, (2) a working link and a protection link in the same
direction could be multiplexed over one fiber, or (3) a working link and a protection
link in the opposite direction could be multiplexed over one fiber. Which option
would you choose?
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9.10 Consider a four-fiber BLSR that uses both span and ring switching. What are the
functions required in network management to (a) coordinate span and ring switching
mechanisms and (b) allow multiple failures to be restored?

9.11 Consider the example shown in Figure 9.18. Carefully characterize the set of simul-
taneous multiple fiber cuts that can be handled by this arrangement.

9.12 Consider a five-node optical ring with one hub node and four access nodes. The traf-
fic to be supported is one lightpath between each access node and the hub node. You
can deploy either a two-fiber OCh-DPRing or a two-fiber OCh-SPRing in this appli-
cation. No wavelength conversion is allowed inside the network, so each lightpath
must use the same wavelength on every link along its path. Compare the amount of
protection and working capacity needed for each case. Using a wavelength on a link
counts as one unit of capacity. Would your answer change if wavelength conversion
was allowed in both types of rings at any node in the ring?

9.13 Develop computer software that performs the following functions:
(a) Allows you to input a network topology graph and a set of lightpaths (source-

destinations).
(b) Routes the lightpaths using a shortest-path algorithm.
(c) Computes protection bandwidth in the network for two cases: 1 + 1 OCh

protection and OCh shared mesh protection.
For 1 + 1 OCh protection, use an algorithm to provide two disjoint

shortest paths for each lightpath, such as the one in [ST84]. For shared mesh
protection, use the following algorithm: for each failure i, determine the
amount of protection capacity, Ci(l), that would be required on each link l

in the network. Prove that the total protection capacity needed on link l is
then simply maxi Ci(l).

(d) Experiment with a variety of topologies, traffic patterns, and different
routing/protection computation algorithms. Summarize your conclusions.
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10
c h a p t e r

WDM Network Design

In previous chapters, we learned that the optical layer provides high-speed
circuit-switched connections, or lightpaths, between pairs of higher-layer equip-

ment such as SONET/SDH muxes, IP routers, and Ethernet switches. The optical
layer realizes these lightpaths over the physical fiber using elements such as optical
line terminals (OLTs), optical add/drop multiplexers (OADMs), and optical cross-
connects (OXCs). We called a network using such lightpaths a wavelength-routing
network. In this chapter, our goal is to study how to design a wavelength-routing
network. This involves studying not only how to design the optical layer but also
how the higher-layer SONET or IP network is to be designed because the design of
the two layers is closely coupled. We illustrate with an example.

Example 10.1 In Figure 10.1(a), there are three nodes labeled A, B, and C,
connected by WDM fiber links. For simplicity, assume the traffic generated is in
the form of IP packets from routers located at these nodes. Similar examples hold
if the higher layer consists of SONET/SDH muxes. For concreteness, also assume
that all router interfaces operate at 10 Gb/s, which is also the transmission ca-
pacity on each wavelength on the WDM links. Now suppose, based on estimates
of the IP packet traffic, 50 Gb/s of capacity is required between all three pairs of
routers: A–B, B–C, and A–C. The network can be designed to handle this traffic
in two ways.

1. No optical add/drop: In the first method, we set up 10 wavelengths on each
of the links A–B and B–C connecting the routers at the ends of these links.
We observe that the traffic flowing on link A–B is 50 Gb/s (traffic from A–B)
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Figure 10.1 (a) A three-node network. (b) Nodes A–B and B–C are interconnected by
WDM links. All wavelengths are dropped and added at node B. (c) Half the wavelengths
pass through optically at node B, reducing the number of router ports at node B.

+ 50 Gb/s (traffic from A–C that must use link A–B) = 100 Gb/s. Similarly,
the traffic flowing on link B–C is also 100 Gb/s. Thus the 10 wavelengths on
each of the links A–B and B–C are sufficient to carry this traffic. In this case,
we use 10 router ports at node A, 20 router ports at node B, and 10 router
ports at node C, for a total of 40 router ports. At the optical layer, nodes A
and C have OLTs, whereas node B has a pair of OLTs that terminate all the
wavelengths passing through node B. This is illustrated in Figure 10.1(b).

2. With optical add/drop: In the second design, we set up only five lightpaths
each on the routes A–B, B–C, and A–C. The five lightpaths on the route A–C
pass through the node B within the optical layer, without being converted to
an electrical signal. This design requires only 10 router ports at each of the
three nodes, A, B, and C, for a total of 30 router ports, compared to 40 router
ports in the design without optical add/drop. However, this design requires
node B to have an OADM node that is capable of adding and dropping 10
of the 20 lightpaths that terminate at the router at node B, while passing the
other 10 lightpaths through. This is illustrated in Figure 10.1(c).

Thus, in the design with optical add/drop capability, we can trade off the
number of IP router ports at node B (10 versus 20) for optical add/drop capability
at the same node. In general, as we will see later, the trade-off is between the



WDM Network Design 575

cost of the higher-layer equipment (IP router ports) and the cost of the optical
layer equipment (OADMs, or increased number of wavelengths as we will see
in other examples later). Both designs are perfectly valid and will do the job
as far as the user is concerned. The choice between them will be made based
on the cost trade-off between the optical and higher-layer equipment. In this
example, providing optical add/drop capability requires an OADM at node B
instead of two OLTs. The cost of doing this is cheaper in many scenarios today
than providing additional 10 Gb/s IP router ports. This situation is likely to
prevail over the long run as well fundamentally because passing a wavelength
through is a much simpler operation than routing all the packets that have been
transmitted on a wavelength at the IP layer.

In the same example, if the amount of passthrough traffic at node B was a
small fraction of a wavelength, an entire wavelength with a capacity of 10 Gb/s
would have to be used for the passthrough traffic if we used a design with optical
passthrough. At the same time, a design without optical passthrough may be able
to handle the passthrough traffic without an increase in the number of IP router
ports. This would lead us to prefer to handle the passthrough packets using the IP
router at node B. We will study this effect further in the next section in the context
of rings.

From the point of view of the IP routers, the topology of the network when
all the wavelengths are terminated at node B is shown in Figure 10.2(a). This is
the topology seen by the IP layer packet-routing algorithm, such as open shortest
path first (OSPF). This is a linear topology with 10 parallel links between nodes
A and B, and 10 parallel links between nodes B and C. In the optical add/drop
case, the topology of the network seen by IP routers is a completely connected
mesh with 5 parallel links between each of the three pairs of nodes, as shown
in Figure 10.2(b). Note that both topologies are capable of meeting the traffic
needs at the IP layer, which calls for 50 Gb/s of capacity between each pair of
routers.

The topology seen by the IP routers, or the SONET/SDH muxes, is the topology
of the lightpaths provided by the optical layer; hence, we will call it the lightpath
topology. It is often called the logical or virtual topology, but we will not employ this
terminology. In the same vein, the fiber topology on which the lightpaths are created
is called the physical topology, but we will not use this terminology either.

We can view the general problem of designing wavelength-routing networks as
follows. The fiber topology and the traffic requirements (traffic matrix) are specified.
In our example the fiber topology is a linear one with three nodes, and the traffic
requirement is 50 Gb/s between every pair of these nodes. The task is to design
a lightpath topology that interconnects the IP routers and to realize this topology
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Figure 10.2 (a) The lightpath topology of the three-node network corresponding to
Figure 10.1(a) that is seen by the routers. Routers A–B and B–C are connected by 10
parallel links. (b) The lightpath topology of the three-node network corresponding to
Figure 10.1(b) that is seen by the routers. All pairs of routers, A–B, B–C, and C–A, are
connected by 5 parallel links.

within the optical layer. In our example, two lightpath topologies that meet the traffic
requirements are shown in Figure 10.2. We call the first problem the lightpath topol-
ogy design (LTD) problem. We call the problem of realizing the lightpath topology
within the optical layer the routing and wavelength assignment (RWA) problem, for
reasons that will become clear shortly. The RWA problem is simple to solve in this
example because there is only one route in the fiber topology between every pair of
nodes. In a general topology, the RWA problem can be quite difficult. The realization
of the two lightpath topologies of Figure 10.2 are shown in Figures 10.1(b) and (c).

Another problem we face in the design of wavelength-routing networks is that
of grooming the higher-layer traffic. The term grooming is commonly used to refer
to the packing of low-speed SONET/SDH circuits (for example, STS-1) into higher-
speed circuits (for example, STS-48 or STS-192). This is the function provided by
digital crossconnects. While the term is usually not applied to IP routers, conceptually
IP routers can be considered to provide the grooming function at the packet level.
In order to reap the benefits of optical passthrough, the higher-layer traffic must be
groomed appropriately. For example, in Figure 10.1(c), all the traffic destined for
node B must be groomed onto a few wavelengths, so that only these wavelengths need
to be dropped at node B. Otherwise, node B will have to drop many wavelengths,
and this will increase the network cost.

In the rest of this chapter we will discuss several aspects of the design of
wavelength-routing networks in some detail. In Section 10.1, we will analyze the
cost trade-offs between the higher-layer and optical-layer equipment in a ring net-
work. We will then discuss the LTD and RWA problems, which we introduced in
the discussion of the three-node network above, in Section 10.2. We then explore
the problem of dimensioning the WDM links, that is, determining the number of
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wavelengths to be provided on each link, in Section 10.3. We discuss statistical
dimensioning methods in Section 10.4. In Section 10.5, we examine a number of re-
search results that have been obtained regarding the trade-offs between OXCs with
and without wavelength conversion capability. (We will discuss a practical long-haul
network design example in Section 13.2.6.)

10.1 Cost Trade-Offs: A Detailed Ring Network
Example

In this section, we will study the cost trade-offs in designing networks in different
ways to meet the same traffic demand by varying the lightpath topology. We will
consider the trade-offs between the cost of the higher-layer equipment and the optical
layer equipment. We measure the higher-layer equipment cost by the number of IP
router ports (or SONET line terminals). The number of IP router ports required is
equal to twice the number of lightpaths that need to be established since each light-
path connects a pair of IP router ports. An important component of the optical layer
cost is the number of transponders required in the OLTs and OADMs. Since every
lightpath requires a pair of transponders, we club the cost of the transponders with
that of the higher-layer equipment. This also covers the case where the transponders
are present within the higher-layer equipment (see Figure 7.2). We measure the re-
mainder of the cost of the optical layer equipment by the number of wavelengths
used on a link.

Network topologies are usually designed to be 2-connected, that is, to have two
node-wise disjoint routes between every pair of nodes in the network. While fiber
mesh topologies that are arbitrary, but 2-connected, are more cost-efficient for large
networks than fiber ring topologies, the latter have been widely deployed and are
good for a network that does not have a wide geographic spread. For this reason
we will consider fiber ring topologies in this section. There is a wide deployment of
rings in part because a ring connecting N nodes has the minimum possible number
of links (only N) for a network that is 2-connected, and thus tends to have a low
fiber deployment cost.

We will consider a traffic matrix where t units of traffic are to be routed from
one IP router to all other IP routers in the network. We denote the number of nodes
in the network by N and assume the traffic is uniform; that is, t/(N − 1) units of
traffic are to be routed between every pair of IP routers. For normalization purposes,
the capacity of a wavelength is assumed to be one unit. As in the three-node linear
topology above, we divide the network design problem into two: the LTD and RWA
problems. We will consider three different lightpath topologies, all of which are
capable of meeting the traffic requirements. The general form of these topologies is
shown in Figure 10.3.
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Figure 10.3 Three different lightpath topologies that can be deployed over a fiber
ring topology. (a) A point-to-point WDM ring where adjacent routers on the ring are
connected by one or more lightpaths. (b) A hub topology where all routers are connected
to one central router (hub) by lightpaths. (c) A full mesh where each router is connected
to every other router by lightpaths.

The first lightpath topology, shown in Figure 10.3(a), is a ring, which we call
a point-to-point WDM (PWDM) ring. In this case, the lightpath topology is also a
ring, just like the fiber topology, except that we can have multiple lightpaths between
adjacent nodes in the ring, in order to provide the required capacity between the IP
routers.

The second lightpath topology, shown in Figure 10.3(b), is a hub design. All
routers are connected to a central (hub) router by one or more lightpaths. Thus all
packets traverse two lightpaths: from the source router to the hub, and from the hub
to the destination router.

The third, and final, lightpath topology, shown in Figure 10.3(c), is an all-optical
design. In this case, we establish direct lightpaths between all pairs of routers. Thus,
packets traverse only one lightpath to get from the source router to the destination
router.

We next consider how to realize these lightpath topologies on the fiber network;
that is, we solve the RWA problem for these three designs. The RWA problem is
to find a route for each lightpath and to assign it a wavelength on every link of
the route. We assume that a lightpath must be assigned the same wavelength on all
the links it traverses; that is, the optical layer provides no wavelength conversion
capability. In addition, no two lightpaths traversing the same link can be assigned
the same wavelength.
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Figure 10.4 A PWDM ring architecture. The lightpaths and their wavelength assign-
ment are shown in the figure for the case t = 3.

Example 10.2 We first consider the PWDM ring. The network shown in
Figure 10.4 is a PWDM ring. At each node, all the wavelengths are received and
sent to the IP routers. For this network, all lightpaths are “single-hop” lightpaths
between adjacent nodes in the ring. If W denotes the number of wavelengths on
each link, then we can set up W lightpaths between each pair of adjacent nodes.

The number of IP router ports needed will depend on the algorithm used to
route the traffic. Suppose we route each traffic stream along the shortest path
between its source and destination, and N is the number of nodes in the network.
Assuming N is even, we can calculate the traffic load (in units of lightpaths) on
each link to be

L = N + 1+ 1
N−1

8
t . (10.1)

In this case, since all lightpaths are single-hop lightpaths, the number of wave-
lengths needed to support this traffic is simply

W = �L� =
⌈

N + 1+ 1
N−1

8
t

⌉
. (10.2)

Since all the wavelengths are received and retransmitted at each node, the number
of router ports required per node, Q, is

Q = 2W. (10.3)
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This example has illustrated the following set of design parameters that need to
be considered in determining the cost of the network:

Router ports. Clearly, we would like to use the minimum possible number of IP
router ports to support the given traffic. Note that since a lightpath is estab-
lished between two router ports, minimizing the number of ports is the same as
minimizing the number of lightpaths that must be set up to support the traffic.

Wavelengths. At the same time, we would also like to use the minimum possible
number of wavelengths since using more wavelengths incurs additional equip-
ment cost in the optical layer.

Hops. This parameter refers to the maximum number of hops taken up by a light-
path. For the PWDM ring, each lightpath takes up exactly one hop. This param-
eter becomes important because it gets more difficult to design the transmission
system as the number of hops increases (see Chapter 5), which again increases
the cost of optical layer equipment.

In general, we will see that there is a trade-off between these different parameters.
For example, we will see that the PWDM ring uses a large number of router ports,
but the smallest possible number of wavelengths. In the hub and all-optical design
examples that follow, we will use fewer router ports at the cost of requiring more
wavelengths.

Example 10.3 Here, we will consider the hubbed network architecture shown
in Figure 10.5. An additional hub router is added to the ring. At the hub router,
the packets on all the wavelengths are received and routed appropriately. This
node is identical to a PWDM ring node. The other N nodes are simpler nodes
that contain just enough router ports to source and sink the traffic at that node.
(To keep the example simple, we will assume that the hub router itself does not
source or sink any traffic. This is, of course, not true in practice. In fact, the hub
node could serve as a gateway node to the rest of the network.) Lightpaths are
established between each node and the hub node h. Traffic from a nonhub node
i to another nonhub node j is routed on two lightpaths—one from i to h and
another from h to j . To support this traffic, we will set up �t� lightpaths from
each node to the hub node. Thus the number of router ports needed per node for
this configuration is

Q = 2 �t� . (10.4)

We assume that the lightpaths are routed and assigned wavelengths as follows:
Two adjacent nodes use different paths along the ring and reuse the same set of
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Figure 10.5 A hubbed WDM ring architecture. The lightpaths and their wavelength
assignment are shown in the figure for the case �t� = 1.

wavelengths, as shown in Figure 10.5. For this RWA algorithm, the number of
wavelengths required can be calculated to be

W = N

2
�t� . (10.5)

The worst-case hop length is

H = N − 1. (10.6)

Example 10.4 The final example is the all-optical design shown in Figure 10.6,
where data is transmitted on a single lightpath between its source and destination
and never sent through an intermediate router en route. In this case, we must set
up �t/(N − 1)� lightpaths between each pair of nodes to handle the t/(N − 1)

units of traffic between each node pair. The number of router ports per node is
therefore

Q = (N − 1)

⌈
t

N − 1

⌉
. (10.7)

The number of wavelengths will depend on how the lightpaths are routed and
assigned wavelengths (see Problem 10.5). It is possible to obtain a suitable routing
and wavelength assignment such that (for N even)

W =
⌈

t

N − 1

⌉(
N2

8
+ N

4

)
. (10.8)
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Figure 10.6 An all-optical four-node network configuration. The lightpaths and their
wavelength assignment are shown in the figure for the case t = 3.

To understand the quality of the designs produced by the three preceding exam-
ples, we can compare them to some simple lower bounds on the number of router
ports and wavelengths required for any design. Clearly, any design requires Q ≥ �t�.
We next derive a lower bound on the number of wavelengths required as follows. Let
hij denote the minimum distance between nodes i and j in the network measured in
number of hops. Define the minimum average number of hops between nodes as

Hmin =
∑N

i=1
∑N

j=1 hij

N(N − 1)
.

For a ring network, we can derive the following equation on Hmin (N even):

Hmin = N + 1
4

+ 1
4(N − 1)

. (10.9)

Note that the maximum traffic load on any link is greater than the average traffic
load, which is given by the equation

L ≥ Lavg = Hmin × Total traffic
Number of links

= Hmin × 1
2Nt

N

=
(

N + 1
8

+ 1
8(N − 1)

)
t . (10.10)

Clearly, we need to have the number of wavelengths W ≥ L.
Figure 10.7 plots the number of router ports required for the three different

designs, as well as the lower bound, for a network with eight nodes. Observe that
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Figure 10.7 Number of IP router ports required for the different designs of Examples
10.2–10.4, for a ring with N = 8 nodes. The lower bound of �t� is also shown.

for small amounts of traffic, the hubbed network requires the smallest number of
router ports. The PWDM design requires the largest number of router ports. This
clearly demonstrates the value of routing signals within the optical layer, as opposed
to having just point-to-point WDM links.

Unfortunately, the reduction in router ports is achieved at the expense of requiring
a larger number of wavelengths to support the same traffic load. Figure 10.8 plots the
number of wavelengths required for the three different designs, along with the lower
bound derived earlier. The PWDM ring uses the smallest number of wavelengths—it
achieves the lower bound and is the best possible design from this point of view.
The hubbed architecture uses a relatively large number of wavelengths to support
the same traffic load.

The all-optical design is a good design, provided t is slightly less than or equal
to N − 1 (or some multiple of N − 1). This is because, in these cases, an integral
number of lightpaths is needed between each pair of nodes, which is best realized by
having dedicated lightpaths between the node pairs without terminating any traffic
in intermediate nodes. This brings out an important point: denote the traffic between
a pair of nodes by m + t ′, where m is a nonnegative integer and 0 ≤ t ′ < 1. Then
the best solution is to set up m lightpaths between that node pair to route m units of
traffic, and to handle the residual t ′ units by some other methods such as the hubbed
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Figure 10.8 Number of wavelengths required for the different designs of Examples
10.2–10.4, for a ring with N = 8 nodes. The lower bound from (10.10) is also shown.

or PWDM architectures. If t ′ is close to one unit, then the best solution may be to
have another direct lightpath between them.

Overall, we have learned that it is possible to save significantly in higher-layer
(IP or SONET) equipment costs by providing networking functions (routing and
switching of wavelengths) within the optical layer.

10.2 LTD and RWA Problems

The general approach of dividing the wavelength-routing network design problem
into that of an LTD problem and an RWA problem, which we employed above in
the three-node linear network and the ring network, is a good heuristic for practical
problems because solving the two problems in a combined fashion is quite hard. In
both the examples, we considered a few different lightpath topologies and examined
the RWA problem for each of them. This clarified the cost trade-offs among the
different designs. In practice, each lightpath topology together with its realization
in the optical layer (the solution of the RWA problem) would result in a net, real
(monetary) cost. We can then pick the design that results in the lowest cost. We will
consider one such example in Chapter 13. We will now examine the two component
problems, LTD and RWA, in greater detail.
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10.2.1 Lightpath Topology Design

We now consider a specific, though rather simplified, lightpath topology design
problem and examine how it can be solved. We will assume that no constraints are
imposed by the underlying fiber topology or the optical layer. (Examples of such
constraints are a limit on the length of a lightpath and a limit on the number of
lightpaths traversing a link.)

We assume that all lightpaths are bidirectional (see Section 10.2.2); that is, if we
use a lightpath from node i to node j , then we also use a lightpath from node j

to node i. This is the case that most frequently occurs in practice since almost all
higher-layer protocols, including IP and SONET, assume bidirectional physical layer
links.

One constraint is that at each node we use an IP router with at most � ports
connecting it to other IP routers. (In addition, each router would have local interfaces
to Ethernet switches and the like.) This constrains the maximum number of ports
per router to � and thus indirectly constrains the cost of the IP routers. This also
constrains the number of lightpaths in the network to n�, where n is the number of
nodes in the network, since each lightpath starts and ends at an IP router port. This
constraint is equivalent to a constraint on the lightpath costs if we assume that the
tariff for a lightpath is the same regardless of its end points. This is an assumption
that would not hold in a wide-area environment where we expect longer lightpaths
to be more expensive than shorter ones. However, it may hold in a regional network.
(Many phone companies offer a single rate for all calls made within their region.
So it is not inconceivable that we could have a single tariff for all lightpaths within
a region.) The main reason for the assumption, of course, is that it simplifies the
problem.

When we design the lightpath topology, we also have to solve the problem of
routing packets (or connections) over the lightpath topology. This is because whether
or not a given (lightpath) topology supports the traffic requirements depends on both
the topology itself and the routing algorithm that is used.

To formulate the problem in mathematical terms, we need to introduce a number
of definitions. We assume a statistical model for the IP packet traffic: the arrival rate
for packets for source-destination (s-d) pair (s, d) is λsd (in packets/second), s, d =
1, . . . , n. The problem has variables bij for each pair of nodes (i, j), i, j = 1, . . . , n,
i �= j . The variable bij is binary-valued (0 or 1), where bij = 1 if the designed
lightpath topology has a lightpath from node i to node j ; otherwise, bij = 0. The
lightpath serves as a link to carry traffic from node i to node j . The solution to
the lightpath topology design problem will specify the values of bij , which in turn
specify the pairs of nodes that have lightpaths connecting them. We assume that we
can arbitrarily split the traffic between the same pair of nodes over different paths
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through the network. This is not a problem if the traffic is IP packets, but if we
were instead considering SONET circuits, this is tantamount to assuming that the
traffic between nodes consists of a large number of such circuits. This assumption is
satisfied when we are designing a backbone network to support a large number of
private leased lines such as T1s or T3s.

Let the fraction of the traffic between s-d pair (s, d) that is routed over link (i, j)

(if it exists) be asd
ij . Then λsd

ij = asd
ij λsd is the traffic (in packets/second) between

s-d pair (s, d) that is routed over link (i, j). The total traffic from all s-d pairs that
is routed over link (i, j) is thus λij =

∑
sd λsd

ij . We define a parameter called the

congestion as λmax = maxij λij . Note that the λsd
ij (and thus the λij and λmax) are

variables that we have to determine. Determining their values amounts to finding a
routing algorithm.

To understand why the congestion is an important parameter, let us consider the
case where the packet arrivals follow a Poisson process and the packet transmission
times are exponentially distributed with mean time given by 1/μ seconds. Making
the standard assumption that the traffic offered to a link (lightpath) in the network
is independent of the traffic offered to other links, each link can be modeled as an
M/M/1 queue. The average queuing delay on link (i, j) is then given by [BG92,
Section 3.6.1]

dij = 1
μ− λij

. (10.11)

The throughput can be defined as the minimum value of the offered load for which
the delay on any link becomes infinite. This happens when λmax = maxi,j λij = μ.
Thus our performance objective will be to minimize the congestion λmax.

We are now ready to state the problem formally as a mathematical program:
Objective function:

min λmax

subject to
Flow conservation at each node:

∑
j

λsd
ij −

∑
j

λsd
ji =

⎧⎨
⎩

λsd if s = i,
−λsd if d = i, for all s, d, i,
0 otherwise,

Total flow on a logical link:

λij = ∑
s,d λsd

ij , for all i, j,

λij ≤ λmax, for all i, j,

λsd
ij ≤ bij λ

sd, for all i, j, s, d,
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Degree constraints:∑
i

bij ≤ �, for all j,

∑
j

bij ≤ �, for all i,

Bidirectional lightpath constraint:

bij = bji, for all i, j,

Nonnegativity and integer constraints:

λsd
ij , λij , λmax ≥ 0, for all i, j, s, d,

bij ∈ {0, 1}, for all i, j.

We identify the packets to be routed between each s-d pair with the flow of a
commodity. The left-hand side of the flow conservation constraint at node i in the
network computes the net flow out of a node i for one commodity (sd). The net flow
is the difference between the outgoing flow and the incoming flow. The right-hand
side is 0 if that node is neither the source nor the destination for that commodity
(i �= s, d). If node i is the source of the flow (i = s), the net flow equals λsd , the
arrival rate for those packets, and if node i is the destination, i = d, the net flow
equals −λsd .

The constraint λij =
∑

s,d λsd
ij is just the definition of λij . The constraint λij ≤

λmax, together with the fact that we are minimizing λmax, ensures that the minimum
value of λmax is the congestion. The constraint λsd

ij ≤ bij λ
sd ensures that if bij = 0,

λsd
ij = 0 for all values of s and d. So if the link (i, j) does not exist in the topology, no

packets can be routed on that link. If the link (i, j) exists in the topology (bij = 1),
this constraint simply states that λsd

ij ≤ λsd , which is always true; thus it imposes no

constraint on the values of λsd
ij in this case.

The degree constraints ensure that the designed topology has no more than �

links into and out of each node. The bidirectional lightpath constraint bij = bji

ensures that the resulting topology has only bidirectional lightpaths; that is, if there
is a lightpath from node i to node j , there is also a lightpath from node j to node
i. The constraints bij ∈ {0, 1} restrict the bij to take on only the values 0 or 1. As
we will see shortly, but for these constraints, the problem would have been easy
to solve! Note that the objective function and the constraints are linear functions
of the variables (λsd

ij , λij , λmax, bij ). A mathematical program with this property is
called a linear program (LP) if, in addition, all the variables are real. It is called an
integer linear program (ILP) if all the variables are restricted to take integer values.
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In our case, some of the variables, for instance, the bij , are restricted to integer
values. So our program is an example of a mixed integer linear program (MILP).
We call it the LTD-MILP. Although many efficient algorithms are known for solving
even very large LPs, no efficient algorithms are known for the solution of arbitrary
ILPs and MILPs. In fact, a general ILP or MILP is an example of an NP -hard
problem [GJ79]. Commercial packages are readily available to solve LPs, ILPs, and
MILPs. In many cases, these are part of a larger package of mathematical and/or
optimization routines.

Even with the use of such packages, ILPs and MILPs are too time consuming to
solve, except for small-sized problems. Therefore, many heuristics have been devel-
oped for finding approximate solutions to these problems. These approximations are
often based on specific features of the problem at hand. In the following, we describe
one such heuristic for our problem. Our heuristic uses the fact the LPs are easy to
solve and obtains an approximate solution to the LTD-MILP using the techniques of
LP-relaxation and rounding. Before we can describe our method, we need to define
a few terms used in mathematical programming.

A feasible solution of a mathematical program is any set of values of the vari-
ables that satisfy all the constraints. An optimal solution, or simply solution, of a
mathematical program is a feasible solution that optimizes (minimizes or maximizes,
as the case may be) the objective function. The value of a mathematical program is
the value of the objective function achieved by any optimal solution.

Note that if we replace the constraints bij ∈ {0, 1} by the constraints 0 ≤ bij ≤ 1,
the LTD-MILP reduces to an LP, which we will call the LTD-LP. Moreover, any
feasible solution of the LTD-MILP is also a feasible solution of the LTD-LP, but the
LTD-LP may (and usually will) have other feasible solutions. If some optimal solution
of the LTD-LP happens to be a feasible solution of the LTD-MILP (that is, the bij s
are 0 or 1), the values of the LTD-MILP and LTD-LP will be equal. Otherwise, the
value of the LTD-LP will be a lower bound on the value of the LTD-MILP. (This
is the case for minimization problems.) We call this lower bound the LP-relaxation
bound.

Note that if the values of the bij are fixed at 0 or 1 such that the degree constraints
are satisfied, the LTD-MILP again reduces to an LP. Fixing the values of the bij fixes
the lightpath topology; the remaining problem is to route the packets over this
lightpath topology to minimize the congestion. So we call the LP obtained in this
manner the routing-LP. The value of any routing-LP is an upper bound on the value
of the LTD-MILP. If we are clever (or lucky) in fixing the values of the bij so that the
degree constraints are satisfied, this will be a good upper bound. For clues on how
to fix the values of the bij , we turn again to the LTD-LP.

Consider any optimal solution of the LTD-LP. Intuitively, we expect that bij s
that are close to 1 (respectively, close to 0) must be equal to 1 (respectively, 0) in the
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LTD-MILP. So we could try a heuristic approach to determine the values of bij in the
LTD-MILP from the values of bij in the LTD-LP: round the bij in the LTD-LP to the
closest integer. However, we have to be careful not to violate the degree constraints
on the bij . So we modify the rounding approach to incorporate this in the following
rounding algorithm.

Algorithm 10.1

1. Arrange the values of the bij obtained in an optimal solution of the LTD-LP
in decreasing order.

2. Starting at the top of the list, set each bij = 1 if the degree constraints would
not be violated. Otherwise, set the bij = 0.

3. Stop when all the degree constraints are satisfied or the bij s are exhausted.

If the LP-relaxation lower bound and the upper bound obtained by using the
rounding algorithm and solving the routing-LP are close to each other, then we have
a good approximation to the value of the MILP. We can then use the topology and
routing algorithm obtained by the rounding algorithm and routing-LP as approxi-
mations to the optimal topology and routing algorithm. A modified version of this
approach has been used in [RS96, Jai96] to solve the LTD-MILP approximately in
a few examples. Table 10.1 shows the congestion as a function of the degree for
one such example, which is a 14-node network with a sample traffic matrix given
in [RS96]. In contrast to the work in [RS96, Jai96], which considered directed light-
paths, here we have considered bidirectional lightpaths. This imposes an additional
constraint on the lightpath topology (the bidirectional lightpath constraint) and re-
sults in slightly higher values of the congestion. The three columns in Table 10.1
correspond to the LP-relaxation lower bound, an exact value obtained by solving
the MILP, and the value obtained by the rounding algorithm. Note that the rounding
algorithm yields a value that is quite close to the optimum value and in fact achieves
the optimum value as the degree increases.

We have discussed the problem of designing a lightpath topology to minimize the
maximum packet traffic on any lightpath, given a traffic matrix λsd and subject to a
number of constraints. In LTD problems, traffic matrices are usually the average bit
rates of traffic to be transported between end-to-end sources and destinations. They
are often forecasts of future traffic that the network must support and may include
extra bandwidth to account for errors in the forecasts. Often in LTD problems, the
objective is to minimize network costs, which may include costs of bandwidth, port,
switching, amplifiers, and regenerators. These costs can lead to ILP or MILP network
design formulations. Problem 10.9 is an example.
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Table 10.1 Congestion versus node degree for a lightpath topol-
ogy designed over a 14-node sample network with a given traffic
pattern from [RS96], but with bidirectional lightpaths. Observe
that the LP rounding algorithm yields very good results in this
example.

Degree LP-Relaxation MILP LP Rounding

2 284.67 388.59 440.20
3 189.78 189.78 194.56
4 142.33 142.33 142.33
5 113.87 113.87 113.87
6 94.89 94.89 94.89

Not unexpectedly, network design problems have been studied for many years
[Ker93, Cah98] and are known to be hard. In many cases, even formulating the
problem becomes hard because of a large number of parameters to be optimized and
a large number of constraints to be dealt with. We illustrated one heuristic method for
solving such an ILP, but several other techniques can also be used—see, for example,
[CMLF00, KS98, MBRM96, BG95, ZA95, JBM95, GW94, CGK93, LA91].

A practically important example of a lightpath topology that must be realized
from a WDM network is a SONET ring. SONET rings come in two flavors: unidi-
rectional path-switched rings (UPSR) and bidirectional line-switched rings (BLSR).
We discuss these rings in Chapter 9. The problem of the combined design of the
SONET rings (lightpaths) and the WDM layer, to minimize the cost of the SONET
ADMs, is discussed in [GLS99].

In the traffic model considered earlier, we had only one traffic matrix whose
values were denoted by λsd . In practice, the traffic can change over time, and thus
it may be better to change the lightpath topology also to reduce the cost of the
network. Lightpath topology changes can be disruptive and thus must be undertaken
only occasionally, adding and dropping only a few lightpaths at a time. An iterative
reconfiguration algorithm to change the lightpath topology gradually, in step with
traffic changes, is discussed in [NTM00].

10.2.2 Routing and Wavelength Assignment

In Section 10.1, we saw that the overall design problem involves a trade-off between
optical layer equipment (essentially, number of wavelengths) and higher-layer equip-
ment (for example, IP router ports or SONET line terminals). In the previous section,
we studied the LTD problem. Here we study the routing and wavelength assignment
(RWA) problem, which is defined as follows. Given a network topology and a set
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of end-to-end lightpath requests (which could be obtained, for example, by solving
the LTD problem), determine a route and wavelength(s) for the requests, using the
minimum possible number of wavelengths.

The RWA problem can be formulated as an ILP, but the ILP may take too much
to solve except for networks with small numbers of nodes. The RWA problem can
be simplified by dividing it into a lightpath routing (LR) problem and a wavelength
assignment (WA) problem. The LR problem is to find routes for a collection of
lightpaths, perhaps the result of an LTD problem. The objective of the LR problem
is to minimize the maximum, over all fiber links, of the number of lightpaths using a
fiber link. An alternative objective of the LR problem is to minimize some network
cost such as bandwidth, ports, switching, or regenerator cost. The WA problem
is, given a collection of lightpaths and their routes, to assign wavelengths to the
lightpaths. The objective is to minimize, over all fiber links, the maximum wavelength
used on a fiber link.

A simple method to solve the LR problem is to route the lightpaths one at a time
in some order. Routes can be computed by using shortest path routing algorithms on
the network topology, such as [Dij59]. The network topology has weights assigned
to each link, so that the shortest path is the least-weight path. The link weights are
chosen so that the resulting lightpath routes meet the objective of the LR problem. A
simple example of link weights is to have them all equal to one. Then the routes have
the shortest number of hops, which minimizes the total use of links. Another example
is to have a link weight equal to 1 + L, where L is the number of lightpaths routed
through the link so far. The method will route lightpaths so that they avoid highly
used links. This will balance the number of lightpaths over all links and minimize
the number of wavelengths needed on a link.

For the WA problem, the assignments must obey the following constraints:

1. Two lightpaths must not be assigned the same wavelength on a given link.

2. If no wavelength conversion is available through a switch, then a lightpath must
be assigned the same wavelength on the links through the switch. If no wavelength
conversion is available in the network, then a lightpath must be assigned the same
wavelength all along its route.

If no wavelength conversion is available, a WA algorithm is needed to assign
wavelengths. A simple and effective algorithm is first fit. It assumes that the wave-
lengths are numbered (e.g., 0, 1, ...), and it chooses the smallest numbered wavelength
that is available. This tends to pack lightpaths into lower-numbered wavelengths and
keeps higher-numbered wavelengths free for future lightpaths.

Another consideration for the RWA problem is network survivability when there
are faults. As mentioned in Chapter 9, lightpaths can be protected from faults by a
number of methods including 1+1, 1 : 1 and shared protection. Then lightpaths have
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Figure 10.9 Shown is a network topology with link weights. There are two link disjoint
paths between nodes A and D: (A,C,D) and (A,B,D). However, the simple method to
compute disjoint paths fails. The method will first compute a shortest path (A,B,C,D),
but then there is no second path that is disjoint from the first.

working and protection paths. A lightpath’s working and protection paths should be
disjoint so that they cannot fail together. Typically, it is assumed that single fiber link
faults and single-node faults are the most likely faults to occur. Therefore, they are
considered when computing paths. In general, multiple fiber links may fail together,
and this is referred to as a shared risk link group (SRLG). A node fault leads to an
SRLG because it causes all its incident links to fail. Another case of an SRLG is a
collection of fiber links that share a conduit. If the conduit is cut, all the fiber links
could fail.

To survive single fiber link cuts, the working and protection paths must have
disjoint links. Similarly, to survive single-node failures, the working and protection
paths avoid a common intermediate node, and to survive SRLGs, the paths must
avoid traversing a common SRLG.

There are two common methods to compute disjoint link paths. The first simply
computes the paths one at a time. The first path is the shortest path, and the second
path is another shortest but one that avoids the links of the first path. There are
cases when this does not work as shown in the four-node network in Figure 10.9.
This method of computing disjoint paths can be extended to single-node faults and
SRLGs in a straightforward way. In particular, the second path avoids all nodes or
SRLGs that the first path traverses.

The second method to compute disjoint paths is to compute them together by
using algorithms that solve the minimum disjoint paths problem. The minimum
disjoint path problem assumes links have weights and finds disjoint paths with
minimum total weight. This method is more complicated but can be extended to
single-node faults and some cases of SRLGs.

The amount of bandwidth needed for the protection paths depends on the pro-
tection mechanism. In the case of 1+1 and 1:1 protection, the protection bandwidth
is dedicated. Then a protection path will have a wavelength dedicated to it on each
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of its links. In the case of shared protection, protection bandwidth of a pair of
lightpaths may be shared if their working paths cannot fail together. These consider-
ations should be taken into account when wavelengths are assigned to working and
protection paths.

In the rest of this chapter, we assume that the network as well as the lightpaths
are bidirectional. Then a fiber link in the network is composed of two unidirectional
fibers in opposite directions. From an operational viewpoint, most lightpaths will be
full duplex, as the higher-level traffic streams that they carry (for example, SONET
streams) are full duplex. Moreover, network operators would prefer to assign the
same route and wavelength to both directions for operational simplicity. Note, how-
ever, that it is possible to reduce the number of wavelengths needed in some cases
by assigning different wavelengths to different directions of the lightpath. This is
treated in Problem 10.22.

The routing and wavelength problem can be also be studied in the context of when
the fiber links, lightpaths, or both are unidirectional. A fair amount of theoretical
work has been devoted to solving the routing and wavelength assignment problem
on networks with directed edges and directed lightpaths (which the reader can find
in the References at the end of this chapter).

10.2.3 Wavelength Conversion

We discussed wavelength conversion in Chapter 7, specifically with reference to
OXCs. This kind of wavelength conversion is called full wavelength conversion,
and a node capable of full wavelength conversion can change the wavelength of an
incoming lightpath to any of the outgoing wavelengths. The crossconnects shown in
Figure 7.11(a)–(c) are capable of full wavelength conversion, whereas crossconnects
of Figures 7.11(d) and 7.14 have no wavelength conversion capability.

Two other kinds of wavelength conversion are fixed conversion and limited con-
version. In fixed-wavelength conversion, a lightpath entering a node at a particular
wavelength λi always exits the node at a given wavelength λj . The mapping between
the input and output wavelength is fixed at the time the network is designed and
cannot be varied. An implementation of this approach is shown in Figure 10.10.
In limited wavelength conversion, a signal is allowed to be converted from one
wavelength to a limited subset of other wavelengths. For instance, we may allow a
signal to be converted from one wavelength to two other predetermined wavelengths.
Figure 10.11 shows an implementation of this approach, where each input wave-
length can be converted to one of two other wavelengths. In this case, we say that
the node provides limited conversion of degree 2. We will see in Section 10.5 that
having a small amount of wavelength conversion in the network provides almost the
same benefits as having full wavelength conversion at every node in the network.
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Figure 10.10 A node with fixed-wavelength conversion capability. Signals entering at
wavelength λ1 are converted to λ2 and vice versa. Signals entering at wavelength λ3 are
converted to λ4 and vice versa.
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Figure 10.11 A node with limited wavelength conversion capability. Each input wave-
length can be converted to one of two possible output wavelengths. Signals entering at
wavelength λ1 or λ2 can be converted to λ3 or λ4. Signals entering at wavelength λ3 or
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Figure 10.12 The equivalence between multiple fiber networks and single fiber networks.

The fixed and limited conversion models described above allow us to save on
switch cost but still require an O/E/O for each signal. Since the O/E/Os dominate
the cost, these models are mainly of theoretical interest today. However, two other
factors make these models useful. The first is when we have practical all-optical
wavelength converters. It is quite possible that these devices will inherently not
allow converting a signal to an arbitrary output wavelength but only to one or a
subset of other wavelengths (see Section 3.8). Thus limited conversion becomes very
important in this case. The second is that networks with multiple fibers and no
wavelength conversion can be modeled using this approach, as we will see next.

In many situations, networks may use multiple fiber pairs between nodes to pro-
vide higher capacities. We will now see that having multiple fiber pairs is equivalent
to having a single fiber pair but with some limited wavelength conversion capabilities
at the nodes. Figure 10.12(a) shows a network with two fiber pairs between nodes
and no wavelength conversion at the nodes. Each fiber pair carries W wavelengths.
At each node, signals from one fiber pair can be switched to the other fiber pair.
Figure 10.12(b) shows a network with one fiber pair between nodes, with that pair
carrying 2W wavelengths. The nodes have limited conversion of degree 2. These
two networks are equivalent in terms of their traffic-carrying capacity. Any set of
lightpaths supported by one network can be supported by the other network as well.
The proof of this is left as an exercise (Problem 10.11). Therefore, we can character-
ize multiple fiber networks with no conversion by equivalent single fiber networks
with limited-degree wavelength conversion at the nodes. For this reason, we will not
consider multiple fiber networks separately in this chapter.

We will use the suffixes NC, FC, C, and LC to denote no wavelength conversion,
fixed conversion, full conversion, and limited conversion, respectively.
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In the full, limited, and fixed conversion cases, the WA problem must be suitably
modified. In the case of full conversion, the constraint on a lightpath being assigned
the same wavelength on every link it traverses can be dispensed with entirely. In
the case of limited wavelength conversion, the wavelength assigned to a lightpath
can be changed but only to a limited set of other wavelengths. In the case of fixed-
wavelength conversion, the wavelength assigned to a lightpath must be changed at
each node.

Given a set of lightpath requests and a routing, let li denote the number of
lightpaths on link i. Then we define the load of a request to be L = maxi li . From the
first constraint, we need at least L wavelengths to accommodate this set of lightpath
requests. If we have full wavelength conversion in the network, the problem of
wavelength assignment becomes trivial because it no longer matters what wavelength
we assign to a lightpath on a given link. As long as no more than L lightpaths use this
link, L wavelengths will clearly be sufficient to accommodate this request. However,
without wavelength conversion, the number of wavelengths required could be much
larger. The important question is, How much larger? We will study this problem
in detail in Section 10.5, under various conditions, but we consider one (somewhat
extreme) example now.

Example 10.5 Consider the network shown in Figure 10.13. The set of light-
path requests is shown in the figure to be the following. Transmitter ti must be
connected to receiver rN−i+1, where N is the number of transmitters or receivers.
Clearly, there are many routes for each lightpath. Interestingly, however, regard-
less of how we route each lightpath, any two lightpaths belonging to this set
of requests must share a common link. Thus each lightpath must be assigned
a different wavelength, requiring a total of N wavelengths to satisfy this set of
requests.

If we are clever about how we route these lightpaths, we can arrange matters
so that at most two lightpaths use a given link, as shown in the figure. This
means that the load is 2. Thus two wavelengths are sufficient to satisfy this set of
requests if full wavelength conversion is available at each node in the network.

Does this mean that full wavelength conversion is absolutely needed? Luckily for
us, the example shown here is a worst-case scenario. We will quantify the benefit
due to wavelength conversion in Section 10.5.

10.3 Dimensioning Wavelength-Routing Networks

The key aspect of designing a wavelength-routing network is determining the number
and, more generally, the set of wavelengths that must be provided on each WDM
link. We call this the wavelength dimensioning problem.
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Figure 10.13 An example to illustrate the difference between having and not having
wavelength conversion.

In most practical situations today, the network is designed to support a certain,
fixed traffic matrix. The traffic matrix may be in terms of lightpaths or in terms
of higher-layer (IP, SONET) traffic. In the former case, only the RWA needs to be
solved, while in the latter case, both the LTD and RWA problems must be solved (in
conjunction or separately). By and large, this is the approach used in practice today to
design wavelength-routing networks. The solution of the RWA problem determines
the specific set of wavelengths that must be provided on each link to realize the
required lightpath topology, and thus solves the dimensioning problem. This is the
offline RWA problem since we are given all the lightpaths at once. Formulating and
solving the problem is useful in the network planning stage. Once a network is
operational, the RWA problem has to be solved for one lightpath at a time, when
the lightpath is required to be set up. This is the online RWA problem. With the
reduction in lightpath service provisioning times that is being faced by carriers, it is
becoming increasingly important to find good, rapid solutions to the online RWA
problem. Note that some of the LTD and WA heuristic algorithms discussed in
Section 10.3 may be applied to either the offline or online cases since they route and
assign wavelengths one lightpath at a time.

Although the specific sets of wavelengths obtained by solving the offline RWA
problem can be provisioned in a network without OXCs, OXCs are used where
flexibility in handling different traffic matrices is needed. Without OXCs, the light-
paths must be established by a static, or a priori, mapping of incoming wavelengths
to outgoing wavelengths at each node. When OXCs are deployed, by appropriate
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Figure 10.14 The three-node network of Figure 10.1(c) with the static OADM at
the central node replaced by a reconfigurable OADM, or OXC. The OXC allows the
set of lightpaths added/dropped at the node to be decided dynamically based on the
lightpath/traffic requirements.

configuration of the OXCs, the optical layer can change the lightpath topology and
hence adapt to different traffic requirements. Thus this approach can support any
one of several different lightpath topologies, and consequently, traffic requirements
at the higher layer, on the same fiber topology with the same optical layer equip-
ment. Since the higher-layer traffic requirements are usually unknown, this flexibility
is quite important in building a future-proof optical network.

Example 10.6 To illustrate the flexibility obtained by using OXCs in the
network, consider the three-node linear network example again. By replacing
the static OADM in Figure 10.1(c) by a reconfigurable OADM, or OXC, with
30 ports, we obtain the node design shown in Figure 10.14. This design can
handle any combination of traffic that does not require termination of more than
100 Gb/s of traffic at each node, in contrast to the design of Figure 10.1(c), which
was designed for a specific traffic matrix: 50 Gb/s of traffic between each pair of
nodes.

Solving the dimensioning problem determines not only the number of wave-
lengths that need to be supported on each link, but also the sizes of the OLTs and
the OXCs. The size of the OXC also depends on the maximum number of lightpaths
to be terminated at each node, which corresponds to the number of router interface
cards provided at that node.

As discussed above, in contemporary practice, the design of wavelength-routing
networks today is accomplished by forecasting a certain fixed traffic matrix between
the nodes. This forecast is revised every six months or so, and based on this forecast,
the network is upgraded with the addition of more capacities on the WDM links, or
more links, or additional nodes, or a combination of these approaches. Solving the
network upgrade problem is similar to solving the original problem, except that the
lightpaths that have already been established are usually not disturbed.



10.4 Statistical Dimensioning Models 599

We can view the above approach of forecasting a fixed traffic matrix and di-
mensioning the network to support the forecasted traffic as using a “deterministic”
traffic model. This is because the variations in traffic are not explicitly accounted
for during the design phase, though the use of crossconnects in the network enables
some of these variations to be handled at the time of actually setting up the light-
paths. Another approach to capacity planning is through the use of statistical traffic
models, which we will discuss in Section 10.4.

In a wavelength-routing network, if the nodes have full conversion capability, the
situation is the same as in classical circuit-switched telephone networks: a lightpath
is equivalent to a phone call and must be assigned one circuit on each of the links
it traverses. Another approach studied extensively by researchers is to dimension
optical networks with no or limited conversion capabilities and to support the same
traffic that would be supported using full conversion within the optical layer. We
discuss these methods in Section 10.5. In this case, as well as in the case of statis-
tical models, we consider only the RWA problem and not the LTD problem. Thus,
grooming issues that are part of the LTD problem are not discussed. The problem of
determining the location of regenerators is also outside the scope of our discussion.

10.4 Statistical Dimensioning Models

Two classes of statistical traffic models can be used in solving the dimensioning
problem. These models differ in their assumptions regarding what is known about
the set or sets of lightpaths that must be supported. In some cases, these models also
assume that each link supports the same number (and set) of wavelengths, but this
may not always be appropriate.

1. First-passage model: In this model, the network is assumed to start with no
lightpaths at all. Lightpaths arrive randomly according to a statistical model and
have to be set up on the optical layer. Some lightpaths may depart as well, but it
is assumed that, on average, the number of lightpaths will keep increasing and
eventually we will have to reject a lightpath request. (Thus the rate of arrival of
lightpath requests exceeds the rate of termination of lightpaths, and the network
is not in equilibrium.) We are interested in dimensioning the WDM links so
that the first lightpath request rejection will occur, with high probability, after a
specified period of time, T . This is a reasonable model today since lightpaths are
long lived. This longevity, combined with the cost of a high-bandwidth lightpath
today, means that network operators are unlikely to reject a lightpath request.
Rather, they would like to upgrade their network by the addition of more capacity
on existing links, or by the addition of more links, in order to accommodate the
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lightpath request. The time period T corresponds approximately to the time by
which the operators must institute such upgrades in order to avoid rejecting
lightpath requests.

2. Blocking model: In this model, the lightpath requests are treated in the same
way that a telephone network treats phone calls. Requests are assumed to arrive
and depart at random instants according to a statistical model. (However, the
network is assumed to be in equilibrium, that is, the rate of arrival and the rate
of termination of lightpaths are equal.) The assumption is that most requests
must be honored but occasionally requests may be blocked. The goal again is to
dimension the WDM links so that the blocking events are relatively rare (say, a
fraction of 1%). This is a futuristic model since lightpaths today are relatively
long lived, but it is quite possible that lightpaths will be provided on demand
by some operators in the future. In such a scenario, this would be a reasonable
model to use in order to dimension the WDM links.

For these statistical models, the analysis problem is easier to solve than the design
problem. For example, in the blocking model, it is easier to calculate the blocking
probabilities on each of the links given the link capacities (and the traffic model)
than it is to design the link capacities to achieve prespecified blocking probabilities.
Similarly, in the first-passage model, it is easier to calculate the (statistics of the) first
time at which the network operator will have to block a lightpath request for given
link capacities than it is to design the link capacities to achieve a prespecified first-
passage time. However, the capacity design or dimensioning problem can be solved
by iterating on the analysis problem. For example, we can calculate the blocking
probabilities for a given set of capacities, and if the blocking is not acceptable on
some links, we can increase the capacities of those links and recalculate the blocking
probabilities. In the rest of this section, we will address the analysis problems.

10.4.1 First-Passage Model

In this model, the network is assumed to start with no lightpaths, but the link
capacities are given. The model is analytically tractable only if we assume that
lightpath requests follow a Poisson process and their durations are exponentially
distributed. (This is the standard assumption in telephone networks for the statistics
of phone calls. Thus, this is tantamount to assuming that lightpath requests are like
phone calls.) The network can be modeled by a Markov chain where the state of
the Markov chain represents the set of calls in progress. You can consider both fully
wavelength-converting crossconnects and OXCs with no conversion capability. The
Markov chain approach is somewhat tractable only in the case of full wavelength
conversion. An approximate analysis of this model appears in [NS02].
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Figure 10.15 A 20-node, 32-link network representing a skeleton of the ARPANET. An average
of one lightpath request is assumed to arrive every month, between every pair of nodes, and this
lightpath is assumed to be in place for an average of one year. The link capacities shown are calculated
such that no link will need a capacity upgrade within two years, with high (85%) probability.

We do not describe the mathematical details of the analytical model that can be
found in [NS02], but we present the outcome of such an analysis for a moderate-sized
network. The network considered is shown in Figure 10.15. It has 20 nodes and 32
links and represents a skeleton of the original ARPANET. The request for lightpaths
on each of the possible 190 routes is assumed to arrive at a rate of one request per
month (but with a Poisson distribution). The average lightpath lease time is assumed
to be one year (with an exponential distribution). It is assumed that the capacity on
each link can be a multiple of four wavelengths. The capacities of the links shown in
Figure 10.15 are determined such that the probability that any of these links needs
a capacity upgrade within two years is less than 15%.

10.4.2 Blocking Model

In this model, we assume that lightpath arrival and termination requests follow a
statistical pattern. We may allow some lightpath requests to be blocked, and we
are interested in minimizing the blocking probability. In this case, a measure of the
lightpath traffic is the offered load, which is defined as the arrival rate of lightpath
requests multiplied by the average lightpath duration.

In practice, the maximum blocking probability is specified, say, 1%. We are then
interested in determining the maximum offered load that the network can support.
A more convenient metric is the wavelength reuse factor, R, which we define as the
offered load per wavelength in the network that can be supported with the specified
blocking probability. Clearly, R could depend on (1) the network topology, (2) the



602 WDM Network Design

traffic distribution in the network, (3) the actual RWA algorithm used, and (4) the
number of wavelengths available.

In principle, if we are given (1)–(4), we can determine the reuse factor R. However,
this problem is difficult to solve analytically for specific RWA algorithms. When the
routes between the source-destination nodes in the network are fixed (fixed routing)
and an available wavelength is chosen randomly, the blocking probabilities (and
hence the reuse factor) can be analytically estimated for a reasonable number of
wavelengths (say, up to 64). A discussion of these analytical techniques is beyond the
scope of this book but can be found in [SS00]. The results of such an analysis can be
used to dimension the links for a given blocking probability just as in the case of the
first-passage model discussed above.

When the routing is not fixed, estimating the blocking probabilities or reuse
factors is analytically intractable, and in practice, the best way to estimate R even for
small networks is by simulation. It is possible to analytically calculate the maximum
value of R when the number of wavelengths is very large for small networks. This
has been done in [RS95] and serves as an upper bound on the reuse factor for
practical values of the number of wavelengths. When the number of wavelengths is
small, simulation techniques can be used to compute the reuse factor. To this end,
we summarize some of the simulation results from [RS95]. We will also compare the
simulation results with the analytically calculated upper bound on the reuse factor.
We will use randomly chosen graphs to model the network, assume a Poisson arrival
process with exponential holding times, assume a uniform traffic distribution, and
use the following RWA algorithm.

Algorithm 10.2

1. Number the W available wavelengths from 1 to W .

2. For a lightpath request between two nodes, assign to it the first available
wavelength on a fixed shortest path between the two nodes.

Figure 10.16 shows the reuse factor plotted against the number of wavelengths
for a 32-node random graph with average node degree 4. The figure also shows the
value of the blocking probability that can be achieved with an infinite number of
wavelengths, which can be calculated analytically as mentioned before [RS95]. The
reuse factor is slightly higher with full conversion. The interesting point to be noted
is that the reuse factor improves as the number of wavelengths increases. This is due
to a phenomenon known as trunking efficiency, which is familiar to designers of
telephone networks. Essentially, the blocking probability is reduced if you scale up
both traffic and link capacities by the same factor. To illustrate this phenomenon,
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Figure 10.16 Reuse factor plotted against the number of wavelengths for a 32-node
random graph with average degree 4, with full wavelength conversion and no wavelength
conversion, from [RS95]. The horizontal line indicates the value of the reuse factor that
can be achieved with an infinite number of wavelengths with full wavelength conversion,
which can be calculated analytically.

consider a single link with Poisson arrivals with offered load ρ with W wavelengths.
The blocking probability on this link is given by the famous Erlang-B formula:

Pb(ρ,W) =
ρW

W !∑W
i=0

ρi

i!

.

The reader can verify that if both the offered traffic and the number of wavelengths
are scaled by a factor α > 1, then

Pb(αρ, αW) < Pb(ρ,W)

and

Pb(αρ, αW) → 0 as α →∞ if ρ ≤ W.

Figure 10.17 shows the reuse factor plotted against the number of nodes N .
The value of R for each N is obtained by averaging the simulated results over three
different random graphs, each of average degree 4. The figure shows that (1) R

increases with N , and (2) the difference between not having conversion and having
it also increases with N . Note that observation (1) is to be expected because the
average lightpath length (in number of hops) in the network grows as log N , whereas
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Figure 10.17 Reuse factor plotted against the number of nodes for random graphs with
average degree 4, with full wavelength conversion and no wavelength conversion (from
[RS95]).

the number of links in the network grows as N . Thus we would expect the reuse
factor to increase roughly as N/ log N . The reason for observation (2) is that the
average path length (or hops) of a lightpath in the network increases with N . Next,
we will see that wavelength converters are more effective when the network has
longer paths.

A similar simulation has been performed in [KA96] for ring networks. In general,
the increase in reuse factor obtained after using wavelength conversion was found to
be very small. This may initially seem counterintuitive because hop lengths in rings
are quite large compared to mesh networks. We will see next that hop length alone
is not the sole criterion for determining the gain due to wavelength conversion. In
rings, lightpaths that overlap tend to do so over a relatively large number of links,
compared to mesh networks. We will see that the larger this overlap, the less the gain
due to wavelength conversion.

Factors Governing Wavelength Reuse

We will next quantify the impact of the number of hops and the “overlap” be-
tween lightpaths on the wavelength conversion gain. We assume a statistical model
for the lightpath requests and make a highly simplified comparison of the prob-
ability that a lightpath request will be denied (blocked) when the network uses
wavelength converters and when it does not, based on [BH96]. We assume that
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the route through the network for each lightpath is specified. When the network
does not use wavelength converters, the wavelength assignment algorithm assigns
an arbitrary but identical wavelength on every link of the route when one such
wavelength is free (not assigned to any other lightpath) on every link of the path.
When the network uses wavelength converters, the wavelength assignment algo-
rithm assigns an arbitrary free wavelength on every link in the route to the lightpath;
thus we assume full wavelength conversion. In both cases, if the wavelength as-
signment algorithm is unable to find a suitable wavelength, the lightpath request is
blocked.

In order to compute the blocking probability for lightpath requests, we make the
simplifying assumption that the probability that a wavelength is used on a link is π

and that this event is independent of the use of other wavelengths on the same link
and the use of (the same and other) wavelengths on other links. If the network has
W wavelengths on every link and a lightpath request chooses a route with H links,
the probability that it is blocked is given by

Pb,nc =
(

1− (1− π)H
)W

(10.12)

when the network does not use wavelength converters. To see this, note that the
probability that a given wavelength is free on any given link is (1 − π). Thus, the
probability that it is free on all the H links in the route is (1 − π)H by the assumed
independence of the use of a wavelength on each link. Therefore, (1−(1−π)H ) is the
probability that a given wavelength is not free on some link of the route. Moreover,
since the use of each wavelength is assumed to be independent of the use of other
wavelengths, (1− (1− π)H )W is the probability that all W wavelengths are not free
on some link of the route, that is, Pb,nc.

When the network uses full wavelength conversion, the probability that a light-
path request is blocked is given by

Pb,fc = 1−
(

1− πW
)H

. (10.13)

The derivation of this equation using reasoning similar to that used in the derivation
of (10.12) is left as an exercise (Problem 10.23).

Given the blocking probability, we denote the solution of (10.12) and (10.13) for
π by πnc and πfc, respectively. Thus πnc (respectively, πfc) represents the achievable
link utilization for a given blocking probability when wavelength converters are not
used (respectively, used). It is easily seen that

πnc = 1−
(

1− P
1/W

b,nc

)1/H

(10.14)
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and

πfc =
(

1− (1− Pb,fc)
1/H

)1/W

. (10.15)

For small values of Pb,. (which is the case of practical interest) and sufficiently small
values of W such that P

1/W

b,. is not too close to 1, πnc and πfc can be approximated
by

πnc = P
1/W

b,nc /H (10.16)

and

πfc =
(
Pb,fc/H

)1/W
. (10.17)

Thus for the same blocking probability, the ratio πfc/πnc can be approximated by
H 1−1/W . Therefore, this simplified analysis predicts that even for moderately large
values of W the achievable link utilization is lower by approximately a factor of H

when wavelength converters are not used in the network.
Although the preceding analysis is highly simplified, ignores several important

effects, and overestimates the efficacy of wavelength converters in improving the
link utilization, it does predict correctly that the achievable link utilization is more
sensitive to the path length (H ) when wavelength converters are not used than
otherwise.

We now remove the assumption that the probability of a wavelength being used
on a link is independent of the use of the same wavelength on other links. However,
we will continue to assume that the events on one wavelength are independent of
the events on all other wavelengths. We first consider networks with no wavelength
conversion and calculate the probability that a lightpath request that chooses a route
with H links is blocked. Any lightpath that has already been established and uses
one of these H links is termed an interfering lightpath. We assume that an interfering
lightpath that uses one of these H links, say, link i, will not use the next link i + 1
with probability πl. (So with probability πl a lightpath that interferes on link i of
the route chosen by the lightpath request leaves after that link.) For any wavelength
λ, we also assume that a new lightpath request (one that does not interfere on link
i − 1) would interfere on link i of the route chosen by the lightpath request with
probability πn. This gives us the following conditional probabilities for the use of
wavelength λ on link i:

Prob(λ used on link i|λ not used on link i − 1) = πn,

and

Prob(λ used on link i|λ used on link i − 1) = (1− πl)+ πlπn.
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Note that under the assumption of independent use of the same wavelength on the
links, both of these conditional probabilities must equal π ; thus this assumption
corresponds to setting πl = 1 and π = πn.

Using the same reasoning as that used to derive (10.12), we can show that now

Pb,nc =
(

1− (1− πn)
H
)W

. (10.18)

For networks with full wavelength conversion, the following expression for
blocking probability can be derived under a set of assumptions that are similar
to that used to derive (10.18):

Pb,fc = 1−
H∏

i=1

(
1− πW

i − (1− πl + πlπn)
W πW

i−1

1− πW
i−1

)
, (10.19)

where

πi = πn

πn + πl − πnπl

(
1− (1− (πl + πn − πlπn))

i
)

.

For a given blocking probability, we can solve (10.18) and (10.19) for πnc and
πfc, respectively. Then we can approximate the conversion gain πfc/πnc for small
blocking probabilities and H 
 1/πl by

πfc

πnc
≈ H 1−1/W(πn + πl − πlπn). (10.20)

Define the interference length Li = 1/πl. Li is an approximation to the expected
number of links that an interfering lightpath uses on the route chosen by a lightpath
request. The assumption H 
 1/πl = Li is thus equivalent to assuming that the
number of hops in the path chosen by a lightpath request is much larger than the
average number of hops that it shares with an interfering lightpath. This assumption
is a good one when the network is well connected, but it is a poorer approximation
to the behavior in, say, rings.

The conversion gain under the assumption of independent use of a wavelength
on each link (πl = 1) is approximately H 1−1/W . Thus the conversion gain given by
(10.20) is lower than this by the factor (πn + πl − πlπn). This factor is the mixing
probability: the probability that at a node along the route chosen by a lightpath
request, an interfering lightpath leaves or a new interfering lightpath joins. Thus the
conversion gain is more in networks where there is more mixing, for example, in
dense mesh networks where the node degrees (switch sizes) are large, as opposed to
ring networks where the mixing is small and the interference length is large.

In summary, path length is only one of the factors governing the amount of reuse
we get by using wavelength conversion; interference length and switch sizes are other
important factors.
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An analysis of WDM ring networks, based on the techniques described above,
can be found in [SM00].

Wavelength Assignment and Alternate Routes

So far, while studying the RWA problem using a statistical model for the traffic,
we have assumed a fixed route between each source-destination pair. We will now
present some simulation results to show the effect of using alternate routes. We will
also consider two different ways of assigning wavelengths once the route has been
selected. Thus we consider the following four RWA algorithms.

Random-1. For a lightpath request between two nodes, choose at random one of
the available wavelengths on a fixed shortest path between the two nodes.

Random-2. Fix two shortest paths between every pair of nodes. For a lightpath re-
quest between two nodes, choose at random one of the available wavelengths on
the first shortest path between the two nodes. If no such wavelength is available,
choose a random one of the available wavelengths on the second shortest path.

Max-used-1. For a lightpath request between two nodes, among the available wave-
lengths on a fixed shortest path between the two nodes, choose the one that is
used the most number of times in the network at that point of time.

Max-used-2. Fix two shortest paths between every pair of nodes. For a lightpath
request between two nodes, among the available wavelengths on the first shortest
path between the two nodes, choose the one that is used the most number of
times in the network at that point of time. If no such wavelength is available,
among the available wavelengths on the second shortest path between the two
nodes, choose the one that is used the most number of times in the network at
that point of time.

The topology we consider is the 20-node, 39-link network from [RS95]. We
assume that 32 wavelengths are available on each link and that the traffic is uni-
form (the same for every pair of nodes). The reuse factor obtained by using each of
the above four RWA algorithms for a blocking probability of 1% is shown in Ta-
ble 10.2. Observe that the reuse factor improves substantially when an alternate path
is considered. Ideally, we would like to have more alternate routes for longer routes
and fewer routes for shorter routes. This will help reduce the blocking probability
on longer routes and ensure better fairness overall. Otherwise, short routes tend to
have much less blocking than long routes. Having more routes to consider usually
increases the control traffic in the network and leads to an additional compuational
burden on the network nodes, but this is not significant in networks with a moderate
number of nodes where lightpaths are set up and taken down slowly.
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Table 10.2 Reuse factor for 1% block-
ing for different RWA algorithms for the
20-node network considered in [RS95].

RWA Algorithm Reuse Factor

Random-1 6.9
Random-2 7.8
Max-used-1 7.5
Max-used-2 8.3

In addition to the choice of routes, the wavelength assignment algorithm also
plays an important role in determining the reuse factor. Note that for the same
number of available paths, the max-used algorithms have a distinct advantage over
the random algorithms. The intuitive reason for this phenomenon is that the max-
used strategy provides a higher likelihood of finding the same free wavelength on
all the links along a particular route. A drawback of the max-used algorithm is
that it requires knowledge of the wavelengths in use by all other connections in the
network. When the routing and wavelength assignment is performed in a distributed
manner, such information typically has to be obtained by means of periodic updates
broadcast by each node. This again increases the control traffic load on the network.

10.5 Maximum Load Dimensioning Models

As discussed above, from a dimensioning perspective, the fundamental property
that distinguishes wavelength-routing networks from traditional electronic circuit-
switched networks is the absence of full wavelength conversion. A number of studies
have been undertaken to determine how networks using no, or limited, wavelength
conversion should be dimensioned in order to support the same set, or sets, of
lightpaths as an optical layer with full conversion. In this section, we will present
some of the results obtained in this direction. We assume that both the lightpaths
and the network edges are undirected.

The results can be broadly classified into two categories: offline requests and on-
line requests. The offline problem corresponds to a “static” network design problem,
where only a single set of lightpaths is to be supported. This set is constrained to be
such that it can be supported in a network with nodes capable of full wavelength
conversion, with at most L wavelengths per link, since there is a routing that places
no more than L routes on any link. Thus, the maximum load of this set of lightpaths
is said to be L. In a network with nodes incapable of wavelength conversion, more
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than L wavelengths per link would be needed, in general, to support the same set of
lightpaths. We are interested in determining the additional number of wavelengths
that would be required to support every set of such lightpaths, with nodes that do
not have any wavelength conversion capability.

Online RWA corresponds to the “dynamic” network design case where light-
paths arise one at a time and have to be assigned routes and wavelengths when
the request arrives, without waiting for future requests to be known. However, the
requests and routing are such that no more than L lightpaths use any link at any
given time. Thus a network with fully wavelength-converting crossconnects that
provide L wavelengths on each link would be able to support all the requests. In
this case, the task is to compare the number of additional wavelengths that would
be required to support the same sets of lightpaths with nonwavelength-converting
crossconnects.

One shortcoming of this maximum load model is that the number of wave-
lengths required may be excessively large in order to support all sets of lightpaths
with maximum load L. If we are permitted not to support a small fraction of these
sets of lightpaths, it may be possible to considerably reduce the number of wave-
lengths required. In this sense, the maximum load model is a worst-case dimensioning
method.

10.5.1 Offline Lightpath Requests

In this section, we will survey the results for offline lightpath requests.

Theorem 10.1 [ABC+94] Given a routing of a set of lightpaths with load
L in a network G with M edges, with the maximum number of hops in a
lightpath being D, the number of wavelengths sufficient to satisfy this request is
W ≤ min[(L− 1)D + 1, (2L− 1)

√
M − L+ 2].

Proof. Observe that each lightpath can intersect with at most (L − 1)D

other lightpaths. Thus the maximum degree of the path graph P(G) is (L− 1)D.
Any graph with maximum degree � can be colored using � + 1 colors by a
simple greedy coloring algorithm, and hence the path graph can be colored using
(L− 1)D + 1 colors. So W ≤ (L− 1)D + 1.

To prove the remainder of the theorem, suppose there are K lightpaths of
length ≥ √M hops. The average load due to these lightpaths on an edge is

K
√

M

M
≤ L
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(a) (b)

Figure 10.18 (a) A line network with a set of lightpaths, also called an interval graph. (b) Wave-
length assignment done by Algorithm 10.3.

so that K ≤ L
√

M. Assign L
√

M separate wavelengths to these lightpaths.
Next consider the lightpaths of length ≤ √

M − 1 hops. Each of these inter-
sects with at most (L − 1)(

√
M − 1) other such lightpaths, and so will need at

most (L− 1)(
√

M − 1)+ 1 additional wavelengths. So we have

W ≤ L
√

M + (L− 1)(
√

M − 1)+ 1 = (2L− 1)
√

M − L+ 2,

which proves the theorem.

A line network, shown in Figure 10.18, is simply a network of nodes intercon-
nected in a line. A sample set of lightpath requests is also shown in the figure. In this
case, there is no routing aspect; only the wavelength assignment problem remains.
We study this topology because the results will be useful in analyzing ring networks,
which are practically important.

Our WA-NC problem (see Section 10.2.2) is equivalent to the problem of coloring
intervals on a line. The following greedy algorithm accomplishes the coloring using
L wavelengths. The algorithm is greedy in the sense that it never backtracks and
changes a color that it has already assigned when assigning a color to a new interval.

Algorithm 10.3 [Ber76, Section 16.5]

1. Number the wavelengths from 1 to L. Start with the first lightpath from the
left and assign to it wavelength 1.

2. Go to the next lightpath starting from the left and assign to it the least
numbered wavelength possible, until all lightpaths are colored.

Rings are perhaps the most important specific topology to consider. A ring is the
simplest 2-connected topology and has been adopted by numerous standards (FDDI,
SONET) as the topology of choice. We expect WDM networks to be first deployed
as rings.
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(a)

(b)Cut

λ1
λ2

λ3

(c)

Figure 10.19 Wavelength assignment in a ring network. (a) A ring network and a set of
lightpaths. (b) The ring is cut at a node that has a minimum number of lightpaths passing
through it to yield a line network. (c) The lightpaths in the line network are assigned
wavelengths according to Algorithm 10.3. The lightpaths going across the cut node are
assigned separate additional wavelengths.

In a ring, we have two possible routes for each lightpath. Given a set of lightpath
requests, there is an algorithm [FNS+92] that does the routing with the minimum
possible load Lmin. This algorithm may involve some lightpaths taking the longest
route around the ring. A simpler alternative is to use shortest-path routing for light-
paths, which, however, yields a higher load, as shown next.

Lemma 10.2 [RS97] Suppose we are given a request of source-destination
pairs and the minimum possible load for satisfying this request is Lmin. Then
shortest-path routing yields a load of at most 2Lmin.

Proof. Suppose shortest-path routing yields a load Lsp. Consider a link i

with load Lsp. Rerouting k connections using link i on their longer routes on the
ring reduces the load on link i by Lsp − k. Note that since all these connections
are routed on paths on length ≤ �N/2� initially, their longer routes on the ring
will all use the link �N/2� + i, increasing its load by k. Therefore, the load Lmin
of the optimal routing algorithm must satisfy Lmin ≥ mink max(Lsp − k, k), or
Lmin ≥ �Lsp/2�.

It turns out that the joint RWA-NC problem is hard, even in rings. However, we
can get good bounds on how many wavelengths are needed.

Theorem 10.3 [Tuc75] Given a set of lightpath requests and a routing on a
ring with load L, WA-NC can be done with 2L− 1 wavelengths.
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Proof. Determine the node in the ring with a minimum number l of light-
paths passing through it (do not count lightpaths starting or terminating at the
node). Cut the ring at this point (see Figure 10.19). Now we have an interval
graph with a maximum load of L, which we can color with L wavelengths,
using Algorithm 10.3. However, we still have to deal with the l lightpaths that
may wrap around the edge of the line. In the worst case, we can always assign
wavelengths to these lightpaths using l additional wavelengths, requiring a total
of L+ l wavelengths.

Now with any routing, there is a node in the ring where l ≤ L − 1. To see
this, suppose all nodes have at least L paths flowing through them. There exists
a node, say, node x, where a path terminates. Let y be the node adjacent to x on
this path. Then link xy must have a load of at least L+ 1, a contradiction.

It is possible to construct an example of a traffic pattern consisting of 2L − 1
lightpaths, with each pair of lightpaths sharing at least one common link. This implies
that all of them have to be assigned different wavelengths regardless of the algorithm
used, showing that there are examples for which 2L−1 wavelengths will be required.
However, such a scenario does not occur very often. In fact, [Tuc75] has shown
that if no three lightpaths in a given traffic pattern cover the entire ring, then 3

2L

wavelengths are sufficient to perform the wavelength assignment. This is an example
where the worst-case nonblocking model results in overdesigning the network. In
order to support a few pathological patterns, we end up using approximately L

2
additional wavelengths.

Let us see what can be gained by having wavelength conversion capabilities in
a ring network. If we have full conversion capabilities at all the nodes, then we can
support all lightpath requests with load L ≤ W . However, the same result can be
achieved by providing much less conversion capabilities, as shown by the following
results.

Theorem 10.4 [RS97] Consider a ring network that has full wavelength con-
version at one node and no wavelength conversion at the other nodes. This
network can support all lightpath requests with load L ≤ W .

The proof of this result is left as an exercise (Problem 10.19).
Limited-wavelength conversion can help significantly in improving the load that

can be supported in many network configurations. The detailed derivations of the
results for this case are beyond the scope of this book. We summarize the key results
here.
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Fixed-wavelength
converter

WDM mux/demux

Figure 10.20 A ring network with fixed-wavelength conversion at one node and no conversion
at the others that is able to support lightpath requests with load L ≤ W − 1. One of the nodes is
configured to convert wavelength i to wavelength (i + 1) mod W , and the other nodes provide no
wavelength conversion.

Theorem 10.5 [RS97] Consider the ring network shown in Figure 10.20,
which has fixed-wavelength conversion at one node where wavelength i is con-
verted to wavelength (i + 1) mod W , and no wavelength conversion at the other
nodes. This network can support all lightpath requests with load L ≤ W − 1.

By having d = 2 limited conversion at two nodes and no conversion at the others,
it is possible to improve this result to L ≤ W [RS97], making such a network as
good as a network with full wavelength conversion at each node.

Other topologies such as star networks and tree networks have also been consid-
ered in the literature. In star and tree networks, 3

2L wavelengths are sufficient to do
WA-NC [RU94]. In star networks, L wavelengths are sufficient for WA-FC [RS97].
The same result can be extended to arbitrary networks where lightpaths are at most
two hops long. Table 10.3 summarizes the results to date on this problem. It is still
a topic of intense research.

Multifiber Rings

The wavelength assignment problem in multifiber rings is considered in [LS00]. In a
multifiber ring, each pair of adjacent nodes is connected by k > 1 fiber pairs: k > 1
fibers are used for each direction of transmission instead of 1 fiber. Recall that we are
considering undirected edges and lightpaths, and each edge represents a pair of fibers,
one for each direction of transmission. Thus, such a multifiber ring is represented by
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Table 10.3 Number of wavelengths required to perform offline wavelength as-
signment as a function of the load L with and without wavelength converters. The
fixed conversion result for arbitrary topologies applies only to one- and two-hop
lightpaths.

Network Conversion Type

None Fixed Full Limited

Arbitrary min[(L − 1)D + 1, L L

(2L − 1)
√

M − L+ 2]
Ring 2L− 1 L+ 1 L L

Star 3
2L L L

Tree 3
2L L L

k edges between pairs of adjacent nodes. There is no wavelength conversion, but it
is assumed that the same wavelength can be switched from an incoming fiber to any
of the k outgoing fibers at each node. The following results on multifiber rings are
proved in [LS00].

Theorem 10.6 [LS00] Given a set of lightpath requests and a routing on a
k-fiber-pair ring with load L on each multifiber link, the number of wavelengths,
summed over all the fibers, required to solve the wavelength assignment problem

is no more than
⌈

k+1
k

L− 1
⌉
.

Thus, for a dual-fiber-pair ring (k = 2), the number of wavelengths required is no

more than
⌈

3
2L− 1

⌉
, which is a significant improvement over the bound of 2L − 1

for a single-fiber-pair ring.
As in the case of the single-fiber-pair ring, you can come up with a set of lightpath

requests with load L for which this upper bound on the number of wavelengths is
tight, for all values of the fiber multiplicity, k.

10.5.2 Online RWA in Rings

We next consider the online wavelength assignment problem in rings. Assume that
the routing of the lightpaths is already given and that lightpaths are set up as well
as taken down; that is, the lightpaths are nonpermanent. Here, it becomes much
more difficult to come up with smart algorithms that maximize the load that can be
supported for networks without full wavelength conversion. (With full wavelength
conversion at all the nodes, an algorithm that assigns an arbitrary free wavelength
can support all lightpath requests with load up to W .) We describe an algorithm
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that provides efficient wavelength assignment for line and ring networks without
wavelength conversion.

Lemma 10.7 [GSKR99] Let W(N,L) denote the number of wavelengths
required to support all online lightpath requests with load L in a network
with N nodes without wavelength conversion. In a line network, W(N,L) ≤
L+W(N/2, L), when N is a power of 2.

Proof. Break the line network in the middle to realize two disjoint subline
networks, each with N/2 nodes. Break the set of lightpath requests into two
groups: one group consisting of lightpaths that lie entirely within the subline
networks and the other group consisting of lightpaths that go across between
the two subline networks. The former group of lightpaths can be supported with
at most W(N/2, L) wavelengths (the same set of wavelengths can be used in
both subline networks). The latter group of lightpaths can have a load of at
most L. Dedicate L additional wavelengths to serving this group. This proves the
lemma.

The following theorem follows immediately from Lemma 10.7, with the added
condition that W(1, L) = 0 (or W(2, L) = L).

Theorem 10.8 [GSKR99] In a line network with N nodes, all online lightpath
requests with load L can be supported using at most L

⌈
log2 N

⌉
wavelengths

without requiring wavelength conversion.

The algorithm implied by this theorem is quite efficient since it is possible to
come up with lightpath traffic patterns for which any algorithm will require at least
0.5L log2 N wavelengths [GSKR99].

Theorem 10.9 [GSKR99] In a ring network with N nodes, all online lightpath
requests with load L can be supported using at most L

⌈
log2 N

⌉+L wavelengths,
without requiring wavelength conversion.

The proof of this theorem is left as an exercise (Problem 10.21).
When we have permanent lightpaths being set up, it is possible to obtain some-

what better wavelength assignments, as given by the following theorem, the proof
of which is beyond the scope of this book.

Theorem 10.10 [GSKR99] In a ring network with N nodes, all online perma-
nent lightpath requests with load L can be supported using (a) at most 2L wave-
lengths without wavelength conversion, and (b) with at most max(0, L− d)+ L

wavelengths with degree-d (d ≥ 2) limited wavelength conversion.
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Table 10.4 Bounds on the number of wavelengths required in rings to
support all traffic patterns with maximum load L for different models, offline
and online, from [GRS97, GSKR99]. d denotes the degree of wavelength
conversion. The upper bound indicates the number of wavelengths that are
sufficient to accommodate all traffic patterns with maximum load L, using
some RWA algorithm. The lower bound indicates that there is some traffic
pattern with maximum load L that requires this many wavelengths regardless
of the RWA algorithm that is employed. For the online traffic model, we
consider two cases, one where lightpaths are set up over time but never taken
down, and another where lightpaths are both set up and taken down over
time.

Conversion Degree Lower Bound on W Upper Bound on W

Offline traffic model

No conversion 2L − 1 2L− 1
Fixed conversion L+ 1 L+ 1
≥ 2 L L

Online model without lightpath terminations

No conversion 3L 3L

Fixed conversion L 3L

Full conversion L L

Online model with lightpath terminations

No conversion 0.5L�log2 N� L�log2 N� + L

Full conversion L L

Table 10.4 summarizes the results to date on the offline and online RWA prob-
lem for ring networks, with the traffic model characterized by the maximum link
load. For this model, observe that significant increases in the traffic load can be
achieved by having wavelength converters in the network. For the offline case,
very limited conversion provides almost as much benefit as full wavelength con-
version. For the online cases, the loads that can be supported are much less than
the offline case. The caveat is that, as illustrated in Figure 10.13, this model rep-
resents worst-case scenarios, and a majority of traffic patterns could perhaps be
supported efficiently without requiring as many wavelengths or as many wavelength
converters.
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Summary

We studied the design of wavelength-routing networks in this chapter. We saw that
there is a clear benefit to building wavelength-routing networks, as opposed to simple
point-to-point WDM links. The main benefit is that traffic that is not to be terminated
within a node can be passed through by the node, resulting in significant savings in
higher-layer terminating equipment.

The design of these networks is more complicated than the design of traditional
networks. It includes the design of the higher-layer topology (IP or SONET), which is
the lightpath topology design problem, and its realization in the optical layer, which
is the routing and wavelength assignment problem. These problems may need to be
solved in conjunction if the carrier provides IP or SONET VTs over its own optical
infrastructure. However, this is difficult to do, and a practical approach may be to
iteratively solve these problems.

We then discussed the wavelength dimensioning problem. The problem here is to
provide sufficient capacity on the links of the wavelength-routing network to handle
the expected demand for lightpaths. This problem is solved today by periodically
forecasting a traffic matrix and (re)designing the network to support the forecasted
matrix. Alternatively, you can employ statistical traffic demand models to estimate
the required capacities, and we discussed two such models.

The absence of wavelength conversion in the network can be overcome by pro-
viding more wavelengths on the links. In the last section, we studied this trade-off
under various models.

Further Reading

For more insights into how much cost savings is afforded by providing network-
ing functions within the optical layer, see [RLB95, Bal96, GRS98, SGS99, CM00,
BM00]. The material in this chapter is based on [GRS98]. See [Wil96, WW98, Ber96]
for a discussion of the problem of setting up connections between all pairs of nodes
in a WDM ring network.

The lightpath topology design problem is discussed in [RS96, KS98, CMLF00,
MBRM96, BG95, ZA95, JBM95, GW94, CGK93, LA91]. Our discussion is based
on [RS96]. This is an example of a network flow problem; these problems are dealt
with in detail in [AMO93].

Several papers [ABC+94, RU94, RS95, CGK92, RS97, MKR95, KS97, KPEJ97,
ACKP97] study the offline routing and wavelength assignment problem. There is also
a vast body of literature describing routing and wavelength assignment heuristics.
See, for example, [CGK92, SBJS93, RS95, Bir96, WD96, SOW95].
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As mentioned in Section 10.2.2, there are two common methods for computing
disjoint paths. One method first computes a shortest path and then a second path
that avoids the first. Since there may be multiple shortest paths, multiple candidate
disjoint paths can be computed and the best chosen from among them. Algorithms
that solve the k shortest paths problem [Yen71] can be used to generate multiple
candidate paths. The other method to compute disjoint paths is to use an algorithm
that solves the minimum disjoint path problem [Suu74, ST84]. A reference that
discusses disjoint paths when SRLGs are considered is [Bha99].

The statistical blocking model for dimensioning is analyzed in [SS00, BK95,
RS95, KA96, SAS96, YLES96, BH96].

The worst-case analysis of the maximum load model with online traffic is con-
sidered in [GK97].

Problems

10.1 In general, there are several valid design options even for a three-node network.
Consider the designs shown in Figure 10.1(c), but now assume that the number of
dropped lightpaths is six instead of five as discussed in the text. The advantage of this
design is that it provides more flexibility in handling surges in A–B and B–C traffic.
For example, this design not only can handle the traffic requirement of 50 Gb/s
between every pair of nodes, it can also handle a traffic requirement of 60 Gb/s
between nodes A–B and B–C, and 40 Gb/s between nodes A–C. This latter traffic
pattern cannot be handled if only five lightpaths/wavelengths are dropped.

Consider the design of Figure 10.1(c), and assume that x wavelengths are dropped
at node B and y wavelengths pass through. Determine the range of traffic matrices
that this design is capable of handling as a function of x and y.

10.2 Consider the network design approach using fixed-wavelength routing in a four-node
ring network with consecutive nodes A, B, C, and D. Suppose the traffic requirements
are as follows:

A B C D
A – 3 – 3
B 3 – 2 3
C – 2 – 2
D 3 3 2 –

(a) Do a careful routing of traffic onto each wavelength so as to minimize the
number of wavelengths needed.

(b) How do you know that your solution uses the minimum possible number of
wavelengths required to do this routing for any algorithm?



620 WDM Network Design

(c) How many ADMs are required at each node to support this traffic?
(d) How many ADMs are required at each node if instead of fixed-wavelength

routing, you decided to use point-to-point WDM links and receive and re-
transmit all the wavelengths at each node? How many ADMs does wave-
length routing eliminate?

10.3 Derive (10.1). What is the value when N is odd?

10.4 Derive (10.5). What is the value when N is odd?

10.5 Derive (10.8) for the case where there is one full-duplex lightpath between each pair
of nodes. Hint: Use induction. Start with two nodes on the ring, and determine the
number of wavelengths required. Add two more nodes so that they are diametrically
opposite to each other on the ring and continue.

10.6 Show that when N is odd, (10.8) is modified to

W =
⌈

t

N − 1

⌉
N2 − 1

8
.

10.7 Derive (10.9). What is the value when N is odd?

10.8 Develop other network designs besides the ones shown in Examples 10.2, 10.3, and
10.4, and compare the number of LTs and wavelengths required for these designs
against these three examples.

10.9 Consider the LTD problem in Section 10.2.1 but with the following changes:
There is a cost ci,j to set up a bidirectional lightpath between nodes i and j .
The cost includes the cost of the transponders that terminate the lightpaths
and any intermediate transponders and amplifiers.
λs,t is bidirectional traffic rate between source-destination pairs (s, t).
The bandwidth of a lightpath is r.
The objective is now to minimize the total cost of the network.

Give the MILP formulation for this LTD problem.

10.10 This problem illustrates the complexity of wavelength assignment in networks where
the transmission is bidirectional over each fiber. Consider the two networks shown in
Figure 10.21. In Figure 10.21(a), the network uses two fibers on each link, with two
wavelengths and unidirectional transmission on each fiber. In Figure 10.21(b), the
network uses one fiber on each link, with four wavelengths. Transmission is bidirec-
tional on each fiber, with two wavelengths in one direction and two in the other. No
wavelength conversion is allowed in either network. Both networks have the same
nominal capacity (four wavelengths/link). Which network utilizes the capacity more
efficiently?



Problems 621

(a) (b)

λ1 λ2λ1 λ2

λ1 λ2

λ1 λ2

λ1 λ2

λ3 λ4 λ3 λ4

λ3 λ4

A

B

C A

B

C

Figure 10.21 Two different scenarios of wavelength assignment in networks with bidi-
rectional links.

10.11 Show that a network having P fiber pairs between nodes and W wavelengths on
each fiber with no wavelength conversion is equivalent to a network with one fiber
pair between nodes with PW wavelengths, and degree P wavelength conversion
capability at the nodes.

10.12 Generalize the example of Figure 10.13 to the case when the number of nodes is
arbitrary, say, N . Compare the number of wavelengths required in this general case
to the upper bound given by Theorem 10.1.

10.13 In order to prove that W ≤ (2L − 1)
√

M − L + 2 in Theorem 10.1, we supposed
that there were K lightpaths of length ≥ √M hops. Instead, suppose there are K(x)

lightpaths of length ≥ x hops, and derive an upper bound for W that holds for every
x. Now, optimize x to get the least upper bound for W . Compare this bound with
the bound obtained in Theorem 10.1.

10.14 Show that Algorithm 10.3 always does the wavelength assignment using L wave-
lengths. Hint: Use induction on the number of nodes.

10.15 Consider the following modified version of Algorithm 10.3. In step 2, the algorithm
is permitted to assign any free wavelength from a fixed set of L wavelengths, instead
of the least numbered wavelength. Show that this algorithm always succeeds in
performing the wavelength assignment.

10.16 Prove that Theorem 10.3 can be tight in some cases. In other words, give an example
of a ring network and a set of lightpath requests and routing with load L that requires
2L − 1 wavelengths. Hint: First, give an example that requires 2L − 2 wavelengths
and then modify it by adding an additional lightpath without increasing the load.
Note that the example in Figure 10.19 shows such an example for the case L = 2.
Obtain an example for the case L > 2.
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10.17 Consider a ring network with a lightpath request set of one lightpath between each
source-destination pair. Compute the number of wavelengths sufficient to support
this set with full wavelength conversion and without wavelength conversion. What
do you conclude from this?

10.18 Give an example of a star network without wavelength conversion where 3
2L wave-

lengths are necessary to perform the wavelength assignment.

10.19 Prove Theorem 10.4.

10.20 Prove Theorem 10.8. Based on this proof, write pseudocode for an algorithm to
perform wavelength assignment.

10.21 Prove Theorem 10.9.

10.22 This problem relates to the wavelength assignment problem in networks without
wavelength conversion. Let us assume that the links in the network are duplex, that
is, consist of two unidirectional links in opposite directions. A set of duplex lightpath
requests and their routing is given. In practice, each request between two nodes A

and B is for a lightpath l from A to B and another lightpath l′ from B to A, which
we will assume are both routed along the same path in the network.

One wavelength assignment scheme (scheme 1) is to assign the same wavelength
to both l and l′. Give an example to show that it is possible to do a better wavelength
assignment (using fewer wavelengths) by assigning different wavelengths to l and l′

(scheme 2). Using this example, show that scheme 1 can need up to 3
2W wavelengths,

where W is the number of wavelengths required for scheme 2. Hint: Consider a
representation of the path graph corresponding to directed lightpaths.

10.23 Derive the expression (10.13) for the probability that a lightpath request is blocked
when the network uses full wavelength conversion.

10.24 Derive the approximate expressions for πnc and πfc given by (10.16) and (10.17). Plot
these approximations and the exact values given by (10.14) versus W for Pb = 10−3,
10−4, and 10−5, and H = 5, 10, and 20 hops to study the behavior of πnc and πfc,
and to verify the range of accuracy of these approximations.

10.25 Derive (10.18).

10.26 Consider the five-node fiber topology shown in Figure 10.22 on which IP bandwidth
is to be routed between IP router node pairs over a WDM network. The bandwidth
demands are given for each node pair in the following table. Assume that all demands
are bidirectional and that both directions are routed along the same path using the
same wavelengths in opposite directions.
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A C

DE

B

Figure 10.22 Network topology for Problem 10.26.

Gb/s B C D E

A 15 25 5 15
B 5 35 15
C 15 25
D 5

(a) Assuming OC-192c (10 Gb/s) trunks are used, complete an equivalent table
for the required number of lightpaths (that is, wavelengths) between each
pair of nodes.

(b) Using the given physical topology, and assuming that there are no wave-
length conversion capabilities contained within the optical crossconnects at
the nodes, specify a reasonable wavelength-routing design for each light-
path. Clearly label each wavelength along its end-to-end path through the
network.

(c) What is the maximum load on any link in the network, and how
does it compare with the number of wavelengths you are using in to-
tal?
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11
c h a p t e r

Access Networks

In previous chapters, we have explored the use of optical networks for metro
and long-haul network applications. The access network is the “last leg” of the

telecommunications network that runs from the service provider’s facility to the
home or business. With fiber now directly available to many office buildings in
metropolitan areas, networks based on SONET/SDH or Ethernet-based technologies
are being used to provide high-speed access to large business users. Business users
are big consumers of data services, many of which are delivered in the form of leased
lines at various speeds ranging from 1.5 Mb/s to several gigabits per second. While
this is happening, the telephone and cable companies are also placing a significant
emphasis on the development of networks that will allow them to provide a variety
of services to individual homes and small to medium businesses. This is the focus of
this chapter.

Today, homes get essentially two types of services: plain old telephone service
(POTS) over the telephone network and broadcast analog video over the cable net-
work. Recently added to this mix have been data services for Internet access using
either digital subscriber line (DSL) technology over the telephone network or cable
modem service over the cable network.

Early efforts to develop high-capacity access networks were devoted to devel-
oping networks that would accommodate various forms of video, such as video-
on-demand and high-definition television. However, the range of services that users
are expected to demand in the future is vast and unpredictable. Today, end users

629
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Table 11.1 Different types of services that must be supported by an access network.
The bandwidth requirements are given for each individual stream.

Service Type Downstream Upstream
Bandwidth Bandwidth

Telephony Switched 4 kHz 4 kHz
ISDN Switched 144 kb/s 144 kb/s
Broadcast video Broadcast 6 MHz or 19 Mb/s 0
Interactive video Switched 6 Mb/s Small
Internet access Switched A few Mb/s A few Mb/s
IPTV Switched 1–20 Mb/s Small
Video-on-demand Switched 1–20 Mb/s Small
Videoconferencing Switched 6 Mb/s 6 Mb/s
Business services Switched 1.5 Mb/s–10 Gb/s 1.5 Mb/s–10 Gb/s

are interested in both Internet access and other high-speed data access services,
for such applications as telecommuting, distance learning, entertainment video, and
videoconferencing. Future, unforeseen applications are also sure to arise and make
ever-increasing demands on the bandwidth available in the last mile. The term full
service encompasses the variety of services that are expected to be delivered via access
networks. A sampling of the different services and their characteristics is given in
Table 11.1. Both telephone and cable companies are striving to become full-service
providers.

At a broad level, these services can be classified based on three major criteria. The
first is the bandwidth requirement, which can vary from a few kilohertz for telephony
to tens of megabits per second per video stream or even tens of gigabits per second
for high-speed leased lines. The second is whether this requirement is symmetric
(two way), for example, videoconferencing, or asymmetric (one way), for example,
broadcast video. Today, while most business services are symmetric, other services
tend to be asymmetric, with more bandwidth needed from the service provider to
the user (the downstream direction) than from the user to the service provider (the
upstream direction). The last criterion is whether the service is inherently broadcast,
where every user gets the same information, for example, broadcast video, or whether
the service is switched, where different users get different information, as is the case
with Internet access.

In the next section, we provide an overview of the different types of existing and
emerging access network architectures. We then provide a more detailed description
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of the two most promising access architectures—the hybrid fiber coax (HFC) network
and the fiber to the curb (FTTC) approach and its variants.

11.1 Network Architecture Overview

In broad terms, an access network consists of a hub, remote nodes (RNs), and
network interface units (NIUs), as shown in Figure 11.1. In the case of a telephone
company, the hub is a central office (also called a local exchange in many parts of
the world), and in the case of a cable company, it is called a head end. Each hub
serves several homes or businesses via the NIUs. An NIU either may be located in
a subscriber location or may itself serve several subscribers. The hub itself may be
part of a larger network, but for our purposes, we can think of the hub as being the
source of data to the NIUs and the sink of data from the NIUs. In many cases, rather
than running cables from the hub to each individual NIU, another hierarchical level
is introduced between the hub and the NIUs. Each hub may be connected to several
RNs deployed in the field, with each RN in turn serving a separate set of NIUs. The
network between the hub and the RN is called the feeder network, and the network
between the RN and the NIUs is called the distribution network.

We saw that services could be either broadcast or switched. In the same way, the
distribution network could also be either broadcast or switched. Note that in the
context of services, we are using the terms broadcast and switched to denote whether
or not all users get the same information. In the context of the network, we are
referring to the network topology. Different combinations of services and network
topologies are possible—a broadcast service may be supported by a broadcast or
a switched network, and a switched service may be supported by a broadcast or a
switched network. In a broadcast network, an RN broadcasts the data it receives from
the feeder network to all its NIUs. In a switched network, the RN processes the data
coming in and sends possibly separate data streams to different NIUs. The telephone
network that we will study later is a switched network, whereas the cable television
network is a broadcast network. Broadcast networks may be cheaper than switched
networks, are well suited for delivering broadcast services, and have the advantage
that all the NIUs are identical, making them easier to deploy. (In some switched
networks that we will study, different NIUs use different wavelengths, which makes
it more complicated to manage and track the inventory of NIUs in the network.)
Switched networks, as their name suggests, are well suited for delivering switched
services and provide more security. For example, it is not possible for one subscriber
to tap into another subscriber’s data, and it is more difficult for one subscriber to
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Hub Remote node

Remote node

Remote node

NIU

NIU

NIU

Feeder network Distribution network

Figure 11.1 Architecture of an access network. It consists of a hub, which is a telephone
company central office or cable company head end, remote nodes deployed in the field,
and network interface units that serve one or more individual subscribers.

corrupt the entire network. Fault location is generally easier in a switched network
than in a broadcast network. In broadcast networks, the “intelligence” is all at the
NIUs, whereas in switched networks, it is in the network. Thus, NIUs may be simpler
in switched networks than in broadcast networks.

Another way of classifying access networks is based on the type of feeder net-
work, which is the network between the hub and the RN. In one scenario, the feeder
network could assign each NIU its own dedicated bandwidth. By dedicated band-
width, we mean that different NIUs are assigned different frequency (or wavelength)
bands in the frequency (or wavelength) domain. In another scenario, the feeder
network could have a total bandwidth that is shared by all the NIUs. By shared
bandwidth, we mean that multiple NIUs share a given bandwidth in the time do-
main. In this case, each NIU could potentially access the entire bandwidth for short
periods. For upstream transmission from the NIUs back to the hub, we will need
some form of media access control to coordinate access to the shared bandwidth
by the NIUs. If the traffic from/to the NIUs is bursty, it is more efficient to share a
large total amount of bandwidth among many NIUs rather than assign each NIU
its own dedicated bandwidth. On the other hand, with dedicated bandwidth, each
NIU can be guaranteed a certain quality of service, which is more difficult to do with
shared bandwidth. A disadvantage of the shared bandwidth approach is that each
NIU must have optics/electronics that operate at the total bandwidth of the network
as opposed to the bandwidth needed by the NIU.
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Table 11.2 Classification of different types of access networks, from [FRI96].
The acronyms refer to the following: HFC—hybrid fiber coax network; DSL—
digital subscriber line; and PON—passive optical network, with the T standing
for telephony, W for wavelength, and WR for wavelength routed.

Distribution Feeder Network
Network

Shared Dedicated

Broadcast Cable TV (HFC), TPON WPON
Switched Telephony, DSL, WRPON

Table 11.2 classifies the different types of access networks that we will be study-
ing in this chapter according to whether their distribution network is broadcast or
switched, and whether they use dedicated or shared bandwidth in the feeder net-
work. For example, the telephone network is a switched network, with each NIU
getting its own dedicated bandwidth of 4 kHz. The cable network is a broadcast
network, with all NIUs sharing the total cable bandwidth. A broadcast star WDM
passive optical network (WPON), with each NIU assigned a separate wavelength, is
an example of a broadcast network but with dedicated bandwidth to each NIU. We
will study this architecture in Section 11.3.

Today, two kinds of access networks reach our homes: the telephone network
and the cable network. The telephone network runs over twisted-pair copper cable.
It consists of point-to-point copper pairs between the telco central office and the
individual home. The two wires in a pair are twisted together to reduce the crosstalk
between them, hence the name twisted pair. This plant was designed to provide 4 kHz
bandwidth to each home, although we will see that much higher bandwidths can be
extracted out of it by using contemporary signal-processing techniques. Wires from
individual homes are aggregated as shown in Figure 11.2. The telephone network is
a switched network that provides dedicated bandwidth to each user.

A typical cable network is shown in Figure 11.3. It consists of fibers between
the cable company head end (analogous to a telco central office) and remote (fiber)
nodes. Usually, the channels from the head end are broadcast to the remote nodes by
using subcarrier multiplexing (SCM) on a laser (see Section 4.2 to understand how
SCM works). From the remote node, coaxial cables go to each home. A remote node
serves between 500 and 2000 homes. Such a network is called a hybrid fiber coax
(HFC) network. The cable bandwidth used is between 50 and 550 MHz, and the
cable carries up to 78 AM-VSB (amplitude-modulated vestigial sideband) television
signals in channels placed 6 MHz apart in the American NTSC (National Television
System Committee) standard. A return path in the 5 to 40 MHz window is available
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CO

Figure 11.2 The twisted-pair telephone access network, which consists of individual
twisted pairs routed from the central office (CO) to the individual subscribers.

RNHE
Fiber Coax

Tap

Amplifier

Figure 11.3 The hybrid fiber coax cable television network. The head end broadcasts
signals over fiber to the remote node, which then distributes it to individual subscribers
via coaxial cable drops.

as well. Many cable companies have now upgraded their networks to carry the video
channels in digital format. The cable network is a broadcast network in which all
users share a common total bandwidth. The same set of signals from the head end is
delivered to all the homes.
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The telephone and cable networks are vastly different. The telephone network
provides very little bandwidth per home but incorporates sophisticated switching
equipment and operations and management systems. The cable network provides a
lot of bandwidth to each home, but it is all unidirectional and broadcast, with no
switching and very simple management.

Several approaches have been used to upgrade the access network infrastruc-
ture to support the emerging set of new services. The integrated services digital
network (ISDN) provides 144 kb/s of bandwidth over the existing twisted-pair in-
frastructure. The digital subscriber line (DSL) is another technique that works over
the existing infrastructure but provides significantly more bandwidth than ISDN. It
uses sophisticated modulation and coding techniques to realize a capacity of a few
megabits per second over twisted pair, which is sufficient to transmit compressed
video. This requires that the central office (CO) and the home each have a DSL
modem. However, DSL has some limitations. The realizable bandwidth is inversely
proportional to the distance between the CO and the home, and with today’s tech-
nology, we can achieve several hundred kilobits per second to a few megabits per
second over this infrastructure. The existing twisted-pair infrastructure incorporates
several 4 kHz filters that must be removed. The bandwidth on the upstream (return)
path is severely limited to a few hundred kilobits per second. Many variations and en-
hancements of DSL have been proposed. As in the conventional telephone network,
ISDN and DSL can be classified as switched networks with dedicated bandwidth per
NIU.

Satellites provide another way of delivering access services. The direct broadcast
satellite system uses a geosynchronous satellite to broadcast a few hundred channels
to individual homes. A satellite may provide more bandwidth than a terrestrial
coaxial cable system. However, the main problem is that, unlike terrestrial systems,
the amount of spatial reuse of bandwidth possible is quite limited, since a single
satellite has a wide coverage area within which it broadcasts the signals. Also, there
is no easy way to handle the upstream traffic. Today, it is possible to have high-
speed Internet access delivered via satellite, with the upstream direction carried over
a regular telephone line.

Wireless access is yet another viable option. Although it suffers from limited
bandwidth and range, it can be deployed rapidly and allows providers without an
existing infrastructure to enter the market. Among the variants are the multichannel
multipoint distribution service (MMDS) and the local multipoint distribution service
(LMDS), both of which are terrestrial line-of-sight systems. MMDS provides thirty-
three 6 MHz channels in the 2–3 GHz band with a range of 15 to 55 km, depending on
the transmit power. LMDS operates in the 28 GHz band with 1.3 GHz of bandwidth
and is suitable for short-range (3–5 km) deployment in dense metropolitan areas
(the distance is also dependent on the amount of rainfall, as rain attenuates signals
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in this band). LMDS is part of a family of wireless communication standards, IEEE
802.16 or commonly known as WiMAX. These standards can provide up to 70 Mb/s
of symmetric bandwidth and up to a distance of 50 km. They have a variety of
applications, including point-to-point links and portable Internet access. WiMAX
can operate in a wide range of frequencies below 66 GHz, including 2.3 GHz to
3.5 GHz in the licensed spectrum and 5 GHz in the public spectrum.

A common wireless access technology to the Internet by laptop computers and
other personal computing devices is the IEEE 802.11 wireless local-area network
technology. It operates in the 2.5 and 5 GHz public spectrum and can provide data
rates of about 50 Mb/s. They are limited by a very short range of tens of meters to
an access point or “hot spot.” These hot spots are often found in airports, coffee
shops, restaurants, and hotels. They can be connected to the Internet in a number of
ways including WiMAX.

Optical fiberless systems using lasers transmitting over free space into the home
are also being developed as an alternative approach. These systems can provide about
622 Mb/s of capacity over a line-of-sight range of 200 to 500 m.

In the context of the next-generation access network, the two main architectures
being considered today are the so-called hybrid fiber coax (HFC) approach and
the fiber to the curb (FTTC) approach. The HFC approach is still a broadcast
architecture, whereas the FTTC approach incorporates switching.

11.2 Enhanced HFC

Although we have used the term HFC to describe the existing cable infrastruc-
ture, this same term is used to describe an upgraded version of this architecture,
which we will refer to as an enhanced HFC architecture. Since both the fiber and
the coax cable carry multiple subcarrier modulated streams, and it is a broad-
cast network, a better term to describe the HFC architecture is subcarrier mod-
ulated fiber coax bus (SMFCB). The network architecture is essentially the same
as that shown in Figure 11.3. In order to provide increased bandwidth per user,
the network is being enhanced using a combination of several techniques. First,
the transmitted frequency range can be increased, for example, up to 1 GHz from
the 500 MHz in conventional HFC systems. Enhanced HFC systems deployed in
larger metropolitan areas can deliver up to 862 MHz of bandwidth. Within each
subcarrier channel, we can use spectrally efficient digital modulation techniques,
such as 256 QAM (quadrature amplitude modulation), which provides a spec-
tral efficiency of 8 bits/Hz. In addition, we can drive fiber deeper into the net-
work and reduce the number of homes served by a remote node down to about
50 homes, from the 500 homes typically served by an HFC network. We can
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Figure 11.4 Bandwidth allocation in an enhanced HFC network.

also use multiple fibers and multiple wavelengths to increase the overall capac-
ity.

In a typical enhanced HFC architecture, like the existing cable network, down-
stream data is broadcast from the head end to remote (fiber) nodes by using a passive
optical star coupler. In recent deployments, it is common to use high-power 1.55 μm
transmitters in conjunction with booster amplifiers to achieve a high split ratio. In
addition, signals at 1.3 μm can be multiplexed on the same set of fibers. These
1.3 μm signals can be used in a narrowcasting mode. That is, these signals can be
transmitted only to a selected set of users, rather than to all users. This feature can
be used to provide additional bandwidth for selected groups of users.

From a remote node, several coax trees branch out to the network interface units.
An NIU may serve one or more homes. Its function is to separate the signals into
telephone signals and broadcast video signals, and to send the telephone signal on
twisted pair and the video signal on coax to each home that it serves. Each coax leg
serves about 50–500 homes. Logically, the architecture is a broadcast bus, although it
is implemented as a combination of optical stars and coax trees/buses. Downstream
broadcast video to the home would be sent on analog subcarrier channels. Video
signals could be sent as analog AM-VSB streams, compatible with existing equipment
inside homes. Digital video, as well as telephony and data services, can be carried
over the same infrastructure. In addition, upstream channels can be provided in the
5–40 MHz band, which is not used for downstream traffic. Figure 11.4 shows the
bandwidth usage in an enhanced HFC network.

In many cities the cable infrastructure can provide Internet access services through
the use of a specific modem developed for this application, called a cable modem,
at the head end and at the home. The modems use a shared media Ethernet-type
media access control protocol to provide this service. The peak rate of this service
is on the order of a few megabits per second, but is shared among all the users in
a neighborhood as the HFC network is fundamentally a broadcast network. The
amount of bandwidth available per user depends on how many other users are
accessing the network and the traffic generated by the other users.

Enhanced HFC is the natural evolution path for the cable service providers. It
maintains compatibility with existing analog equipment and is an efficient approach
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Figure 11.5 Different types of fiber access networks, based on how close the fiber gets
to the end user. In many cases, the remote node may be located at the central office itself.
The ONUs terminate the fiber signal, and the links between the ONUs and the NIUs are
copper based.

to deliver broadcast services. On the other hand, it has the disadvantages of a coax-
based solution, such as limited upstream bandwidth, limited reliability, and powering
needed for the many amplifiers in the path.

11.3 Fiber to the Curb (FTTC)

In contrast to HFC, in fiber to the curb (FTTC), data is transmitted digitally over
optical fiber from the hub, or central office, to fiber-terminating nodes called optical
network units (ONUs). The expectation is that the fiber would get much closer to
the subscriber with this architecture. Depending on how close the fiber gets to an
individual subscriber, different terms are employed to describe this architecture (see
Figure 11.5). In the most optimistic scenario, fiber would go to each home, in which
case this architecture is called fiber to the home (FTTH), and the ONUs would
perform the function of the NIUs. For the case where ONUs serve a few homes or
buildings, say, 8–64, this can be thought of as FTTC or fiber to the building (FTTB).
Typically, in FTTC, the fiber is within about 100 m of the end user. In this case,
there is an additional distribution network from the ONUs to the NIUs. With the
fiber to the cabinet (FTTCab) approach, the fiber is terminated in a cabinet in the
neighborhood and is within about 1 km of the end user.

To make the FTTC architecture viable, the network from the CO to the ONU
is typically a passive optical network (PON). The remote node is a simple passive
device such as an optical star coupler, and it may sometimes be colocated in the
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central office itself rather than in the field. Although many different architectural
alternatives can be used for FTTC, the term FTTC is most often used to describe a
version where the signals are broadcast from the central office to the ONUs, and the
ONUs share a common total bandwidth in time division multiplexed fashion.

In the context of FTTC, the feeder network is the portion of the network between
the central office and the remote node, and the distribution network is between
the remote node and the ONUs. We will see that a variety of different types of
architectures can be realized by using different types of sources at the central office
combined with different types of remote nodes.

Practically speaking, it is quite expensive today to transmit analog video signals
over an all-fiber infrastructure; this may necessitate an analog hybrid fiber coax
overlay that carries the analog video signals. The FTTC architecture is sometimes
also called baseband modulated fiber coax bus (BMFCB) or switched digital video
(SDV).

In what follows, we shall concentrate on different alternatives for realizing the
portion of the access network that is optical. Optical access network architectures
must be simple, and the network must be easy to operate and service. This means
that passive architectures, where the network itself does not have any switching in it
and does not need to be controlled, are preferable to active ones. Passive networks
also do not need to be powered, except at the end points, which provide significant
cost savings to operators. Moreover, the ONU itself must be kept very simple in
order to reduce cost and improve reliability. This rules out using sophisticated lasers
and other optical components within the ONU. Preferably, the components used
in the ONU must be capable of operating without any temperature control. The
CO equipment can be somewhat more sophisticated, since it resides in a controlled
environment, and its cost can be amortized over the many subscribers served out of
a single CO.

The optical networks proposed for this application are commonly called PONs
(passive optical networks)—all of them use passive architectures. They use some form
of passive component, such as an optical star coupler or a static wavelength router,
as the remote node. The main advantages of using passive architectures in this case
come from their reliability, ease of maintenance, and the fact that the field-deployed
network does not need to be powered. Moreover, the fiber infrastructure itself is
transparent to bit rates and modulation formats, and the overall network can be up-
graded in the future without changing the infrastructure itself. Table 11.3 compares
the different architectures.

The simplest PON architecture, shown in Figure 11.6(a), uses a separate fiber
pair from the CO to each ONU. The main problem with this approach is that the cost
of CO equipment scales with the number of ONUs. Moreover, the operator needs to
install and maintain all these fiber pairs. This approach is being implemented on a
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Table 11.3 Comparison of different PON architectures. N denotes the number of
ONUs in the network. An ONU bit rate of 1 indicates that the ONU operates at the
bit rate corresponding to the traffic it terminates rather than the aggregate traffic of N .
Node sync refers to whether or not the nodes in the network must be synchronized to a
common clock. CO sharing relates to whether the equipment is shared among multiple
users or whether separate equipment is required to service each user.

Architecture Fiber Power ONU Node Sync CO
Sharing Splitting Bit Rate Sharing

All fiber No None 1 No No
TPON Yes 1/N N Yes Yes
WPON Yes 1/N 1 Yes No
WRPON Yes None 1 Yes Yes

ONU

ONU

ONU

ONU

CO

ONU

ONU

ONU

ONU

CO

Cable

(a)

(b)

Figure 11.6 (a) The point-to-point fiber approach. (b) In practice, the fibers could be
laid in the form of a ring.

limited scale today, primarily to provide high-speed services to businesses. In Japan,
Nippon Telegraph and Telephone (NTT) is operating such a system at bit rates from
8 to 32 Mb/s over each fiber. Although logically there is a separate fiber pair to
each ONU, physically the fibers could be laid in a ring configuration, as shown in
Figure 11.6.
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Instead of providing a fiber pair to each ONU, a single fiber can be used with
bidirectional transmission. However, the same wavelength cannot be used to trans-
mit data simultaneously in both directions because of uncontrolled reflections in the
fiber. One way is to use time division multiplexing so that both ends do not trans-
mit simultaneously. Another is to use different wavelengths (1.3 and 1.55 μm, for
example) for the different directions.

More commonly, rather than dedicating a fiber pair per user, the fiber pair
is shared by many users. The most common example of such networks are the
SONET/SDH rings, which are now widely deployed to provide high-speed services
to large business customers. These rings operate at speeds ranging from 155 Mb/s
to 10 Gb/s. In this case, an ONU is a SONET add/drop multiplexer (ADM), and
multiple ONUs can be present on the same ring. However, these rings are not con-
sidered part of the PON family. Rather, they can be viewed as an alternative fiber
access solution.

While SONET/SDH rings are suitable for delivering the higher-speed services
and addressing the needs of large business customers, the PON architectures that we
will study here can provide a more cost-effective solution for addressing the needs of
small- and medium-sized businesses and homes, which require a few DS1 (1.5 Mb/s)
lines, DSL lines, or 10 Mb/s Ethernet connections.

The most common PON architecture is the TPON (originally called PON for
telephony) architecture [Ste87], shown in Figure 11.7. The downstream traffic is
broadcast by a transmitter at the CO to all the ONUs by a passive star coupler.
Although the architecture is a broadcast architecture, switched services can be sup-
ported by assigning specific time slots to individual ONUs based on their bandwidth
demands. For the upstream channel, the ONUs share a channel that is combined
using a coupler, again via fixed time division multiplexing (TDM) or some other
multiaccess protocol. In the TDM approach, the ONUs need to be synchronized
to a common clock. This is done by a process called ranging, where each ONU
measures its delay from the CO and adjusts its clock such that all the ONUs are
synchronized relative to the CO. The CO then assigns time slots to each ONU as
needed.

This architecture allows the relatively expensive CO equipment to be shared
among all the ONUs and makes use of fairly mature low-cost optical components.
The CO transmitter can be an LED or a Fabry-Perot laser, and cheap, uncooled
pinFET receivers and LEDs/Fabry-Perot lasers can be used within the ONUs. The
number of ONUs that can be supported is limited by the splitting loss in the star
coupler. Each ONU must have electronics that run at the aggregate bit rate of all the
ONUs. There is a trade-off between the transmit power, receiver sensitivity, bit rate,
and number of ONUs (which determines the splitting loss) and the total distance
covered.
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Figure 11.7 A broadcast and select TPON. The CO broadcasts its signal downstream
to all the ONUs using a passive star coupler. The ONUs share an upstream channel in
a time-multiplexed fashion. In this case, upstream and downstream signals are carried
using different wavelengths over a single fiber.

As we mentioned earlier, TPONs may be more cost-effective at offer-
ing lower-speed services compared to SONET/SDH rings. In a TPON, a fail-
ure of one subscriber’s equipment does not affect other subscribers, whereas
a SONET/SDH ring node failing affects all the nodes on the ring. How-
ever, SONET/SDH has built-in protection mechanisms to reroute traffic in
the event of both equipment failures and fiber cuts and to restore services
rapidly. In contrast, dealing with fiber cuts is not easy in the TPON archi-
tecture, without doubling up on the fiber plant. By the same token, with the
TPON architecture, additional subscribers can be added without affecting any
of the other subscribers. In SONET/SDH rings, this is a more complex pro-
cess.

There are a number of TPON standards. The first is the ATM Passive Optical
Network (APON). It is based on the Asynchronous Transfer Mode (ATM) protocol.
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A description of ATM can be found in Appendix J. APON was established by a large
group of service providers and equipment companies called the Full Service Access
Network (FSAN) working group. This standard specifies a downstream bandwidth
of up to 622 Mb/s and an upstream bandwidth of up to 155 Mb/s. The targeted
distance is 20 km with a total fiber attenuation in the 10–30 dB range. Practical
link budgets using lasers at the CO and ONUs allow a 16- to 32-way split with
this approach. For example, a TPON operating at 622 Mb/s using a 32-way split-
ter can provide each subscriber with about 20 Mb/s of bandwidth. Broadband PON
(BPON) is basically APON with some improvements and was developed by the Inter-
national Telecommunication Union (ITU). These improvements include supporting
survivability and dynamic allocation of upstream bandwidth.

TPON standards at the gigabit rates are ITU’s Gigabit PON (GPON), which is
an upgrade of APON, and the IEEE’s Ethernet PON (EPON or GEPON), which
is Gigabit Ethernet over PONs. The downstream bandwidth is point to multipoint,
and the upstream bandwidth is shared by TDMA. For GPON, the downstream
bandwidth can be either 1.2 Gb/s or 2.5 Gb/s; and the upstream bandwidth can be
either 155 Mb/s, 622 Mb/s, 1.2 Gb/s, or 2.5 Gb/s, with the restriction that it can-
not exceed the downstream bandwidth. For EPON, the downstream and upstream
bandwidths are 1.2 Gb/s. GPON supports ATM as well as the GPON Encapula-
tion Method (GEM), which is similar to the Generic Framing Procedure (GFP) and
efficiently transports user traffic. At the time of this writing, a 10-Gigabit Ethernet
PON (10G-EPON) is under development. It has an asymmetric architecture with
10 Gb/s downstream and 1 Gb/s upstream that relies on more mature technologies,
and a symmetric architecture with 10 Gb/s in both the upstream and the down-
stream.

BPON, GPON, and EPON protocols support dynamic bandwidth allocation
(DBA), where ONUs can send information about their upstream bandwidth needs
to the CO; for example, ONUs in GPON send backlogs of their upstream packet
queues. The CO determines time intervals when each ONU can transmit upstream,
and sends this information to the ONUs in grants. Because DBA allows the upstream
traffic to be statistically multiplexed, the bandwidth can be oversubscribed.

Next, we will discuss how WDM technology can be applied to TPONs. WDM
can increase the capacity and flexibility of TPONs, but its widespread adoption
depends on keeping costs low.

An architecture to implement WDM into a TPON is shown in Figure 11.8, where
the single transceiver at the CO is replaced with a WDM array of transmitters or a
single tunable transmitter to yield a WDM PON (WPON).

This approach allows each ONU to have electronics running only at the rate it
receives data, and not at the aggregate bit rate. However, it is still limited by the
power splitting at the star coupler.
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Figure 11.8 A broadcast-and-select WDM PON (WPON), which is an upgraded ver-
sion of the basic PON architecture. In this case, the CO broadcasts multiple wavelengths
to all the ONUs, and each ONU selects a particular wavelength. As in a conventional
TPON, the ONUs time-share an upstream channel at a wavelength different from the
downstream wavelengths.

Introducing wavelength routing solves the splitting loss problem while retaining
all the other advantages of the WDM PON. In addition, it allows point-to-point
dedicated services to be provided to ONUs. This leads to the WRPON architecture
shown in Figure 11.9.

Several types of WRPONs have been proposed and demonstrated. They all
use a wavelength router, typically an arrayed waveguide grating (AWG) for the
downstream traffic, but vary in the type of equipment located at the CO and ONUs,
and in how the upstream traffic is supported. The router directs different wavelengths
to different ONUs. The earliest demonstration was the so-called passive photonics
loop (PPL) [WKR+88, WL88]. It used 16 channels in the 1.3 μm band for down-
stream transmission and 16 additional channels in the 1.55 μm band for upstream
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Figure 11.9 A wavelength-routing PON (WRPON). In this case, a passive arrayed
waveguide grating (AWG) is used to route different wavelengths to different ONUs in the
downstream direction, without incurring a splitting loss. As in the TPON and WPON
architectures, the ONUs time-share a wavelength for upstream transmission.

transmission. However, this approach is not economical because we need two ex-
pensive lasers for each ONU—one inside the ONU and one at the central office. We
describe several variants of this architecture that provide more economical sharing
of resources at the CO and ONUs.

The RITENET architecture [Fri94] (see Figure 11.10) uses a tunable laser at the
CO. A frame sent to each ONU from the CO consists of two parts: a data part,
wherein data is transmitted by the CO, and a return traffic part, wherein no data
is transmitted but the CO laser is left turned on. Each ONU is provided with an
external modulator. During the return traffic part of the frame, the ONU uses the
modulator to modulate the light signal from the CO. This avoids the need to have
a laser at the ONU. The upstream traffic from the ONUs is also sent to the router.
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Figure 11.10 The RITENET WRPON architecture. The ONUs use an external modu-
lator to modulate an unmodulated signal transmitted from the CO.

The router combines all the different wavelengths and sends them out on a common
port to a receiver in the CO. If a single receiver is used in the CO, then the ONUs
must use time division multiplexing to get access to that receiver. Alternatively, if a
separate receiver is used for each wavelength at the CO, each ONU gets a dedicated
wavelength to transmit upstream back to the CO. This architecture avoids the need
to have a laser at each ONU. Instead, each ONU has an external modulator.

A lower-cost alternative to RITENET is the LARNET architecture [ZJS+95] (see
Figure 11.11), which uses an LED at the ONU instead of an external modulator for
transmission in the upstream direction. The LED emits a broadband signal that gets
“sliced” upon going through the wavelength router, as shown in Figure 11.12. Only
the power in the part of the LED spectrum corresponding to the passband of the
wavelength router is transmitted through to the receiver at the CO. Note, however,
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Figure 11.11 The LARNET WRPON architecture. A broadband signal from the LED
at the CO is split into individual wavelength components by the AWG and broadcast to
all the ONUs.

that with N ONUs, this imposes a splitting loss of at least 1/N—only a small fraction
of the total power falls within the passband of the router.

More important, an LED can be used at the CO as well [IFD95] for downstream
transmission. In this case, the signal sent by the CO LED effectively gets broadcast
to all the ONUs. It is in fact possible to have two transmitters within the CO: an
LED, say, at 1.3 μm, broadcasting to all the ONUs, and a tunable laser at 1.55 μm
selectively transmitting to the ONUs. This is an important way to carry broadcast
analog video signals over the digital switched fiber infrastructure at low cost without
having to use a separate overlay network for this purpose.

WDM components for PONs are not yet mature and are more expensive than the
components required for simple broadcast PONs. However, WRPONs offer much
higher capacities than the simple broadcast PONs, and simple PONs can be upgraded
to WRPONs as the need arises.
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Figure 11.12 Spectral slicing: if a broadband LED signal is sent through a filter, only
the portion of the LED spectrum that is passed by the filter comes out.

11.3.1 PON Evolution

We have studied a number of PON variants in this section. It is important to realize
that there is a nice evolution path from a very simple TPON architecture to some
of the more complex WRPON architectures. The evolution can be performed with
minimal disruption of existing services and without wasting already-deployed equip-
ment. In general, the terminal equipment can be upgraded as additional capacity and
services are needed, without having to upgrade the outside fiber plant, which is a
true long-term investment. The upgrade scenario for PONs could go as follows. The
operator can start by deploying a simple broadcast TPON, which is a broadcast
star network with shared bandwidth, according to the classification of Table 11.2.
If more ONUs need to be supported, the operator can upgrade the network to a
WDM broadcast PON, which is a broadcast network with dedicated bandwidth
provided to each ONU. This can be done by upgrading the transmitters at the CO
to WDM transmitters, and the operator may be able to reuse the existing ONUs.
If higher capacities per ONU are needed, the operator can further upgrade the net-
work to a wavelength-routed PON, which is a switched network with dedicated
bandwidth. Moreover, this wavelength-routed PON can also support broadcast ser-
vices efficiently using the spectral slicing technique described earlier. Thus there is
an upgrade path starting from a broadcast network with shared bandwidth to a
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broadcast network with dedicated bandwidth and eventually to a switched network
with dedicated bandwidth.

Summary

Service providers, both telephone operators and cable companies, are actively look-
ing to deploy broadband access networks to provide a variety of new services. Fiber-
based services are now available for many businesses in metropolitan areas. When
it comes to residential access, however, fiber is yet to reach the home. SONET/SDH
ring-based architectures have been deployed to support the needs of large business
customers, but they are not as suited for supporting the needs of residential users and
small business customers. The two main architectures for broadband access networks
are the hybrid fiber coax (HFC) architecture, which is based on evolving the current
plant deployed by cable television operators, and the fiber to the curb (FTTC) archi-
tecture, or equivalently a passive optical network (PON) architecture. Compared to
the HFC approach, FTTC has a higher initial cost, but provides bandwidth deeper
in the network and may prove to be a better longer-term solution. Although FTTC
refers to a simple broadcast TDM star PON architecture, we also explored several
upgrade options of the PON approach that provide higher capacities by making
clever use of wavelength division multiplexing techniques.

FTTC is attractive in places where coaxial cable is not already deployed, which
is the case in many countries other than the United States. FTTC also makes sense
for telephone companies that lack a cable infrastructure.

Variants of FTTC have been around a long time, but deployment has been
slow for several reasons. First, there is significant cost associated with building and
deploying a new access network, which can take several years to pay back. Therefore
there is a big barrier toward making the investment in the first place. Second, this is
coupled with the uncertain outlook in terms of the revenue that can be generated from
the investment. Third, optical component costs are only now starting to decline, with
the development of components especially optimized for PON applications, such as
low-cost, uncooled semiconductor lasers and transceivers.

The HFC approach, on the other hand, is attractive in places where coaxial cable
is already deployed to the home, such as the United States. It is the logical evolution
choice for cable companies that have already deployed a simpler version of the HFC
architecture to provide basic cable television service.

As optical component costs come down and bandwidth needs increase, it is clear
that optical fiber will play a major role in access networks; the question is, how close
will it get to our homes?
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Further Reading

There is a vast body of literature on access networks. The Broadband Forum main-
tains an informative web page (http://www.broadband-forum.org) covering home-
to-core networking, including DSL. See also [Bha99] for a nice overview of the
different types of DSL.

The papers in [Fra98, Aar95, Kob94, KKS00, SKY89] describe plans for de-
ploying fiber in the access network and compare different architectural approaches.
TDM PONs were first proposed in [Ste87]. The ITU’s standard for BPON is G.983
[ITU98], and for GPON it is G.984 [ITU04]. IEEE’s standard for EPON is 802.3ah
[IEE04], and at the time of this writing the standard for 10G EPON, IEEE 802.av, is
projected to be approved toward the end of 2009. An overview of 10G EPON can
be found in [HSM08].

Both the ITU and IEEE PON architectures allow DBA in the upstream but they
do not specify exactly how to allocate bandwidth to ONUs. In this way, how a DBA
allocates bandwidth is implementation dependent. Equipment makers can implement
their algorithms to maintain quality of service to users according to service level
agreements. A survey of DBA algorithms is given in [MMR04].

[FRI96, FHJ+98, VMVQ00] describe some possible evolutions of the basic
TPON architecture by making clever use of WDM and optical amplifiers. A variety
of WDM PONs are described in [WKR+88, WL88, Fri94, ZJS+95, IFD95, IRF96].
Surveys of WDM PONs can be found in [GJP08] and [BPC+05].

Problems

11.1 Do a power budget calculation for the different types of PON architectures consid-
ered in this chapter and determine the number of ONUs that can be supported in
each case, assuming the following parameters:

Laser output power −3 dBm
LED output power −20 dBm
Transmit bit rate 155 Mb/s
Receiver sensitivity −40 dBm
Fiber loss, including connectors 10 dB
1 × 8 wavelength router loss 5 dB
1 × 32 wavelength router loss 9 dB
1 × 64 wavelength router loss 12 dB
Excess splitter loss 1 dB

The normal wavelength router losses are indicated above. However, with spectral
slicing, an additional loss is also incurred as only a small fraction of the spectrum is
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transmitted out of each port on the wavelength router. Assume that in addition to
the standard loss, we get only 1/2N of the transmitted power in each channel, where
N is the number of ONUs.

11.2 Consider the RITENET architecture shown in Figure 11.10. Suppose the laser speed
at the CO is limited to 155 Mb/s. The network needs to support 20 ONUs and
provide each ONU with 10 Mb/s bandwidth from the CO to the ONU and 2 Mb/s
from the ONU to the CO. How could you modify the architecture to support this
requirement?
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12
c h a p t e r

Photonic Packet
Switching

In this chapter, we study optical networks that are capable of providing packet-
switched service at the optical layer. We call these networks photonic packet-

switched (PPS) networks. Packet-switched services are provided today using elec-
tronic switches by many networks, such as IP and Ethernet networks. Here, we
are interested in networks where the packet-switching functions are performed op-
tically. The goal of PPS networks is to provide the same services that electronic
packet-switched networks provide, but at much higher speeds.

The optical networks that we have studied so far provide circuit-switched ser-
vices. These networks provide lightpaths, which can be established and taken down
as needed. In these networks, the optical nodes do not switch signals on a packet-
by-packet basis, but rather only switch at the time a circuit is established or taken
down. Packet switching is done in the electronic domain by other equipment such as
IP routers or Ethernet switches. These routers and switches make use of lightpaths
provided by the optical layer to establish links between themselves as needed. In
addition to switching packets, routers and switches make use of sophisticated soft-
ware and hardware to perform the control functions needed in a packet-switched
network.

In this chapter, we will see that all the building blocks needed for optical packet
switching are in a fairly rudimentary state today and exist only in research labora-
tories. They are either difficult to realize, very bulky, or very expensive, even after
a decade of research in this area. Moreover, it is likely that we will need electronics
to perform the intelligent control functions for the foreseeable future. Optics can be
used to switch the data through, but it does not yet have the computing capabilities

653



654 Photonic Packet Switching

to perform many of the control functions required, such as processing the packet
header, determining the route for the packet, prioritizing packets based on class of
service, maintaining topology information, and so on.

However, there are a few motivations for researching optical packet switching.
One is that optical packet switches hold the potential for realizing higher capacities
than electronic routers (although this potential is yet to be demonstrated!). For
instance, the capacity of the best routers today is less than 100 Tb/s, with the highest-
speed interfaces being at 40 Gb/s. In contrast, optical switches are, for the most part,
bit rate independent, so they can be used to switch tens to hundreds of Tb/s of traffic.

Another motivation for studying optical packet switching is that it can improve
the bandwidth utilization within the optical layer. The notion is that high-speed
optical links between routers are still underutilized due to the bursty nature of traffic,
and using an underlying optical packet layer instead of an optical circuit layer will
help improve link utilizations. The question is whether having another high-speed
packet-switched layer under an already existing packet-switched layer (say, IP) will
provide sufficient improvement in statistical link utilization. The answer depends
on the statistical properties of the traffic. The conventional wisdom is that because
many lower-speed bursty traffic streams are multiplexed through many layers, the
burstiness of the aggregate stream is lower than that of the individual streams.
In this case, having an optical packet layer under an electrical packet layer may
not help much because the traffic entering the optical layer is already smoothed
out. However, it has been shown recently that with some types of bursty traffic,
notably the so-called self-similar traffic, the burstiness of a multiplexed stream is
not less than that of its constituent individual streams [PF95, ENW96]. For such
traffic, using an optical packet layer provides the potential to improve the link
utilization.

Figure 12.1 shows a generic example of a store-and-forward packet-switched
network. In this network, the nodes A–F are the switching/routing nodes; the end
nodes 1–6 are the sources and sinks of packet data. We will assume that all packets
are of fixed length. Packets sent by an end node will, in general, traverse multiple
links and hence multiple routing nodes, before they reach their destination end node.
For example, if node 1 has to send a packet to node 6, there are several possible
routes that it can take, all consisting of multiple links and routing nodes. If the route
chosen for this packet is 1–A–B–D–F–6, this packet traverses the links 1–A, A–B,
B–D, D–F , and F–6. The routing nodes traversed are A, B, D, and F . Note that the
route chosen may be specified by the packet itself, or the packet may simply specify
only the destination node and leave the choice of route to the routing nodes in its
path. In the remainder of the discussion, we will assume that the route is chosen
by the routing nodes based on the packet destination that is carried in the packet
header.
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Figure 12.1 A generic store-and-forward network.
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Figure 12.2 A routing node in the network of Figure 12.1.

Figure 12.1 is also the block diagram of a PPS network. The major difference
is that the links run at very high speeds (hundreds of gigabits per second) and the
signals are handled mostly optically within each routing node.

Figure 12.2 shows a block diagram depicting many of the functions of a routing
node, or router. In general, there is one input from, and one output to, each other
routing node and end node that this routing node is connected to by a link. For
example, in Figure 12.1, routing node A has three inputs and outputs: from/to
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routing node B, routing node C, and end node 1. Similarly, routing node C has five
inputs and outputs. Routers perform the following functions (see Section 6.5 for a
more detailed description of how these functions are performed by IP routers):

Routing. Routers maintain up-to-date information of the network topology. This
information is maintained in the form of a routing table stored at each node.

Forwarding. For each incoming packet, a router processes the packet header and
looks up its routing table to determine the output port for that packet. It may
also make some changes to the header itself and reinsert the header at the output.

Switching. Switching is the actual process of switching the incoming packet to the
appropriate output port determined by the forwarding process. The hardware
that does the switching is often called the switch fabric, as shown in Figure 12.2.

In Chapter 3 we discussed the technologies that can be used to implement a
switch fabric. An example of a switch fabric is shown in Figure 12.3. Its input
ports are attached to a stage of tunable wavelength converters (TWCs), followed
by an arrayed waveguide grating (AWG) and then another stage of wavelength
converters (WC), which are followed by the output ports. To switch a packet from
an input port to an output port, the input port’s TWC has its outgoing wavelength
tuned so that the packet will be routed through the AWG to the packet’s output
port. (See Figure 3.25 for a description of how signals are routed through the
AWG depending on their wavelengths.) The WCs at the output ports have their
outgoing wavelengths fixed. The switch fabric’s switching speed is limited only
by the switching speed of the TWCs. For optical packet transmissions in the 10s
of Gb/s or higher, the switching speed should be in the nanosecond range or
lower.

Buffering. Buffering is needed in a router for many reasons. Perhaps the most im-
portant one in this context is to deal with destination conflicts. Multiple packets
arrive simultaneously at different inputs of a router. Several of these may have
to be switched to the same output port. However, at any given time, only one
packet can be switched to any given output port. Thus the router will have to
buffer the other packets until they get their turn. Buffers are also used to separate
packets based on their priorities or class of service.

Figure 12.2 shows buffers at the input as well as the output. We will explore
the trade-offs between input and output buffering in Section 12.4. We will see
that buffers are difficult to realize in the case of photonic packet switches, and
most switch proposals therefore use only a small amount of buffering, usually
integrated with the switch.

Multiplexing. Routers multiplex many lower-speed streams into a higher-speed
stream. They also perform the reverse demultiplexing operation.
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Figure 12.3 An optical packet switch composed of wavelength converters and an AWG.

Synchronization. Synchronization can be broadly defined as the process of aligning
two signal streams in time. In PPS networks, it refers either to the alignment
of an incoming pulse stream and a locally available clock pulse stream or to
the relative alignment of two incoming pulse streams. The first situation occurs
during multiplexing and demultiplexing, and the second occurs at the inputs of
the router where the different packet streams need to be aligned to obtain good
switching performance.

PPS networks will have to perform all the functions described above. Some of
these functions involve a fair amount of sophisticated logic and processing and are
still best handled in the electrical domain. The routing and forwarding functions,
in particular, fit into this category. To date, most PPS proposals assume that the
packet header is transmitted separately from the data at a lower speed and processed
electronically. We will, however, study some of the approaches to provide at least
rudimentary header processing in the optical domain.

Because of technological constraints, it is quite difficult to perform even the
remaining functions of switching, buffering, multiplexing, and synchronization in the
optical domain. This will become clearer as we explore the different techniques for
performing these functions. Therefore, PPS networks are at this time still in research
laboratories and have not yet entered the commercial marketplace. To simplify the
implementation, especially the control functions, many PPS proposals also assume
the use of fixed-size packets, and we will make the same assumption in this chapter.
Of course, in reality we have to deal with varying packet sizes. If a fixed packet size
is used inside the network, then the longer packets will have to be segmented at the
network inputs and reassembled together at the end. Alternatively, we could design
the PPS nodes to switch variable-sized packets, a more complex proposition.
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We start this chapter by describing techniques for multiplexing and demultiplex-
ing optical signals in the time domain, followed by methods of doing synchronization
in the optical domain. Synchronization requires delaying one stream with respect to
the other if they are misaligned in time. In this context, we will also study how
tunable optical delays can be realized. We then discuss various solutions for dealing
with the buffering problem. We conclude the chapter by discussing burst switching,
a variant of PPS, and some of the experimental work that has been carried out to
demonstrate the various aspects of PPS.

12.1 Optical Time Division Multiplexing

At the inputs to the network, lower-speed data streams are multiplexed optically into
a higher-speed stream, and at the outputs of the network, the lower-speed streams
must be extracted from the higher-speed stream optically by means of a demultiplex-
ing function. Functionally, optical TDM (OTDM) is identical to electronic TDM.
The only difference is that the multiplexing and demultiplexing operations are per-
formed entirely optically at high speeds. The typical aggregate rate in OTDM systems
is on the order of 100 Gb/s, as we will see in Section 12.6.

OTDM is illustrated in Figure 12.4. Optical signals representing data streams
from multiple sources are interleaved in time to produce a single data stream. The
interleaving can be done on a bit-by-bit basis as shown in Figure 12.4(a). Assuming
the data is sent in the form of packets, it can also be done on a packet-by-packet
basis, as shown in Figure 12.4(b). If the packets are of fixed length, the recognition of
packet boundaries is much simpler. In what follows, we will assume that fixed-length
packets are used.

In both the bit-interleaved and the packet-interleaved case, framing pulses can
be used. In the packet-interleaved case, framing pulses mark the boundary between
packets. In the bit-interleaved case, if n input data streams are to be multiplexed,
a framing pulse is used every n bits. As we will see later, these framing pulses will
turn out to be very useful for demultiplexing individual packets from a multiplexed
stream of packets.

Note from Figure 12.4 that very short pulses—much shorter than the bit interval
of each multiplexed stream—must be used in OTDM systems. Given that we are
interested in achieving overall bit rates of several tens to hundreds of gigabits per
second, the desired pulse widths are on the order of a few picoseconds. A periodic
train of such short pulses can be generated using a mode-locked laser, as described
in Section 3.5.1, or by using a continuous-wave laser along with an external modu-
lator, as described in Section 3.5.4. Since the pulses are very short, their frequency
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Figure 12.4 (a) Function of a bit-interleaved optical multiplexer. (b) Function of a
packet-interleaved optical multiplexer. The same four data streams are multiplexed in
both cases. In (b), the packet size is shown as 3 bits for illustration purposes only; in
practice, packets are much larger and vary in size. Note that in both cases, the data must
be compressed in time.
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spectrum will be large. Therefore, unless some special care is taken, there will be sig-
nificant pulse broadening due to the effects of chromatic dispersion. For this purpose,
many OTDM experiments use suitably shaped return-to-zero (RZ) pulses, which we
studied in Sections 2.6 and 4.1.

Assume that n data streams are to be multiplexed and the bit period of each of
these streams is T . Also assume that framing pulses are used. Then the interpulse
width is τ = T/(n + 1) because n + 1 pulses (including the framing pulse) must
be transmitted in each bit period. Thus the temporal width τp of each pulse must
satisfy τp ≤ τ . Note that usually τp < τ , so that there is some guard time between
successive pulses. One purpose of this guard time is to provide for some tolerance
in the multiplexing and demultiplexing operations. Another reason is to prevent the
undesirable interaction between adjacent pulses that we discussed earlier.

12.1.1 Bit Interleaving

We will first study how the bit-interleaved multiplexing illustrated in Figure 12.4(a)
can be performed optically. This operation is illustrated in Figure 12.5. The periodic
pulse train generated by a mode-locked laser is split, and one copy is created for each
data stream to be multiplexed. The pulse train for the ith data stream, i = 1, 2, . . . , n,
is delayed by iτ . This delay can be achieved by passing the pulse train through the
appropriate length of optical fiber. Since the velocity of light in silica fiber is about
2× 108 m/s, 1 meter of fiber provides a delay of about 5 ns. Thus the delayed pulse
streams are nonoverlapping in time. The undelayed pulse stream is used for the
framing pulses. Each data stream is used to externally modulate the appropriately
delayed periodic pulse stream. The outputs of the external modulator and the framing
pulse stream are combined to obtain the bit-interleaved optical TDM stream. The
power level of the framing pulses is chosen to be distinctly higher than that of the
data pulses. This will turn out to be useful in demultiplexing, as we will see. In the
case of broadcast networks with a star topology, the combining operation is naturally
performed by the star coupler.

The corresponding demultiplexing operation is illustrated in Figure 12.6. The
multiplexed input is split into two streams using, say, a 3 dB coupler. If the j th
stream from the multiplexed stream is to be extracted, one of these streams is delayed
by jτ . A thresholding operation is performed on the delayed stream to extract the
framing pulses. The framing pulses were multiplexed with higher power than the
other pulses in order to facilitate this thresholding operation. Note that because
of the induced delay, the extracted framing pulses coincide with the pulses in the
undelayed stream that correspond to the data stream to be demultiplexed. A logical
AND operation between the framing pulse stream and the multiplexed pulse stream
is used to extract the j th stream. The output of the logical AND gate is a pulse if,
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Figure 12.5 An optical multiplexer to create the bit-interleaved TDM stream shown
in Figure 12.4(a). Only the operations at one node (node 3) are shown (after [Mid93,
Chapter 6]).

during a pulse interval, both inputs have pulses; the output has no pulse otherwise.
We will discuss two devices to perform the logical AND operation in Section 12.1.3:
a nonlinear optical loop mirror and a soliton-trapping gate.

12.1.2 Packet Interleaving

We next consider how the packet-interleaving operation shown in Figure 12.4(b) can
be performed. This operation is illustrated in Figure 12.7(a). As in the case of bit
interleaving, a periodic stream of narrow pulses is externally modulated by the data
stream. If the bit interval is T, the separation between successive pulses is also T. We
must somehow devise a scheme to reduce the interval between successive pulses to
τ , corresponding to the higher-rate multiplexed signal. This can done by passing the
output of the external modulator through a series of compression stages. If the size
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Figure 12.6 An optical demultiplexer to extract one of the multiplexed channels from
a bit-interleaved TDM stream (after [Mid93, Chapter 6]).

of each packet is l bits, the output goes through k = �log2 l� compression stages.
In the first compression stage, bits 1, 3, 5, 7, . . . are delayed by T − τ . In the second
compression stage, the pairs of bits (1, 2), (5, 6), (9, 10), . . . are delayed by 2(T − τ ).
In the third compression stage, the bits (1, 2, 3, 4), (9, 10, 11, 12), . . . are delayed by
4(T − τ ). The j th compression stage is shown in Figure 12.7(b). Each compression
stage consists of a pair of 3 dB couplers, two semiconductor optical amplifiers (SOAs)
used as on-off switches, and a delay line. The j th compression stage has a delay line
of value 2j−1(T − τ ). It is left as an exercise (Problem 12.1) to show that the delay
encountered by pulse i, i = 1, 2, . . . , l, on passing through the kth compression stage
is (2k− i)(T − τ ). Combined with the fact that the input pulses are separated by time
T , this implies that pulse i occurs at the output at time (2k − 1)(T − τ ) + (i − 1)τ .
Thus the output pulses are separated by a time interval of τ .

The demultiplexing operation is equivalent to “decompressing” the packet. In
principle, this can be accomplished by passing the compressed packet through a
set of decompression stages that are similar to the compression stage shown in
Figure 12.7(b). This approach is discussed in Problem 12.2. Again, the number of
stages required would be k = log�l�, where l is the packet length in bits. However,
the on-off switches required in this approach must have switching times on the order
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Figure 12.8 An optical demultiplexer to extract one of the multiplexed channels from
a packet-interleaved TDM stream.

of the pulse width τ , making this approach impractical for the small values of τ that
are of interest in photonic packet-switching networks.

A more practical approach is to use a bank of AND gates, like the one used
in Figure 12.6, and convert the single (serial) high-speed data stream into multiple
(parallel) lower-speed data streams that can then be processed electronically. This
approach is illustrated in Figure 12.8. In this figure, a bank of five AND gates is used
to break up the incoming high-speed stream into five parallel streams each with five
times the pulse spacing of the multiplexed stream. This procedure is identical to what
would be used to receive five bit-interleaved data streams. One input to each AND
gate is the incoming data stream, and the other input is a control pulse stream where
the pulses are spaced five times apart. The control pulse streams to each AND gate
are appropriately offset from each other so that they select different pulses. Thus the
first parallel stream would contain bits 1, 6, 11, . . . of the packet, the second would
contain bits 2, 7, 12, . . ., and so on. This approach can also be used to demultiplex a
portion of the packet, for example, the packet header, in a photonic packet switch.
We will discuss this issue further in Section 12.3.
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12.1.3 Optical AND Gates

The logical AND operations shown in Figures 12.6 and 12.8 are performed optically
at very high speeds. A number of mechanisms have been devised for this purpose. We
describe two of them here. Note that the logical AND operation between two signals
can be performed by an on-off switch if one of the signals is input to the switch
and the other is used to control it. This viewpoint will be useful in the following
discussion.

Nonlinear Optical Loop Mirror

The nonlinear optical loop mirror (NOLM) consists of a 3 dB directional coupler,
a fiber loop connecting both outputs of the coupler, and a nonlinear element (NLE)
located asymmetrically in the fiber loop, as shown in Figure 12.9(a). First, ignore the
nonlinear element, and assume that a signal (pulse) is present at one of the inputs,
shown as arm A of the directional coupler in Figure 12.9(a). Then, the two output
signals are equal and undergo exactly the same phase shift on traversing the fiber
loop. (Note that here we are talking about the phase shift of the optical carrier and
not pulse delays.) We have seen in Problem 3.1 that in this case both the clockwise
and the counterclockwise signals from the loop are completely reflected onto input
A; specifically, no output pulse emerges from arm B in Figure 12.9(a). Hence the
name fiber loop mirror is given for this configuration. However, if one of the signals
were to undergo a different phase shift compared to the other, then an output pulse
emerges from arm B in Figure 12.9(a). It is left as an exercise to show that the
difference in the phase shifts should be π in order for all the energy to emerge from
arm B (Problem 12.4).

In many early experiments with the NOLM for the purpose of switching,
there was no separate NLE. Rather, the intensity-dependent phase (or refractive
index) change induced by the silica fiber was itself used as the nonlinearity. This
intensity-dependent refractive index change is described by (2.23) and is the basis
for the cancellation of group velocity dispersion effects in the case of soliton pulses.
We discussed this effect in Section 2.6. An example of such a configuration is shown
in Figure 12.9(b), where the pulse traversing the fiber loop clockwise is amplified
by an EDFA shortly after it leaves the directional coupler. Because of the use of an
amplifier within the loop, this configuration is called the nonlinear amplifying loop
mirror (NALM). The amplified pulse has higher intensity and undergoes a larger
phase shift on traversing the loop compared to the unamplified pulse.

However, these configurations are not convenient for using the NOLM as a
high-speed demultiplexer. First, the intensity-dependent phase change in silica fiber
is a weak nonlinearity, and typically a few hundred meters of fiber are required in the
loop to exploit this effect for pulse switching. It would be desirable to use a nonlinear
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Figure 12.9 (a) A nonlinear optical loop mirror. (b) A nonlinear amplifying loop mirror.
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Figure 12.10 The terahertz optical asymmetric demultiplexer.

effect that works with shorter lengths of fiber. Second, to realize an AND gate, we
require an NLE whose nonlinear properties can be conveniently controlled by the
use of control pulses. The configuration shown in Figure 12.10 has both of these
properties and is called the terahertz optical asymmetric demultiplexer (TOAD).

The principle of operation for TOAD is as follows. The TOAD has another
directional coupler spliced into the fiber loop for the purpose of injecting the control



12.1 Optical Time Division Multiplexing 667

pulses. The control pulses carry sufficiently high power and energy so that the optical
properties of the NLE are significantly altered by the control pulse for a short
time interval after the control pulse passes through it. In particular, the phase shift
undergone by another pulse passing through the NLE during this interval is altered.
An example of a suitable NLE for this purpose is a semiconductor optical amplifier
(SOA) that is driven into saturation by the control pulse. For proper operation of
the TOAD as a demultiplexer, the timing between the control and signal pulses is
critical. Assuming the NLE is located such that the clockwise signal pulse reaches it
first, the control pulse must pass through the NLE after the clockwise signal pulse
but before the counterclockwise signal pulse. If this happens, the clockwise signal
pulse experiences the unsaturated gain of the amplifier, whereas the counterclockwise
pulse sees the saturated gain. The latter also experiences an additional phase shift
that arises due to gain saturation. Because of this asymmetry, the two halves of the
signal pulse do not completely destructively interfere with each other, and a part of
the signal pulse emerges from arm B of the input coupler.

Note that along with the signal pulse, the control pulse will also be present at
the output. The control pulse can be eliminated by using different wavelengths for
the signal and control pulses and placing an optical filter at the output to select
only the signal pulse. But both wavelengths must lie within the optical bandwidth
of the SOA. Another option is to use orthogonal polarization states for the signal
and control pulses, and discriminate between the pulses on this basis. Whether or
not this is done, the polarization state of the signal pulse must be maintained while
traversing the fiber loop; otherwise, the two halves of the pulse will not interfere
at the directional coupler in the desired manner after traversing the fiber loop.
Another advantage of the TOAD is that because of the short length of the fiber loop,
the polarization state of the pulses is maintained even if standard single-mode fiber
(nonpolarization-maintaining) is used. If the fiber loop is long, it must be constructed
using polarization-maintaining fiber.

Soliton-Trapping AND Gate

The soliton-trapping AND gate uses some properties of soliton pulses propagating in
a birefringent fiber. In Chapter 2, we saw that in a normal fiber, the two orthogonally
polarized degenerate modes propagate with the same group velocity. We also saw that
in a birefringent fiber, these two modes propagate with different group velocities. As
a result, if two pulses at the same wavelength but with orthogonal polarizations are
launched in a birefringent fiber, they will walk off, or spread apart in time, because
of this difference in group velocities.

However, soliton pulses are an exception to this walk-off phenomenon. Just as
soliton pulses propagate in nonbirefringent silica fiber without pulse spreading due
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Figure 12.11 Block diagram of a soliton-trapping logical AND gate.

to group velocity dispersion (Section 2.6), a pair of orthogonally polarized soliton
pulses propagate in birefringent fiber without walk-off. The quantitative analysis of
this phenomenon is beyond the scope of this book, but qualitatively what occurs
is that the two pulses undergo wavelength shifts in opposite directions so that the
group velocity difference due to the wavelength shift exactly compensates the group
velocity difference due to birefringence! Since the two soliton pulses travel together
(they do not walk off), this phenomenon is called soliton trapping.

The logical AND operation between two pulse streams can be achieved using
this phenomenon if the two pulse streams correspond to orthogonally polarized
soliton pulses. Most high-speed TDM systems use soliton pulses to minimize the
effects of group velocity dispersion so that the soliton pulse shape requirement is not
a problem. The orthogonal polarization of the two pulse streams can be achieved
by appropriately using polarizers (see Section 3.2.1). The logical AND operation is
achieved by using an optical filter at the output of the birefringent fiber.

Figure 12.11 shows the block diagram of such a soliton-trapping AND gate. It
consists of a piece of birefringent fiber followed by an optical filter. Figure 12.12
illustrates the operation of this gate. When pulses of both polarizations are present
at the wavelength λ, one of them gets shifted in wavelength to λ+ δλ, and the other
to λ − δλ. The filter is chosen so that it passes the signal at λ + δλ and rejects the
signal at λ. Thus the passband of the filter is such that one of the wavelength-shifted
pulses lies within it. But the same pulse, if it does not undergo a wavelength shift,
will not be selected by the filter. Thus the filter output has a pulse (logical one) only
if both pulses are present at the input, and no pulse (logical zero) otherwise.

12.2 Synchronization

Synchronization is the process of aligning two pulse streams in time. In PPS networks,
it can refer either to the alignment of an incoming pulse stream and a locally available
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Figure 12.12 Illustration of the operation of a soliton-trapping logical AND gate. (a)
Only one pulse is present, and very little energy passes through to the filter output. This
state corresponds to a logical zero. (b) Both pulses are present, undergo wavelength shifts
due to the soliton-trapping phenomenon, and most of the energy from one pulse passes
through to the filter output. This state corresponds to a logical one.

clock pulse stream or to the relative alignment of two incoming pulse streams. Recall
our assumption of fixed-size packets. Thus if framing pulses are used to mark the
packet boundaries, the framing pulses must occur periodically.

The function of a synchronizer can be understood from Figure 12.13. The two
periodic pulse streams, with period T, shown in Figure 12.13(a) are not synchronized
because the top stream is ahead in time by �T. In Figure 12.13(b), the two pulse
streams are synchronized. Thus, to achieve synchronization, the top stream must be
delayed by �T with respect to the bottom stream. The delays we have hitherto con-
sidered, for example, while studying optical multiplexers and demultiplexers, have
been fixed delays. A fixed delay can be achieved by using a fiber of the appropriate
length. However, in the case of a synchronizer, and in some other applications in
photonic packet-switching networks, a tunable delay element is required since the
amount of delay that has to be introduced is not known a priori. Thus we will now
study how tunable optical delays can be realized.
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(a)

(b)
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Figure 12.13 The function of a synchronizer. (a) The two periodic pulse streams with
period T are out of synchronization; the top stream is ahead by �T. (b) The two periodic
streams have been synchronized by introducing a delay �T in the top stream relative to
the bottom stream.

12.2.1 Tunable Delays

A tunable optical delay line capable of realizing any delay, in excess of a reference
delay, from 0 to T − T/2k−1, in steps of T/2k−1, is shown in Figure 12.14. The
parameter k controls the resolution of the delay achievable. The delay line consists
of k − 1 fixed delays with values T/2, T /4, . . . , T /2k−1 interconnected by k 2 × 2
optical switches, as shown. By appropriately setting the switches in the cross or
bar state, an input pulse stream can be made to encounter or avoid each of these
fixed delays. If all the fixed delays are encountered, the total delay suffered by the
input pulse stream is T/2 + T/4 + . . . + T/2k−1 = T − T/2k−1. This structure can
be viewed as consisting of k − 1 stages followed by an output switch, as indicated
in Figure 12.14. The output switch is used to ensure that the output pulse stream
always exits the same output of this switch. The derivation of the control inputs
c1, c2, . . . , ck to the k switches is discussed in Problem 12.3.

With a tunable delay line like the one shown in Figure 12.14, two pulse streams
can be synchronized to within a time interval of T/2k. The value k, and thus the
number of fixed delays and optical switches, must be chosen such that 2−kT 	 τ ,
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Figure 12.14 A tunable delay line capable of realizing any delay from 0 to T −T /2k−1,
in steps of T /2k−1.

the pulse width. The resolution of the delay line is determined by the speed of the
switches used and the precision to which the delay lines can be realized. Practically,
the resolution of this approach may be on the order of 1 ns or so. We can use
this approach to provide coarse synchronization. We will also need to perform fine
synchronization to align bits to within a small fraction of a bit interval. One approach
is to use a tunable wavelength converter followed by a highly dispersive fiber line
[Bur94]. If D denotes the dispersion of the fiber used, �λ the output wavelength
range, and L the length of the fiber, then we can get a relative delay variation of 0
to D�λL. If the output wavelength can be controlled in steps of δλ, then the delay
resolution is DδλL.

Given a tunable delay, the synchronization problem reduces to one of determining
the relative delay, or phase, between two pulse streams. A straightforward approach
to this problem is to compare all shifted versions of one stream with respect to the
other. The comparison can be performed by means of a logical AND operation.
This is a somewhat expensive approach. An alternative approach is to use an optical
phase lock loop to sense the relative delay between the two pulse streams. Just as
more than one phenomenon can be used to build an optical AND gate, different
mechanisms can be used to develop an optical phase lock loop. We discuss one such
mechanism that is based on the NOLM we studied in Section 12.1.3.

12.2.2 Optical Phase Lock Loop

Consider an NOLM that does not use a separate nonlinear element but rather uses
the intensity-dependent refractive index of silica fiber itself as the nonlinearity. Thus,
if a low-power pulse stream, say, stream 1, is injected into the loop—from arm A of
the directional coupler in Figure 12.9(a)—the fiber nonlinearity is not excited, and
both the clockwise and the counterclockwise propagating pulses undergo the same
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phase shift in traversing the loop. As a consequence, no power emerges from the
output (arm B) in this case. If a high-power pulse stream, say, stream 2, is injected in
phase (no relative delay) with, say, the clockwise propagating pulse stream, because
of the intensity dependence of the refractive index of silica fiber, the refractive index
seen by the clockwise pulse, and hence the phase shift undergone by it, is different
from that of the counterclockwise pulse. This mismatch in the phase shift causes an
output to emerge from arm B in Figure 12.9(a). Note that if the high-power pulse
stream is not in phase (has a nonzero relative delay) with the clockwise propagating
pulse stream, the clockwise and counterclockwise pulses undergo the same phase
shift, and no output emerges from arm B of the directional coupler. To achieve
synchronization between pulse streams 1 and 2, a tunable delay element can be used
to adjust their relative delays till there is no output of stream 1 from the NOLM.

Note that the same problem of discriminating between the pulse streams 1 and
2 at the output of the directional coupler (arm B) as with the TOAD arises in
this case as well. Since pulses from stream 2 will always be present at the output,
in order to detect the absence of pulses from stream 1, the two streams must use
different wavelengths or polarizations. When different wavelengths are used, because
of the chromatic dispersion of the fiber, the two pulses will tend to walk away from
each other, and the effect of the nonlinearity (intensity-dependent refractive index)
will be reduced. To overcome this effect, the two wavelengths can be chosen to lie
symmetrically on either side of the zero-dispersion wavelength of the fiber so that
the group velocities of the two pulse streams are equal.

A phase lock loop can also be used to adjust the frequency and phase of a local
clock source—a mode-locked laser—to those of an incoming periodic stream. We
have seen in Section 3.5.1 that the repetition rate, or frequency, of a mode-locked
laser can be determined by modulating the gain of the laser cavity. We assume that
the modulation frequency of its gain medium, and hence the repetition rate of the
pulses, is governed by the frequency of an electrical oscillator. The output of the
NOLM can then be photodetected and used to control the frequency and phase of
this electrical oscillator so that the pulses generated by the local mode-locked laser
are at the same frequency and phase as that of the incoming pulse stream. We refer
to [Bar96] and the references therein for the details.

Another synchronization function has to do with extracting the clock for the
purposes of reading parts of the packet, such as the header, or for demultiplexing
the data stream. This function can also be performed using an optical phase-locked
loop. But it can also be performed by sending the clock along with the data in the
packet. In one example [BFP93], the clock is sent at the beginning of the packet.
At the switching node, the clock is separated from the rest of the packet by using a
switch to read the incoming stream for a prespecified duration corresponding to the
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duration of the clock signal. This clock can then be used to either read parts of the
packet or to demultiplex the data stream.

12.3 Header Processing

For a header of fixed size, the time taken for demultiplexing and processing the
header is fixed, and the remainder of the packet is buffered optically using a de-
lay line of appropriate length. The processing of the header bits may be done
electronically or optically, depending on the kind of control input required by
the switch. Electrically controlled switches employing the electro-optic effect and
fabricated in lithium niobate (see Section 3.7) are most commonly used in switch-
based network experiments today. In this case, the header processing can be car-
ried out electronically (after the header bits have been demultiplexed into a par-
allel stream). The packet destination information from the header is used to de-
termine the outgoing link from the switch for this packet, using a look-up table.
For each input packet, the look-up table determines the correct switch setting,
so that the packet is routed to the correct output port. Of course, this leads to
a conflict if multiple inputs have a packet destined for the same output at the
same time. This is one reason for having buffers in the routing node, as explained
next.

If the destination address is carried in the packet header, it can be read by
demultiplexing the header bits using a bank of AND gates, for example, TOADs,
as shown in Figure 12.8. However, this is a relatively expensive way of reading
the header, which is a task that is easier done with electronics than with optics.
Another reason for using electronics to perform this function is that the routing and
forwarding functions required can be fairly complex, involving sophisticated control
algorithms and look-up tables.

With this in mind, several techniques have been proposed to simplify the task
of header recognition. One common technique is to transmit the header at a much
lower bit rate than the packet itself, allowing the header to be received and processed
relatively easily within the routing node. The packet header could also be transmit-
ted on a wavelength that is different from the packet data. In addition, it could
be transmitted on a separate subcarrier channel on the same wavelength. All these
methods allow the header to be carried at a lower bit rate than the high-speed data in
the packet, allowing for easier header processing. However, given the high payload
speeds involved in order to maintain reasonable bandwidth utilization without mak-
ing the packet size unreasonably large, we will have to use fairly short headers and
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process them very quickly. This may not leave much room for sophisticated header
processing. See Problem 12.5 for an example.

12.4 Buffering

In general, a routing node contains buffers to store the packets from the incoming
links before they can be transmitted or forwarded on the outgoing links—hence the
name store and forward for these networks. In a general store-and-forward network,
electronic or optical, the buffers may be present at the inputs only, at the outputs
only, or at both the inputs and the outputs, as shown in Figure 12.2. The buffers may
also be integrated within the switch itself in the form of random access memory and
shared among all the ports. This option is used quite often in the case of electronic
networks where both the memory and switch fabric are fabricated on the same
substrate, say, a silicon-integrated circuit, but we will see that it is not an option for
optical packet switches. We will also see that most optical switch proposals do not
use input buffering for performance-related reasons.

There are at least three reasons a packet has to be stored or buffered before it is
forwarded on its outgoing link. First, the incoming packet must be buffered while
the packet header is processed to determine how the packet must be routed. This
is usually a fixed delay that can be implemented in a simple fashion. Second, the
required switch input and/or output port may not be free, causing the packet to be
queued at its input buffer. The switch input may not be free because other packets
that arrived on the same link have to be served earlier. The switch output port may
not be free because packets from other input ports are being switched to it. Third,
after the packet has been switched to the required output port, the outgoing link
from this port may be busy transmitting other packets, thus making this packet wait
for its turn. The latter delays are variable and are implemented differently from the
fixed delay required for header processing.

The lack of good buffering methods in the optical domain is a major impediment.
Unlike the electronic domain, we do not have random access memory in the optical
domain. Instead, the only way of realizing optical buffers is to use fiber delay lines,
which consist of relatively long lengths of fiber. For example, about 200 m of fiber
is required for 1 μs of delay, which would be sufficient to store 10 packets, each
with 1000 bits at 10 Gb/s. Thus usually very small buffers are used in photonic
packet-switching networks. Note that unlike an electronic buffer, a packet cannot
be accessed at an arbitrary point of time; it can exit the buffer only after a fixed
time interval after entering it. This is the time taken for the packet to traverse the
fiber length. This constraint must be incorporated into the design of PPS networks.
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Figure 12.15 Example of a 2 × 2 routing node using a feed-forward delay line archi-
tecture.

Of course, by repeated traversals of the same piece of fiber, packet delays that are
multiples of this basic delay can be obtained.

PPS networks typically make use of delay lines in one of two types of config-
urations. Figure 12.15 shows one example of a feed-forward architecture. In this
configuration, a two-input, two-output routing node is constructed using three 2× 2
switches interconnected by two delay lines. If each delay line can store one packet—
that is, the propagation time through the delay line is equal to one slot—the routing
node has a buffering capacity of two packets. If packets destined for the same output
arrive simultaneously at both inputs, one packet will be routed to its correct output,
and the other packet will be stored in delay line 1. This can be accomplished by
setting switch 1 in the appropriate state. This packet then has the opportunity to be
routed to its desired output in a subsequent slot. For example, if no packets arrive
in the next slot, this stored packet can be routed to its desired output in the next slot
by setting switches 2 and 3 appropriately.

The other configuration is the feedback configuration, where the delay lines
connect the output of the switch back to its input. We will study this configuration
in Section 12.4.3.

Dealing with contention resolution in an optical switch presents several op-
tions. The first option is to provide sufficient buffering in the switch to be
able to handle these contentions. As we will see, in order to achieve rea-
sonable packet loss probabilities, the buffers need to be able to accommo-
date several hundred packets. This is no trivial task in the context of optical
buffers.

Another option is to drop packets whenever we have contentions. This is not an
attractive alternative because such events will occur quite often unless the links are
occupied by very few packets compared to their capacities. For each such event, the
source must retransmit the packet, causing the effective link utilization to drop even
farther.

A third option is to use the wavelength domain to help resolve conflicts. This can
help reduce the amount of buffering required in a significant way.
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The final option is for the packet to be misrouted by the switch, that is, transferred
by the switch to the wrong output. This option, termed deflection routing, has
received considerable study in the research literature on PPS networks.

We start by describing the various types of buffering and the use of the wave-
length domain to resolve conflicts, followed by deflection routing. The switch
architectures used in the following section are idealized versions for illustration
only; we will look at some actual proposals and experimental configurations in
Section 12.6.

12.4.1 Output Buffering

Consider the switch with output buffering shown in Figure 12.16. Let us assume
that time is divided into slots and that packets arriving into the switch are aligned
with respect to these time slots. In each time slot, we have packets arriving at the
input ports. Of these packets, one or more may have to be switched to the same
output port. In the worst case, we could have a packet arriving at each input port,
with all these packets destined to a single output port. In this case, if the switch is
designed to operate at N times the line rate (N being the number of ports), these
packets can all be switched onto the output port. However, only one of these packets
can be transmitted out during this time slot, and the other packets will have to
stored in the output buffer. If the output buffer is full, then packets will have to be
dropped. The packet loss probability indicates how frequently packets are dropped
by the switch. For each such event, the source must retransmit the packet, causing
the effective link utilization to drop even farther. We can minimize the packet loss
probability by increasing the buffer size. With sufficiently large output buffers, an
output-buffered switch has the best possible performance with respect to packet
delay and throughput, compared to other switch architectures. The throughput can
be viewed as the asymptotic value of the offered load at which the packet delay
through the switch becomes very large (tends to infinity).

We can use a simple model to understand the performance of the different buffer-
ing techniques. The model assumes that in each time slot, a packet is received at the
input with probability ρ. Thus ρ denotes the traffic load. It further assumes that
traffic is uniformly distributed, and therefore the packet is destined to a particular
output port with probability 1/N , where N is the number of ports on the switch.
While this is admittedly not a very realistic model, it gives some understanding of
the trade-offs between the different buffering approaches. The parameters of interest
are the desired packet loss probability, the number of packet buffers needed, and
the traffic load. The number of packet buffers suggested by this model is typically
smaller than what is actually required, since in reality traffic is more bursty than
what is assumed by this model.
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Figure 12.16 A generic switch with output buffers.

For the output-buffered switch, this simple model was analyzed in [HK88], which
shows that to get a packet loss of 10−6 at a traffic load of 0.8, we need about 25
packet buffers per output. With sufficiently large buffers, a throughput close to 1
can be obtained.

One issue associated with the output-buffered switch is that the switch needs to
operate at N times the line rate per port. That is, it needs to be able to switch up
to N packets per time slot from different inputs onto the same output. This is quite
difficult to implement with optical switches. For this reason, many optical switch
proposals emulate an output-buffered switch while still operating at the line rate per
port. If multiple packets arriving in a time slot are all destined to the same output
port, the switch schedules different delays for each of these packets at the input so
that they get switched to the output in different succeeding time slots. For example,
the switch handles the first packet immediately, delays the next packet by one time
slot at the input, delays the next by two slots, and so on.

12.4.2 Input Buffering

A switch with input buffering has buffers at the input to the switch but not at the
output. These switches have relatively poor throughput due to a phenomenon called
head-of-line (HOL) blocking, which is illustrated in Figure 12.17. When we have
multiple input packets at the head of the line destined to a single output port, only
one packet can be switched through. The other packets, however, may block packets
behind them from being switched in the same time slot. For example, in Figure
12.17, we have packets at port 1 and port 2 at the head of their lines, both destined
for port 3. Say we switch the packet at port 1 onto port 3. The second packet in
line behind the head-of-line packet on port 2 is destined to output port 1 but cannot
be switched to that output, even though it is free. For the traffic model considered
earlier, this HOL blocking reduces the achievable throughput to 0.58 for large switch
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Figure 12.17 Head-of-line blocking in an input-buffered switch. Observe that the
packet destined for output 1 in input buffer 2 is blocked despite the fact that the output
is free.

sizes [HK88]. Although we can improve the throughput by selecting packets other
than just the one at the head of the line, this is quite complicated and not feasible in
the context of optical switches. The other problem is that the packet’s delay at the
input buffer cannot be determined before placing the packet in the buffer because it
depends on the other inputs. In the context of optical delay lines, it means that when
the packet exits the delay line, we may still not be able to switch it through as the
desired output may be busy. For these reasons, optical switches with input buffers
only are not a good choice.

12.4.3 Recirculation Buffering

In this approach, the buffers connect the outputs back to the inputs. Typically, some
of the switch ports are reserved for buffering only, and the output of these ports is
connected back to the corresponding inputs via buffers. If multiple packets destined
for a common output port arrive simultaneously, one of them is switched to the
output port while the others are switched to the recirculating buffers.

In the context of optical switches, the buffering is implemented using feedback
delay lines. In the feedback architecture of Figure 12.18, the delay lines connect the
outputs of the switch to its inputs. With two delay lines and two inputs from outside,
the switch is internally a 4 × 4 switch. Again, if two packets contend for a single
output, one of them can be stored in a delay line. If the delay line has length equal to
one slot, the stored packet has an opportunity to be routed to its desired output in
the next slot. If there is contention again, it, or the contending packet, can be stored
for another slot in a delay line.
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Figure 12.18 Example of a 2× 2 routing node using a feedback delay line architecture.

Recirculation buffering is more effective than output buffering at resolving con-
tentions because the buffers in this case are shared among all the outputs, as opposed
to having a separate buffer per output. The trade-off is that larger switch sizes are
needed in this case due to the additional switch ports needed for connecting the
recirculating buffers. For example, [HK88] shows that a 16 × 16 switch requires a
total of 112 recirculation buffers, or about 7 buffers per output, to achieve a packet
loss probability of 10−6 at an offered load of 0.8. In contrast, we saw earlier that
the output-buffered switch requires about 25 buffers per output, or a total of 400
buffers, to achieve the same packet loss probability.

In the feed-forward architecture considered earlier, a packet has a fixed number
of opportunities to reach its desired output. For example, in the routing node shown
in Figure 12.15, the packet has at most three opportunities to be routed to its correct
destination: in its arriving slot and the next two immediate slots. On the other hand,
in the feedback architecture, it appears that a packet can be stored indefinitely. This is
not true in practice since photonic switches have several decibels of loss. The loss can
be made up using amplifiers, but then we have to account for the cascaded amplifier
noise as packets are routed through the delay line multiple times. The switch crosstalk
also accumulates. Therefore, the same packet cannot be routed through the switch
more than a few times. In practice, the feed-forward architecture is preferred to the
feedback architecture since it attenuates the signals almost equally, regardless of the
path taken through the routing node. This is because almost all the loss is in passing
through the switches, and in this architecture, every packet passes through the same
number of switches independent of the delay it experiences. This low differential loss
characteristic is important in a network since it reduces the dynamic range of the
signals that must be handled.
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Figure 12.19 An example of an output-buffered optical switch using fiber delay lines
for buffers that do not use wavelengths for contention resolution.

12.4.4 Using Wavelengths for Contention Resolution

One way to reduce the amount of buffering needed is to use multiple wavelengths.
In the context of PPS, buffers correspond to fiber delay lines. Observe that we can
store multiple packets at different wavelengths in the same delay line.

We start by looking at a baseline architecture for an output-buffered switch using
delay lines that do not make use of multiple wavelengths. Figure 12.19 shows such an
implementation, which is equivalent to the output-buffered switch of Figure 12.16
with B buffers per output. Up to B slots of delay are provided per output by using
a set of B delay lines per output. T denotes the duration of a time slot. If multiple
input packets arriving in a time slot need to go to the same output, one of them is
switched out while the others are delayed by different amounts and stored in the
different delay lines, so that the output contention is resolved. Note that the set of
delay lines together can store more than B packets simultaneously. For instance,
a single K-slot delay line can hold up to K packets simultaneously. Therefore the
total number of packets that can be held by the set of delay lines in Figure 12.19 is
1+ 2+ . . .+ B = B(B + 1)/2. However, since we can have only one packet per slot
transmitted out (or a total of B packets in B slots), the effective storage capacity of
this set of delay lines is only B packets.

In its simplest form, we can use wavelengths internal to the switch to reduce the
number of delay lines required. Figure 12.20 shows an example of such an output-
buffered switch [ZT98]. Instead of providing a set of delay lines per output, the delay
lines are shared among all the outputs. Packets entering the switch are sent through
a tunable wavelength converter device. At the output of the switch, the packets are
sent through an arrayed waveguide grating (AWG). The wavelength selected by the
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Figure 12.20 An example of an output-buffered optical switch using multiple wave-
lengths internal to the switch and fiber delay lines for buffers. The switch uses tunable
wavelength converters and arrayed waveguide gratings.

tunable wavelength converter and the output switch fabric port to which the packet
is switched together determine the delay line to which the packet is routed by the
AWG.

Figure 3.25 provides a description of how the AWG works in this configuration.
For example, consider the first input port on the AWG. From this port, wavelength
λ1 is routed to delay line 0, wavelength λ2 is routed to the single-slot delay line,
wavelength λ3 is routed to the two-slot delay line, and wavelength λB is routed to
the B-slot delay line. In order to allow a packet at each input of the AWG to be routed
to each possible delay line, we need the number of wavelengths, W = max(N,B),
where N is the number of inputs. Thus the delay seen by a packet can be controlled
by controlling the wavelength at the output of the tunable wavelength converter
device. In this case, if we have two input packets on different ports destined to the
same output, their wavelengths are chosen such that one of them is delayed while
the other is switched through. From a buffering perspective, this configuration is
equivalent to the baseline configuration of Figure 12.19. Note that the TWCs must
be on the inputs to the switch fabric (not at the outputs) since several packets may
leave a switch fabric output on one time slot, on different wavelengths.

For instance, in one routing method, a packet bound for output port j is routed
to output port j of the switch fabric. Its wavelength is chosen based on the delay
required. With the AWG design assumed above, an incoming packet bound for
output 1, requiring a single-slot delay, would be converted to wavelength λ2 at the
input, and switched to port 1 of the switch fabric.

Assuming the same traffic model as before, with ρ = 0.8, in order to obtain a
packet loss probability of 10−6 for a 16×16 switch, we need a total of 25 delay lines,



682 Photonic Packet Switching

1

2

N

TWC

TWC

TWC

�1

�2

�W

�1�2 ...�W �1�2 ...�W

�1�2 ...�W

�1�2 ...�W

�1�2 ...�W

�1�2 ...�W

TWC

TWC

TWC

�1

�2

�W

TWC

TWC

TWC

�1

�2

�W

0

2T
BT

T

0

2T
BT

T

0

2T
BT

T

Switch fabric

NW N B++ ( 1)

Combiner
Demultiplexer

Figure 12.21 An example of an output-buffered optical switch capable of switching
multiple input wavelengths. The switch uses TWCs and wavelength demultiplexers. The
TWCs convert the input packets to the desired output wavelength, and the switch routes
the packets to the correct output port and the appropriate delay line for that output.

instead of 25 delay lines per output for the case where only a single wavelength is
used inside the switch. In Section 12.6, we will study other examples of switch con-
figurations that use wavelengths internally to perform the switching and/or buffering
functions.

We next consider the situation where we have a WDM network. In this case,
multiple wavelengths are used on the transmission links themselves. We can gain
further reduction in the shared buffering required compared to a single-wavelength
system by making use of the statistical nature of bursty traffic across multiple wave-
lengths. Figure 12.21 shows a possible architecture [Dan97] for such a switch, again
using tunable wavelength converters and delay lines. At the inputs to the switch,
the wavelengths are demultiplexed and sent through tunable wavelength converters
and then into the switch fabric. The delay lines are connected to the output of the
switch fabric. The W wavelengths destined for a given output port share a single set
of delay lines. In this case, we have additional flexibility in dealing with contention.
If two packets need to go out on the same output port, either they can be delayed in
time, or they can be converted to different wavelengths and switched to the output
port at the same time. The TWCs convert the input packets to the desired output
wavelength, and the switch routes the packets to the correct output port and the
appropriate delay line for that output.
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Table 12.1 Number of delay lines required for different switch architectures. A uniformly dis-
tributed offered load of 0.8 per wavelength per input is assumed, with a packet loss probability of
10−6. The switch size is 16× 16.

Buffering Input Internal Internal Delay Lines Delay Lines
Type λs λs Fabric per Output Total

Output (Figure 12.19) 1 1 16 × 16 25 400
Recirculating (Figure 12.18) 1 1 23 × 23 7 112
Output (Figure 12.20) 1 64 16 × 16 Shared 26
Output (Figure 12.21) 4 4 64 × 128 7 112
Output (Figure 12.21) 8 8 128 × 80 4 64

As the number of wavelengths is increased, keeping the load per wavelength
constant, the amount of buffering needed will decrease because, within any given
time slot, the probability of finding another free wavelength is quite high. Basically,
we are sharing capacity among several wavelengths and permitting better use of
that capacity. [Dan97] shows that the number of delay lines required to achieve
a packet loss probability of 10−6 at an offered load of 0.8 per wavelength for a
16 × 16 switch drops from 25 per output without using multiple wavelengths to 7
per output using four wavelengths, and to 4 per output when eight wavelengths are
present.

Table 12.1 compares the number of delay lines required for the different buffer-
ing schemes that we considered in this section. Note that the number of delay lines
is only one among the many parameters we must consider when designing switch
architectures. The others include the switch fabric size, the number of wavelength
converters required, and the number of wavelengths used internally (and the associ-
ated complexity of the multiplexers and demultiplexers). While we have illustrated
a few sample architectures in Figures 12.18 through 12.21, many variants of these
architectures have been proposed that trade off these parameters against each other.
See [Dan97, ZT98, Hun99, Gam98, Gui98] for more examples.

12.4.5 Deflection Routing

Deflection routing was invented by Baran in 1964 [Bar64]. It was studied and
implemented in the context of processor interconnection networks in the 1980s
[Hil85, Hil87, Smi81]. In these networks, just as in photonic packet-switching net-
works, buffers are expensive because of the high transmission speeds involved, and
deflection routing is used as an alternative to buffering. Deflection routing is also
sometimes called hot-potato routing.
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Figure 12.22 The Manhattan Street network with 42 = 16 nodes. In a network with
n2 nodes, these nodes are arranged in a square grid with n rows and columns. Each node
transmits to two nodes—one in the same row and another in the same column. Each
node also receives from two other nodes—one in the same row and the other in the same
column. Assuming n is even, the direction of transmission alternates in successive rows
and columns.

Intuitively, misrouting packets rather than storing them will cause packets to take
longer paths on average to get to their destinations, and thus will lead to increased
delays and lesser throughput in the network. This is the price paid for not having
buffers at the switches. These trade-offs have been analyzed in detail for regular
network topologies such as the Manhattan Street network [GG93], an example of
which is shown in Figure 12.22, or the shufflenet [KH90, AS92], another regular
interconnection network, an example of which is shown in Figure 12.23, or both
[Max89, FBP95]. Regular topologies are typically used for processor interconnec-
tions and may be feasible to implement in LANs. However, they are unlikely to be
used in WANs, where the topologies used are usually arbitrary. Nevertheless, these
analyses shed considerable light on the issues involved in the implementation of
deflection routing even in wide-area photonic packet-switching networks and the re-
sulting performance degradation, compared to buffering in the event of a destination
conflict.

Before we can discuss these results, we need to slightly modify the model of the
routing node shown in Figure 12.2. While discussing this figure earlier, we said that
the routing node has one input link and output link from/to every other routing node
and end node to which it is connected. In many cases, the end node is colocated with
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Figure 12.23 The shufflenet with eight nodes. More generally, a (�, k) shufflenet con-
sists of k�k nodes, arranged in k columns, each with �k nodes. We can think of a
(�, k) shufflenet in terms of the state transition diagram of a k-digit shift register, with
each digit in {0, 1, . . . ,�− 1}. Each node (c, a0a1 . . . ak−1) is labeled by its column index
c ∈ {0, 1, 2, . . . , k − 1} along with a k-digit string a0a1 . . . ak−1, ai ∈ {0, 1, . . . ,� − 1},
0 ≤ i ≤ k − 1. There is an edge from a node i to another node j in the following column
if node j ’s string can be obtained from node i’s string by one shift. In other words, there
is an edge from node (c, a0a1 . . . ak−1) to a node ((c + 1) mod k, a1a2 . . . ak−1∗), where
∗ ∈ {0, 1, . . . ,�− 1}.

the routing node so that information regarding packets to be transmitted or received
can be almost instantaneously exchanged between these nodes. In particular, this
makes it possible for the end node to inject a new packet into its associated routing
node, only when no other packet is intended for the same output link. Thus this new
injected packet neither gets deflected nor causes deflection of other packets. This is
a reasonable assumption to make in practice.

Delay

The first consequence of deflection routing is that the average delay experienced by
the packets in the network is larger than that in store-and-forward networks. In this
comparison, not only is the network topology fixed, but the statistics of the packet
arrivals between each source-destination pair are also fixed. In particular, the rate of
injection of new packets into the network, which is called the arrival rate, for each
source-destination pair must be fixed. The delay experienced by a packet consists
of two components. The first is the queuing delay—the time spent waiting in the
buffers at each routing node for transmission. There is no queuing delay in the case
of deflection routing. The second component of the delay experienced by a packet is
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the propagation delay—the time taken for the packet to traverse all the links from
the source node to the destination node. The propagation delay is often larger for
deflection routing than for routing with buffers owing to the misdirection of packets
away from their destinations. As a result, in most cases, for a given arrival rate,
the overall delay in deflection-routed networks is larger than the overall delay in
store-and-forward networks.

Throughput

Another consequence of deflection routing is that the throughput of the network is
decreased compared to routing with buffers. An informal definition of the throughput
of these networks, which will suffice for our purposes here, is that it is the maximum
rate at which new packets can be injected into the network from their sources.
Clearly, this depends on the interconnection topology of the network and the data
rates on the links. In addition, it depends on the traffic pattern, which must remain
fixed in defining the throughput. The traffic pattern specifies the fraction of new
packets for each source-destination pair. Typically, in all theoretical analyses of such
networks, the throughput is evaluated for a uniform traffic pattern, which means
that the arrival rates of new packets for all source-destination pairs in the network
are equal. If all the links run at the same speed, the throughput can be conveniently
expressed as a fraction of the link speed.

For Manhattan Street networks with sizes ranging from a few hundred to a few
thousand nodes, deflection routing achieves 55 to 70% of the throughput achieved
by routing with buffering [Max89]. For shufflenets in the same range of sizes, the
value is only 20 to 30% of the throughput with buffers. However, since a shufflenet
has a much higher throughput than a Manhattan Street network of the same size
(for routing with buffers), the actual throughput of the Manhattan Street network
in the case of deflection routing is lower than that of the shufflenet. All these results
assume a uniform traffic pattern.

So what do these results imply for irregular networks? To discuss this question,
let us examine some of the differences in the properties of these two networks. One
important property of any network is its diameter, which is the largest number of
hops on the shortest path between any two nodes in the network. In other words,
the diameter is the maximum number of hops between two nodes in the network.
However, in most networks, the larger the diameter, the greater the number of
hops that a packet has to travel even on average to get to its destination. The
Manhattan Street network has a diameter that is proportional to

√
n, where n is the

number of nodes in the network. On the other hand, the shufflenet has a diameter
that is proportional to log2 n. (We consider shufflenets of degree 2.) Thus, if we
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consider a Manhattan Street network and a shufflenet with the same number of
nodes and edges, the Manhattan Street network will have a lower throughput for
routing with buffers than the shufflenet, since each packet has to traverse more
edges, on the average. For arbitrary networks, we can generalize this and say that
the smaller the diameter of the network, the larger the throughput for routing with
buffers.

For deflection routing, a second property of the network that we must consider
is its deflection index. This property was introduced in [Max89], although it was
not called by this name. It was formally defined and discussed in greater detail in
a later paper [GG93]. The deflection index is the largest number of hops that a
single deflection adds to the shortest path between some two nodes in the network.
In the Manhattan Street network, a single deflection adds at most four hops to the
path length, so its deflection index is four. On the other hand, the shufflenet has
a deflection index of log2 n hops. This accounts for the fact that the Manhattan
Street network has a significantly larger relative throughput—the deflection routing
throughput expressed as a fraction of the store-and-forward throughput—than the
shufflenet (55–70% versus 20–30%). For arbitrary networks, we can then say that
the deflection index must be kept small so that the throughput remains high in the
face of deflection routing.

Combining the two observations, we can conclude that network topologies with
small diameters and small deflection indices are best suited for photonic packet-
switching networks. A regular topology designed by combining the Manhattan Street
and shufflenet topologies and having these properties is discussed in [GG93]. In addi-
tion to choosing a good network topology (not necessarily regular), the performance
of deflection-routing networks can be further improved by using appropriate de-
flection rules. A deflection rule specifies the manner in which the packets to be
deflected are chosen among the packets contending for the same switch output
port. The results we have quoted assume that in the event of a conflict between
two packets, both packets are equally likely to be deflected. This deflection rule is
termed random. Another possible deflection rule, called closest-to-finish [GG93],
states that when two packets are contending for the same output port, the packet
that is farther away from its destination is deflected. This has the effect of reduc-
ing the average number of deflections suffered by a packet and thus increasing the
throughput.

Small Buffers

We can also consider deflection routing with a very limited number of buffers, for
example, buffers of one or two packets at each input port. If this limited buffer is full,
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the packet is again deflected. Such limited-buffer deflection-routing strategies achieve
higher throughputs compared to the purest form of deflection routing without any
buffers whatsoever. We refer to [Max89, FBP95] for the quantitative details.

Livelock

When a network employs deflection routing, there is the possibility that a packet
will be deflected forever and never reach its destination. This phenomenon has been
called both deadlock [GG93] and livelock [LNGP96], but the term livelock seems to
be more appropriate. Livelock is somewhat similar to routing loops encountered in
store-and-forward networks (see Section 6.5), but routing loops are a transient phe-
nomenon there, whereas livelock is an inherent characteristic of deflection routing.

Livelock can be eliminated by suitably designed deflection rules. However, prov-
ing that any particular deflection rule is livelock-free seems to be hard. We refer to
[GG93, BDG95] for further discussion of this issue (under the term deadlock). One
way to eliminate livelocks is to simply drop packets that have exceeded a certain
threshold on the hop count.

12.5 Burst Switching

Burst switching is a variant of PPS. In burst switching, a source node transmits a
header followed by a packet burst. Typically, the header is transmitted at a lower
speed on an out-of-band control channel, although most proposals assume an out-
of-band control channel. An intermediate node reads the packet header and activates
its switch to connect the following burst stream to the appropriate output port if a
suitable output port is available. If the output port is not available, the burst is either
buffered or dropped. The main difference between burst switching and conventional
photonic packet switching has to do with the fact that bursts can be fairly long
compared to the packet duration in packet switching.

In burst switching, if the bursts are sufficiently long, it is possible to ask for or
reserve bandwidth in the network ahead of time before sending the burst. Various
protocols have been proposed for this purpose. For example, one such protocol,
called Just-Enough-Time (JET), works as follows. A source node wanting to send a
burst first sends out a header on the control channel, alerting the nodes along the
path that a burst will follow. It follows the header by transmitting the burst after a
certain time period. The period is large enough to provide the nodes sufficient time to
process the header and set the switches to switch the burst through when it arrives,
so that additional buffering is not needed for this purpose at the nodes.

Overall, burst switching is essentially a variation of PPS where packets have
variable and fairly large sizes, and little or no buffering is used at the nodes. Like
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Table 12.2 Key features of photonic packet-switching testbeds described in Section 12.6.

Testbed Topology Bit Rate Functions Demonstrated

KEOPS Switch 2.5 Gb/s 4× 4 switch,
(per port) subnanosecond switching,

all-optical wavelength conversion
tunable lasers,
packet synchronizer

KEOPS Switch 10 Gb/s 16 × 16 broadcast/select,
(per port) subnanosecond switching

FRONTIERNET Switch 2.5 Gb/s 16 × 16,
(per port) tunable laser

NTT Switch 10 Gb/s 4× 4 broadcast/select
(per port)

Synchrolan Bus 40 Gb/s Bit-interleaved data transmission
(BT Labs) (aggregate) and reception

BT Labs Switch 100 Gb/s Routing in a 1× 2 switch based
(per port) on optical header recognition

Princeton Switch 100 Gb/s Packet compression,
(per port) TOAD-based demultiplexing

AON Helix (bus) 100 Gb/s Optical phase lock loop, pulse
(aggregate) generation, compression, storage

CORD Star 2.5 Gb/s Contention resolution
(per port)

packet switching, one of the main issues with burst switching is to determine the
buffer sizes needed at the nodes to achieve reasonable burst drop probabilities when
there is contention. The same techniques that we discussed earlier in Section 12.4
apply here as well.

12.6 Testbeds

Several PPS testbeds have been built over the years. The main focus of most of
these testbeds is the demonstration of certain key PPS functions such as multiplexing
and demultiplexing, routing/switching, header recognition, optical clock recovery
(synchronization or bit-phase alignment), pulse generation, pulse compression, and
pulse storage. We will discuss some of these testbeds in the remainder of this section.
The key features of these testbeds are summarized in Table 12.2.
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12.6.1 KEOPS

KEOPS (Keys to Optical Packet Switching) [Gam98, Gui98, RMGB97] was a
significant project undertaken by a group of research laboratories and universi-
ties in Europe. Its predecessor was the ATMOS (ATM optical switching) project
[Mas96, RMGB97]. KEOPS demonstrated several of the building blocks for PPS
and put together two separate demonstrators illustrating different switch architec-
tures. The building blocks demonstrated include all-optical wavelength converters
using cross-phase modulation in semiconductor optical amplifiers (see Section 3.8)
up to 40 GHz, a packet sychronizer at 2.5 Gb/s using a tunable delay line, tunable
lasers, and low-loss integrated indium phosphide Mach-Zehnder–type electro-optic
switches.

The demonstrations of network functionality were performed at a data rate of
2.5 Gb/s and 10 Gb/s, with the packet header being transmitted at 622 Mb/s. The
KEOPS switches used wavelengths internal to the switch as a key tool in performing
the switching and buffering, instead of using large optical space switches. In this
sense, the KEOPS demonstrators are variations of the architecture of Figure 12.20.
The first demonstrator, shown in Figure 12.24, used a two-stage switching approach
with wavelength routing. Here, the first stage routes the input signal to the appro-
priate delay line by converting it to a suitable wavelength and passing it through a
wavelength demultiplexer. The second stage routes the packet to the correct output,
again by using a tunable wavelength converter and a combination of wavelength
demultiplexers and multiplexers. Each input has access to at least one delay line in
each set of delay lines. Since the delay line in turn has access to all the output ports,
the switch may be viewed as implementing a form of shared output buffering.

The switch controller (not shown in the figure) schedules the incoming packets
onto the delay lines as follows: Each input packet is scheduled with the minimum
possible delay, d, such that (1) no other packet is scheduled in the same time slot
to the same output port, (2) no other packet is scheduled in the same time slot
on any of the delay lines leading to the same second-stage TWC as the desired
packet, and (3) in order to deliver packets in sequence of their arrival, no previous
packet from the same input is scheduled to the same output port with a delay larger
than d.

Another demonstrator used a broadcast-and-select approach as shown in Fig-
ure 12.25. Here packets arriving at different inputs are assigned different wave-
lengths. Each packet is then broadcast into an array of delay lines providing dif-
ferent delays. Each delay line can store multiple packets simultaneously at different
wavelengths. Thus each input packet is made available at the output over several
slots. Of these, one particular slot is selected using a combination of wavelength
demultiplexers, optical switches, and wavelength multiplexers. This switch therefore
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Figure 12.24 The wavelength-routing packet switch used in KEOPS.

emulates an output-buffered switch with a B slot buffer on each output. A 16× 16
switch using this approach was demonstrated.

12.6.2 NTT’s Optical Packet Switches

Researchers at NTT have demonstrated photonic packet switches using an approach
somewhat similar to KEOPS [Yam98, HMY98]. Like the KEOPS switches, these
switches also use wavelengths internal to the switch as a key element in perform-
ing the switching function. The FRONTIERNET switch [Yam98], shown in Fig-
ure 12.26, uses tunable wavelength converters in conjunction with an arrayed wave-
guide grating to perform the switching function, followed by delay line buffers. This
is again an output-buffered switch, with two stages of selection. For each output, the
first stage selects the time slot, and the second stage the desired wavelength within
that time slot. In the experiment, the tunable converter assumes that the incoming
data is electrical and uses a tunable laser and external modulator to provide a tun-
able optical input into an arrayed waveguide grating. A 16× 16 switch operating at
2.5 Gb/s with optical delay line buffering was demonstrated.

In separate experiments [HMY98], the switching was accomplished by broad-
casting a wavelength-encoded signal to a shared array of delay lines and selecting
the appropriate time slot at the output, again like the KEOPS approach. A 4 × 4
switch at a 10 Gb/s data rate was demonstrated. The key technologies demonstrated
included tunable lasers and optical delay line buffering.
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12.6.3 BT Labs Testbeds

Researchers at British Telecom (BT) Laboratories demonstrated several aspects of
PPS networks [CLM97] that we discussed in this chapter. Multiplexing and de-
multiplexing of high-speed signals in the optical domains were demonstrated in a
prototype broadcast local-area network based on a bus topology called Synchrolan
[LGM+97, Gun97b]. Bit interleaving was used with each of the multiplexed channels
operating at a bit rate of 2.5 Gb/s. The aggregate bit rate transmitted on the bus was
40 Gb/s. The clock signal (akin to a framing pulse) was distributed along with the
bit-interleaved data channels. The availability of the clock signal meant that there
was no need for optical clock recovery techniques. A separate time slot was not used
for the clock signal, but rather it was transmitted with a polarization orthogonal to
that of the data signals. This enabled the clock signal to be separated easily from
the data. In a more recent demonstration [Gun97a], the data and clock signals were
transmitted over two separate standard single-mode (nonpolarization-preserving)
fibers, avoiding the need for expensive polarization-maintaining components.

A PPS node was also demonstrated separately at BT Labs [Cot95]. The optical
header from an incoming packet was compared with the header—local address—
corresponding to the PPS node, using an optical AND gate (but of a different type
than the ones we discussed). The rest of the packet was stored in a fiber delay line
while the comparison was performed. The output of the AND gate was used to set
a 1 × 2 switch so that the packet was delivered to one of two outputs based on a
match, or lack of it, between the incoming packet header and the local address.

12.6.4 Princeton University Testbed

This testbed was developed in the Lightwave Communications Laboratory at Prince-
ton University, funded by DARPA [Tol98, SBP96]. The goal was to demonstrate a
single routing node in a network operating at a transmission rate of 100 Gb/s.
Packet interleaving was used, and packets from electronic sources at 100 Mb/s were
optically compressed to the 100 Gb/s rate using the techniques we described in Sec-
tion 12.1. The limitations of the semiconductor optical amplifiers used in the packet
compression process (Figure 12.7) require a 0.5 ns (50 bits at 100 Gb/s) guard band
between successive packets. Optical demultiplexing of the compressed packet header
was accomplished by a bank of AND gates, as described in Section 12.1. The TOAD
architecture described in Section 12.1.3 was used for the AND gates. The number
of TOADs to be used is equal to the length of the packet header. Thus the optically
encoded serial packet header was converted to a parallel, electronic header by a bank
of TOADs.
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Figure 12.27 The helical LAN topology proposed to be used in the AON TDM testbed.

12.6.5 AON

This testbed was developed by the All-Optical Network (AON) consortium con-
sisting of AT&T Bell Laboratories, Digital Equipment Corporation, and the Mas-
sachusetts Institute of Technology [Bar96]. The aim was to develop an optical
TDM LAN/MAN operating at an aggregate rate of 100 Gb/s using packet inter-
leaving. Different classes of service, specifically guaranteed bandwidth service and
bandwidth-on-demand service, were proposed to be supported. The topology used
is shown in Figure 12.27. This is essentially a bus topology where users transmit in
the top half of the bus and receive from the bottom half. One difference, however,
is that each user is attached for transmission to two points on the bus such that
the guaranteed bandwidth transmissions are always upstream from the bandwidth-
on-demand transmissions. Thus the topology can be viewed as having the helical
shape shown in Figure 12.27—hence the name helical LAN (HLAN) for this net-
work.

Experiments demonstrating an optical phase lock loop were carried out. In these
experiments, the frequency and phase of a 10 Gb/s electrically controlled mode-
locked laser were locked to those of an incoming 40 Gb/s stream. (Every fourth
pulse in the 40 Gb/s stream coincides with a pulse from the 10 Gb/s stream.) Other
demonstrated technologies include short pulse generation, pulse compression, pulse
storage, and wavelength conversion.

12.6.6 CORD

The Contention Resolution by Delay Lines (CORD) testbed was developed by a con-
sortium consisting of the University of Massachusetts, Stanford University, and GTE
Laboratories [Chl96]. A block diagram of the testbed is shown in Figure 12.28. The
testbed consisted of two nodes transmitting ATM-sized packets (ATM has packets
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Figure 12.28 A block diagram of the CORD testbed.

with size 53 bytes) at 2.488 Gb/s using different transmit wavelengths (1310 nm
and 1320 nm). A 3 dB coupler broadcasts all the packets to both the nodes. Each
node generates packets destined to both itself and the other node. This gives rise to
contentions at both the receivers. The headers of the packets from each node were
carried on distinct subcarrier frequencies (3 GHz and 3.5 GHz) located outside the
data bandwidth (≈ 2.5 GHz). The subcarrier headers were received by tapping off a
small portion of the power (10%) from the incoming signal.

Time was divided into slots, with the slot size being equal to 250 ns. Since an
ATM packet is only 424/2.488 ≈ 170 ns long, there was a fair amount of guard
band in each slot. Slot synchronization between nodes was accomplished by having
nodes adjust their clocks based on their propagation delay to the hub. However,
a separate synchronizer node was not used, and one of the nodes itself acted as
the synchronizer (called “master” in CORD) node. The data rate on the subcarrier
channels was chosen to be 80 Mb/s so that a 20-bit header can be transmitted in the
250 ns slot.

In one of the nodes, a feed-forward delay line architecture similar to that shown
in Figure 12.15 was used with a WDM demux and mux surrounding it, so that signals
at the two wavelengths could undergo different delays. Thus this node had greater
opportunities to resolve contentions among packets destined to it. This is the origin of
the name contention resolution by delay lines for this testbed. The current testbed is
built using discrete components, including lithium niobate switches, semiconductor
optical amplifiers (for loss compensation), and polarization-maintaining fiber for the
delay lines. An integrated version of the contention resolution optics (CRO), which
would integrate the three 2 × 2 switches and semiconductor amplifiers on a single
InP substrate, is under development.
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Summary

Photonic packet-switched networks offer the potential of realizing packet-switched
networks with much higher capacities than may be possible with electronic
packet-switched networks. However, significant advances in technology are needed
to make them practical, and there are some significant roadblocks to overcome. The
state of optical packet-switching technology is somewhat analogous to the state of
electronic circuits before the integrated circuit was invented. All the building blocks
needed for optical packet switching are in a fairly rudimentary state today and in re-
search laboratories; they are either difficult to realize, very bulky, or very expensive.
For example, optical buffering is implemented using hundreds of meters of delay
lines, which are bulky and can only provide limited amounts of storage. Transmit-
ting data at 100 Gb/s and higher line rates over any significant distances of optical
fiber is still a major challenge. At this time, fast optical switches have relatively high
losses, including polarization-dependent losses, and are not amenable to integration,
which is essential to realize large switches. Optical wavelength converters, which
have been proposed for many of the architectures, are still in their infancy today.
Temperature dependence of individual components can also be a significant problem
when multiplexing, demultiplexing, or synchronizing signals at such high bit rates.
We also need effective ways of combatting the signal degradation through these
switches. For instance, a cheap all-optical 3R regenerator along the lines of what we
studied in Section 3.8 would make many of these architectures more practical. For
the foreseeable future, it appears that we will continue to perform all the intelligent
control functions for packet switching in the electrical domain.

In the near term, we will continue to see the optical layer being used to provide
circuit-switched services, with packet-switching functions being done in the electronic
domain by IP routers or Ethernet switches. PPS, particularly with burst switching, is
being positioned as a possible future replacement for the optical circuit layer, while
still retaining electronic packet switching at the higher layers. The notion is that
circuit-switched links are still underutilized due to the bursty nature of traffic, and
using an underlying optical packet layer instead of a circuit layer will help improve
link utilizations.

Further Reading

There has been a great deal of research activity related to photonic packet switching
with respect to architectures and performance evaluation, as well as experiments
and testbeds. See [HA00, Yoo06] for overviews, as well as [Pru93, BPS94, Mid93].
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[BIPT98, MS88] are special issues devoted to this topic. Other examples of optical
packet switching projects are OPSNET [KPNO05] and OPORON [NZS+07].

The NOLM is described in [DW88], and its use for optical demultiplexing is
described in [BDN90]. The NALM is described in [FHHH90]. The architecture of
the TOAD is described in [SPGK93], and its operation is analyzed in [KGSP94]. Its
use for packet header recognition is described in [GSP94]. Another nonlinear optical
loop mirror structure, which uses a short loop length and an SOA within the loop,
is described in [Eis92]. The soliton-trapping AND gate is described in [CHI+92].
Other demultiplexing methods using high-speed modulators are described in [Mik99,
MEM98]. Packet compression and decompression can also be accomplished by a
technique called rate conversion; see [PHR97].

For a summary of optical buffering techniques, see [HCA98, Hal97]. Many of the
performance results relating to buffering in packet switches may be found in [HK88].
Optical buffering at 40 Gb/s is described in [HR98]. [Dan97, Dan98] analyze the
impact of using the wavelength dimension to reduce the number of buffers. A study
to determine the minimum size of optical buffers to implement a packet buffer is
presented in [SA06]. It covers a general class of packet buffers that includes priority
queues. In [BGR+05], simulations show that the size of the packet buffers could
be small and still provide good performance under certain traffic conditions. One
approach to reduce the size of the buffers further is to regulate the traffic that enters
the network, thereby shaping traffic bursts in the network core. An example of this
work is in [LH06]. The role of optical technology in high-capacity routers is studied
in [Tuc06]. Optical and electronic implementations of router components such as
packet buffers and switch fabrics are compared with respect to power and space.

For an overview of deflection routing, see [Bor95]. For an analysis of deflection
routing on the hypercube topology, see [GH92]. Other papers on deflection routing
that may be of interest are [HC93, BP96]. [BCM+92] describes an early experimental
demonstration of a packet-switching photonic switch using deflection routing.

Using burst switching in the context of PPS has been proposed by [QY99, Tur99,
YQD01]. Similar notions were proposed earlier in the context of electronic packet-
switched networks [Ams83].

Most of the testbeds we have discussed, and some we have not, are described in
the special issues on optical networks and photonic switching [BIPT98, CHK+96,
FGO+96]. See also [Hun99, Gui00] for another testbed architecture and demonstra-
tion using wavelength-based switching. A design for a soliton ring network operating
at 100 Gb/s and using soliton logic gates such as the soliton-trapping AND gate is
described in [SID93].

We have covered WDM as well as TDM techniques in the book, but have not
explored networks based on optical code division multiple access (OCDMA). Here
different transmitters make use of different codes to spread their data, either in the
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time domain or in the frequency domain. The codes are carefully designed so that
many transmitters can transmit simultaneously without interfering with one another,
and the receiver can pick out a desired transmitter’s signal from the others by suitably
despreading the received signal. OCDMA networks were a popular research topic
in the late 1980s and early 1990s, but they suffer from even more problems than
PPS networks employing high-speed TDM. See [Sal89, SB89, PSF86, FV88] for a
sampling of papers on this topic, and see [Gre93] for a good overview.

Problems

12.1 In the packet multiplexing illustrated in Figure 12.7, show that the delay encoun-
tered by pulse i, i = 1, 2, . . . , l, on passing through the k compression stages is
(2k − i)(T − τ ). Using the fact that the pulses are separated by time T at the input,
now show that pulse i occurs at the output at time (2k − 1)(T − τ )+ (i − 1)τ . Thus
the pulses are separated by a time interval of τ at the output.

12.2 Show that a compressed data packet of length l bits, obtained by the packet multi-
plexing technique illustrated in Figure 12.7, can be decompressed, in principle, by
passing it through a series of k = �log� l� expansion stages, where the j th expansion
stage is as shown in Figure 12.29. What should be the switching time of the on-off
switches used in this scheme?

12.3 Consider the tunable delay shown in Figure 12.14. Assume that a delay of xT/2k−1

is to be realized, where x is a k-bit integer. Consider the binary representation of x,
and find an expression for the control inputs c1, . . . , ck. Assume that if ci = 1, switch
i is set in the bar state, and if ci = 0, switch i is set in the cross state.

12.4 Consider the fiber loop mirror shown in Figure 12.9, and show that the nonlinear
element should introduce a phase shift of π between the clockwise and counterclock-
wise signals in order for all the energy entering the directional coupler from arm A
to be transferred to arm B.

12.5 We have seen that many photonic packet-switching proposals use a lower-rate header
compared to the payload. Suppose the maximum header bit rate is 1 Gb/s and headers
are 10 bytes long. The payload data rate is 100 Gb/s.

(a) We would like the duration of the payload to be 90% of the overall packet
duration (including header and payload). What size does the payload need
to be?

(b) If we wanted the maximum payload size to be 1000 bytes and maintain the
same efficiency, at what rate would the header have to be transmitted?

(c) Suppose we need a minimum of 1 μs to process the header. This time is
accounted for as an additional guard band in the overall packet, in addition
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to the header and payload. Again, if we want to maintain the payload at
90% of the overall packet, and the header at 10 bytes at 1 Gb/s, what size
does the payload need to be?
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13
c h a p t e r

Deployment
Considerations

In this chapter, we will study some of the issues facing network operators as they
build new networks or upgrade their networks to higher and higher capacities.

We will start by understanding how the network is changing from a services per-
spective, and then understand the changes happening to the network infrastructure.
Chapter 1 provided an overview of some of these changes, but we will examine them
in detail in this chapter. We will try to understand the various architectural choices
available to carriers planning their next-generation networks, in terms of the roles
played by SONET/SDH, IP/MPLS, and Ethernet. We will discuss the role played
by the optical layer and the economic considerations underlying the deployment of
WDM and TDM optical layer technologies in the network. We will see that long-haul
networks and metro networks have different requirements that influence the choice
of technology deployed. In general, it is difficult to decide between the different tech-
nologies, and network operators often employ sophisticated network design tools to
help them understand the cost trade-offs between different approaches. The exam-
ples and problems in this chapter will help the reader gain a better understanding of
these trade-offs.

13.1 The Evolving Telecommunications Network

The legacy transport network in place in networks run by established carriers is
based on SONET and SDH. We have seen the WDM optical layer play an increasing
role in these networks.

707
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Several factors are causing service providers to reexamine the way they build their
transport network. The first driver is obviously the enormous growth in network
traffic, but the traffic mix is unpredictable and changing. Another driver is that the
traffic growth is dominated by IP and Ethernet traffic. This traffic is a mix of Internet
traffic and private leased lines, which in turn support a variety of services such as
file downloads (e.g., Web traffic and file sharing), voice, video, and gaming. A third
driver is the advent of increased competition, which is causing service providers
to rethink how they deploy services. In contrast to a world where a new service
request for bandwidth could take weeks to months to be fulfilled and require long-
term contractual agreements, service providers are increasingly entering a world
where services need to be deployed rapidly without long-term contracts at highly
competitive rates.

Moreover, there is now a new generation of carriers who operate under sig-
nificantly different business models than more established carriers. These different
business models require different architectures. A carrier providing services to inter-
connect Internet service providers has very different requirements than a traditional
carrier servicing voice and private circuit-switched lines. We also now have a new set
of carriers’ carriers. These are carriers providing bulk bandwidths (say, at 622 Mb/s
and above) primarily to other carriers. These carriers’ carriers have different require-
ments from carriers delivering low-speed services (such as 1.5 Mb/s lines) to their
customers.

Before we delve into the evolution of the network, it is worth looking at what
carriers look for when they deploy equipment in their network. At the end of the
day, what they deploy must either enable them to reduce the cost of their network or
to generate revenue from new services activated by the equipment deployed. From
a cost perspective, carriers look at capital cost and operations cost. Capital cost
is the upfront cost of deploying the equipment, and operations cost represents the
recurring cost of maintaining and operating the network. Capital cost includes the
cost of the equipment, as well as the cost of real estate, providing for appropriate
power and cooling and the fiber facilities. In the case of transmission equipment,
the goal is to minimize the cost per bit transmitted per mile in the network. It is
important to look at the initial entry cost, as well as the cost to add incremental
capacity to already-deployed equipment.

Operations cost includes real estate rental/lease costs; recurring costs of power
and cooling; labor costs to provision, maintain, and service the equipment; and costs
associated with replacing failed equipment and missing service-level agreements on
network availability. Although most carriers will say that operations costs domi-
nate over capital costs in their networks, capital costs are usually much easier to
quantify—hence many carriers use capital costs as the primary basis for making
purchasing decisions.
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Looking at the revenue side of the equation, we find that carriers are always on the
lookout for generating new revenue streams by deploying new services. These might
include services tailored toward enabling new applications, for instance, providing
storage networks between data centers, or modified versions of traditional services.
For instance, deploying equipment that enables a carrier to set up and take down
private line circuit-switched services in minutes where needed would permit a carrier
to offer short-term tariffs on these services, as opposed to requiring its customers to
buy the service for extended durations. Another benefit of this capability is that it
reduces the time to deploy a service and extracts more revenue as a result. Yet another
benefit is that it allows a carrier to better utilize its existing network resources,
without having stranded bandwidth due to an inability to anticipate the traffic pattern
in the network.

The factors described above are forcing carriers to deploy networks that can
scale in capacity, networks that are flexible in that they are able to deliver a wide
variety of services where needed when needed. The optical layer provides carriers
with the ability to deliver these high-speed circuit-switched services, and also serves
as the transport mechanism for carrying multiplexed low-speed packet and circuit-
switched services.

13.1.1 The SONET/SDH Core Network

Figure 13.1(a) shows the core network of a typical established carrier. The network
consists of interconnected SONET rings. Given today’s capacity demands, many of
the rings actually consist of multiple rings connecting the same set of nodes. These
are called stacked rings. These rings operate over different fibers, or more commonly,
wavelengths within the same fibers using WDM. Figure 13.1(b) shows a blowup of
a large node in this network. The node has multiple WDM terminals (OLTs). Each
ring passing through the node requires a SONET ADM. These ADMs are connected
to the OLTs and operate at line rates of OC-48 (2.5 Gb/s) or OC-192 (10 Gb/s).
The ADMs drop lower-speed traffic streams, ranging from 45 Mb/s DS3 streams to
higher-speed 622 Mb/s OC-12 streams. The lower-speed traffic is handled by digital
crossconnect systems (DCSs). Data traffic is brought into the network through these
lower-speed signals and multiplexed to higher speeds by the SONET ADMs and the
DCSs. This data enters the network typically in the form of private lines, such as
DS1, DS3 or E1, E3 lines, or directly at other SONET/SDH rates. These rates are
well defined and mapped into the SONET/SDH multiplexing structure. Other data
traffic, such as IP traffic from routers or Ethernet traffic from Ethernet switches, can
be brought into the network via DS1/DS3 lines or higher-speed optical signals such
as OC-3, OC-12, and carried over the SONET/SDH infrastructure.
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Figure 13.1 A typical carrier backbone network based on SONET/SDH, showing SONET/SDH
add/drop multiplexers (ADMs) and digital crossconnects (DCSs), along with optical line terminals
(OLTs) and routers. (a) The network topology, which consists of interconnected rings in the backbone,
with feeder metro rings. (b) Architecture of a typical node, including OLTs, stacked up SONET
ADMs, and DCSs.
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Figure 13.2 Bandwidth wasted when two rings built using ADMs share the same fiber
route. Half the bandwidth on each ring along the shared route is reserved for protection.

This network was designed to carry voice and private-line traffic. It can also
carry packet traffic with link layer protocols such as Generic Framing Procedure
(GFP), and efficiently allocate and manage the right amount of bandwidth with vir-
tual concatenation (VCAT) and the Link Capacity Adjustment Scheme (LCAS). The
network provides guaranteed latency and bandwidth, and well-established protec-
tion schemes ensure high network availability. SONET/SDH also provides extensive
performance monitoring and fault management capabilities. The network is mostly
static, with switching provided by the DCSs in order to provision connnections. The
switching is done at the time a connection is set up. Once set up, connections remain
for months or years, but they may have to be switched in the interim to deal with
network failures or for maintenance purposes.

However, as we see the increasing dominance of data traffic and the emergence of
new optical layer equipment, several deficiencies of the SONET/SDH-based network
architecture become evident:

The traffic demands themselves are more meshed, and the ring architecture is not
the most efficient at supporting an inherently meshed traffic demand for several
reasons. Multiple rings need to be interconnected, and the interconnection is
fairly complex and done through digital crossconnects. Half the capacity on
each ring in the network is reserved for protection. Moreover, if two rings share
a common link, as shown in Figure 13.2, the protection capacity is reserved
for each ring separately along the overlapping link. This may be useful if the
network needs to protect against multiple simultaneous failures, but is otherwise
wasteful.
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By default, all the traffic is protected. This does not allow carriers to of-
fer a variety of services, some protected and others not protected. Protec-
tion is not needed for certain types of traffic, for instance, best-effort IP traf-
fic.

Some carriers are in the business of delivering high-speed, best-effort IP ser-
vices. For these carriers, the SONET/SDH layer provides little benefit. The mul-
tiplexing and protection offered by the SONET/SDH layer is not needed. Thus
significant cost can be saved by eliminating the SONET/SDH equipment for
these applications. Note, however, that SONET framing still offers significant
advantages: it provides a commonly used set of transport rates and provides
sufficient overhead to allow detailed performance monitoring and fault man-
agement. For this reason, while SONET multiplexing and protection may not
be required in IP networks, SONET framing is still widely used by IP equip-
ment.

Finally, today, carriers lack the management and signaling systems in order
to be able to provision connections end to end across their network. Cur-
rently, different network elements are managed by different management sys-
tems, and provisioning connections on systems already fully equipped is a
time-consuming and rather manual process. For instance, each SONET ADM
and DCS in the network is provisioned separately, one at a time, using ele-
ment management systems. Although there are some umbrella network man-
agement systems that do provision end-to-end connections, these still provide
limited interoperability across equipment from multiple vendors. We saw in
Section 8.6.2 that signaling standards are being developed to solve this prob-
lem.

For these reasons, the network architecture is changing in some rather significant
ways. The best architecture depends to a large extent on the service mix offered by
the carrier, as well as on the legacy network that is in place in the current network.
We will next describe the choices facing carriers as they plan their next-generation
transport networks.

13.1.2 Architectural Choices for Next-Generation Transport
Networks

The optical layer is the main transmission layer for telecommunications backbone
networks. The real debate centers on what set of technologies to use above the optical
layer to deliver services. This in turn decides the set of boxes that will need to be
deployed at the network nodes. The choices today include SONET/SDH, IP/MPLS,
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Figure 13.3 Using SONET/SDH as the common transmission layer. IP packets are encapsulated
into PPP frames for link layer functions and then mapped into SONET/SDH frames for transmisison
over the fiber. The bit rates indicated are for illustration purposes only. (a) The logical layered view.
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to embed the packets before they are transmitted over the optical layer. The bit rates indicated
are for illustration purposes only. (a) The logical layered view. (b) Example of how equipment is
interconnected.

and Ethernet. Figures 13.3, and 13.4 show a variety of options available to carriers
planning their next-generation networks.
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Figure 13.3 shows the SONET/SDH layer as the common transmission layer
above the optical layer. Other services, including Ethernet and IP/MPLS, are carried
over the SONET/SDH layer. Figure 13.3(a) shows a logical view of the layers, whereas
Figure 13.3(b) shows how the equipment is interconnected in a typical configuration.
IP packets are typically carried over a link layer protocol such as PPP (point-to-point
protocol), which provides link-level integrity of the frames on a link-by-link basis.
These packets are then framed into SONET/SDH frames. All these functions are
performed by a line card inside the router. The router is connected to a SONET/SDH
box, which multiplexes this connection along with others for transmission over the
optical layer.

Figure 13.4 shows a model where the IP layer resides directly on top of the
optical layer. The IP layer classically belongs to layer 3 of the OSI hierarchy. With
the advent of MPLS, the IP layer also includes layer 2 functionality. In this case, IP
routers are directly connected to optical layer equipment. In the wide-area network,
SONET/SDH or OTN framing is widely used for the reasons given above, and the
framing is done on line cards within the router (Note that 10-Gigabit Ethernet has
SONET framing for long-haul connections). In this case, there is no need for a
separate SONET/SDH box in the network, which can translate into significant cost
savings.

IP over WDM Variants

We have talked about directly connecting IP routers to the optical layer, in the IP
over WDM paradigm. In reality, this can be architected in multiple ways, as shown
in Figure 13.5. The differences pertain primarily to the manner in which traffic
passing through intermediate nodes is handled and the degree of agility provided in
the optical layer. Before going into this issue in more detail, we look briefly at the
capabilities of large IP routers and large optical crossconnects (OXCs). In general the
trend to date has been that the total capacity that can be switched by a top-of-the-
line router is much smaller than the total switching capacity of an OXC. Likewise,
the OXC can be significantly denser (occupy a smaller footprint) than an equivalent
router. Furthermore, the cost per router port is usually much larger than the cost
per equivalent OXC port. None of these findings are surprising, given the relative
differences in functions and resulting complexity between a router and an OXC.

The simplest architecture for IP over WDM, shown in Figure 13.5(a), is to
connect the IP routers directly into optical line terminals (OLTs). Passthrough traffic
at intermediate nodes is handled by the routers. This, however, has the highest cost
for dealing with passthrough traffic, since expensive router ports need to be used
to handle all this traffic. Also a large number of router ports will be needed in this
approach, requiring significant floor space and associated power and cooling issues.
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Figure 13.5 Different architectures for realizing an IP over WDM network. (a)
Passthrough traffic is handled by routers. (b) Passthrough traffic is patched through
in the optical layer in a static fashion. (c) Passthrough traffic is handled by an optical
crossconnect (OXC) providing dynamic reconfiguration and traffic grooming.

Unfortunately, in some carriers, the router network and the transport (optical layer)
network are designed and operated by different groups independently. This often
leads to a situation not unlike what we see in Figure 13.5(a).

The second approach, shown in Figure 13.5(b), is similar to the first, except
that the passthrough traffic is handled by connecting patch cables between back-
to-back WDM terminals within the optical layer. This approach is the lowest-cost
option, as all passthrough traffic is handled without additional equipment or using
up router ports. However, it is relatively inflexible in the sense that lightpaths cannot
be configured dynamically in the network. Also it may be important to perform some
demultiplexing and multiplexing of the lightpaths, that is, grooming, at intermediate
nodes, if partial signals have to be dropped and added locally, for instance, 25 % of
the packets of a 10 Gb/s.
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The third approach, shown in Figure 13.5(c), uses OXCs to handle the
passthrough traffic. In terms of cost, it lies between the two approaches discussed
above, but provides the flexibility to set up lightpaths dynamically; it also performs
partial demultiplexing and multiplexing at intermediate nodes, if needed. As a result,
this is the preferred IP over WDM architecture.

The Evolving Network

Although IP is a dominant information transport technology, it is likely that networks
will support a variety of transport services. The architecture shown in Figure 13.6
will support such a diversity. The backbone is a mesh network made up of optical
crossconnects, optical add/drop multiplexers (OADMs), and optical line terminals.
The network supports a variety of traffic types, including SONET, Ethernet, and
IP/MPLS. High-speed traffic streams are directly connected into the optical layer,
whereas lower-speed streams may be multiplexed and brought into the network
using one of the common service layers described above. Capacity is provisioned and
allocated dynamically in the network by the OXCs and the OADMs. Bandwidth-
efficient protection is offered as needed on a connection-by-connection basis.

SONET/SDH will remain to support voice and private-line traffic, as it is designed
for this purpose. In fact some of this multiplexing, particularly at the higher speeds,
may be done by optical layer equipment rather than separate SONET/SDH boxes.
IP over the optical layer is widespread and will continue to dominate because IP is
the primary packet transport architecture.

At the edges of the network, access will be provided by a new-generation network
element that combines lower-rate statistical and fixed SONET-like time division
multiplexing over the optical layer. We call this element a multiservice platform
(MSP). By combining time division and statistical multiplexing, an MSP has the
potential to deliver a variety of circuit-switched and packet-switched services to
the end users of the network. The idea is to use a single box in the access part of
the network to deliver a variety of services to end users, without having to deploy
multiple overlay networks to support each service type. Generic Framing Procedure
may be used in an MSP to adapt a number of packet technologies, for example,
Ethernet, IP over PPP, Fiber Channel, Resilient Packet Ring links, into SONET/SDH
or OTN frames.

MSPs can be implemented in a variety of ways. At one end of the spectrum, an
MSP is simply a SONET ADM, which provides data interfaces, such as Ethernet,
in addition to supporting voice (DS0) and private lines (DS1/DS3, etc.). This box
maps Ethernet signals into a SONET time slot and is purely a circuit-switched device,
with no statistical multiplexing capabilities. Other MSPs can be implemented with a
packet-switched internal core, which allows them to combine statistical multiplexing
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Figure 13.6 The future telecommunications network. (a) Network topology showing a meshed
long-haul backbone with metro collector rings. (b) Architecture of a typical backbone node showing
an OXC, OLT, IP router, SONET add/drop multiplexer, and an MSP. (c) A node on a metro ring
served by an MSP. The MSP is used to deliver a variety of services, including voice, private lines, and
data services.
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with time division multiplexing. These boxes perform statistical aggregation of the
incoming data signals before mapping them into SONET time slots on their line
sides. Finally, there are MSPs that do not have any time division capabilities at all,
carrying all incoming traffic over a packet-switched network such as IP.

Like SONET rings, most MSPs are deployed in ring configurations and include
built-in restoration capabilities, which are based on SONET mechanisms for the
most part. Ring configurations work well for metro networks, as the fiber is mostly
laid in rings. Laying fiber in ring configurations is economical, compared to using
other configurations, such as a star (also called a hub and spoke) configuration. A
star configuration requires two disjoint fiber routes to be laid between each access
node and the central office. In contrast, multiple access nodes can be combined on a
single fiber ring, and additional nodes can be added to the ring as needed, without
having to lay new fiber routes each time a new node needs to be added. Some MSPs
also include built-in WDM interfaces with optical add/drop (OADM) capabilities.

Passive optical networks (PONs) are also emerging as potential candidates to
deliver services to small and medium users of bandwidth. We studied PONs in
Chapter 11.

WDM is being used in metro networks, though at a slower rate because its
economics are not as compelling as in long-haul networks. More on this is presented
in Section 13.2.8.

13.2 Designing the Transmission Layer

We will next look at the choices that service providers have to make in choosing
the right transmission layer. The historical trend has been to increase capacity in the
network and at the same time drive down the cost per bit of bandwidth. Service
providers generally look for at least a fourfold increase in capacity when planning
their networks. As a rule of thumb, they expect to get this fourfold increase in
capacity at about 2–2.5 times the cost of current equipment.

There are fundamentally three ways of increasing transmission capacity.

1. The first approach is to light up additional fibers or to deploy additional fibers as
needed. We can think of this as the space division multiplexing (SDM) approach:
keep the bit rate the same but use more fibers.

2. The other traditional approach is to increase the transmission bit rate on the
fiber. This is the TDM approach.

3. The third approach is to add additional wavelengths over the same fiber. This is
the WDM approach.
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Note that the three techniques are complementary to each other and are all needed
in the network for a variety of reasons. For instance, using SDM, particularly when
existing fibers are close to being exhausted, can be viewed as a long-term way of
building up infrastructure; WDM and TDM can be viewed as providing the ability to
turn up services rapidly over existing fiber infrastructure. Electronic TDM is required
for grooming traffic at lower speeds in the network, where optics is not cost-effective.
WDM provides the ability to scale the capacity of the infrastructure in a different
dimension. Therefore, the network almost always employs a combination of these
techniques in practice.

The interesting question is not whether to use SDM or TDM or WDM—all of
these will be used—but to determine the right combination of these. For instance,
let us look only at WDM and TDM. To get a total capacity of 80 Gb/s, should
we deploy a network with 32 wavelengths at 2.5 Gb/s each, or a network with 8
wavelengths at 10 Gb/s each? This is a complicated question with many parameters
affecting the right choice. When should we deploy more fibers, instead of investing
in higher-capacity TDM or WDM systems? Several factors influence this decision-
making process:

Is this a new network build or an upgrade of an existing network? If it is an
upgrade, we need to consider the cost of adding channels to existing systems in
lieu of deploying new systems.

The availability and cost of additional fiber.

The type of fiber available.

The cost of lighting up a new fiber versus adding additional capacity to an
already-lit fiber.

The relative cost of TDM and WDM equipment.

We will attempt to address some of these questions next. The problems at the end of
the chapter also provide partial insight into some of the issues.

13.2.1 Using SDM

Using additional fibers is a straightforward upgrade alternative. The viability of
this approach depends on a few factors. First, are additional fibers available on the
route? If so, then the next consideration is the route length. If the route length is short
(typically a few tens of kilometers) and no regenerators or amplifiers are required
along the route, then this is a good alternative. However, if amplifiers or regenerators
are required, then this becomes an expensive proposition because each fiber requires
a separate set of amplifiers or regenerators. However, it may be worth paying the
price to light up a new fiber if the new equipment to be deployed over that fiber
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provides significantly reduced transmission costs compared to existing equipment on
the already-lit fiber.

If no fibers are available on the route, then we need to look at the cost associated
with laying new fiber. This varies widely. If there is space in existing conduits, fiber
can be pulled through relatively inexpensively and quickly. However, if new conduits
must be laid, the cost can be very expensive, even over short distances if the route
is in a dense metropolitan area. If new conduits are to be laid, then the link can be
populated with a large-count fiber cable. Today’s fiber bundles come with hundreds
of fibers.

The other aspect of this problem is the time it takes to lay new fiber. Construct-
ing new fiber links takes months to years and requires right-of-way permits from
municipalities where the new link is laid. These permits may not be easy to obtain
in dense metropolitan areas, due to the widespread impact caused by digging up the
streets. In contrast, upgrading an existing fiber link using either TDM or WDM can
be done within days to weeks. Although it is necessary in some circumstances to lay
new fibers, this is not a good mechanism for rapid response to service requests.

Note that carriers are not likely to wait until the last fiber is exhausted before
they consider an upgrade process. For example, an upgrade process may be triggered
when it is time to light up the last few fibers on a route. This might result in installing
additional fibers along the router. Alternatively, the carrier may deploy a higher-
capacity TDM or WDM system on the last few fibers, and transfer the traffic from
the lower-capacity fibers onto the new system deployed to free up existing fibers
along the route.

13.2.2 Using TDM

Clearly, TDM is required for grooming traffic at the lower bit rates where optics is
not cost-effective. The question is, to what bit rate should traffic be time division
multiplexed before it is transmitted over the fiber (perhaps on a wavelength over
the fiber)? Today’s long-haul links operate mostly at rates of 2.5 Gb/s, 10 Gb/s, or
40 Gb/s. We will see in Section 13.2.5 that the choice of bit rate here is dictated
primarily by the type of fiber available. Metropolitan interoffice links operate mostly
at 2.5 Gb/s, and access links operate at even lower speeds. Here the situation is
somewhat more complicated, as we will explore in Section 13.2.8.

Electronic TDM technology is already delivering the capability to reach 40 Gb/s
transmission rates and may well push this out to 100 Gb/s in the future. Beyond
these rates, it is likely that we will need some form of optical TDM.

At the higher bit rates, we have to deal with more severe transmission impair-
ments over the fiber, specifically chromatic dispersion, polarization-mode dispersion
(PMD), and fiber nonlinearities. With standard single-mode fiber, from Figure 5.19,
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the chromatic dispersion limit is about 60 km at 10 Gb/s and about 1000 km at
2.5 Gb/s, assuming transmission around 1550 nm. With practical transmitters, the
distances are even smaller. The 10 Gb/s limit can be further reduced in the presence
of self-phase modulation. Beyond these distances, the signal must be electronically
regenerated, or some form of chromatic dispersion compensation must be employed.
Practical 10 Gb/s systems being deployed today commonly use some form of chro-
matic dispersion compensation. This is usually cheaper than using regeneration,
particularly when combined with WDM.

As we saw in Section 5.7.4, the distance limit due to PMD at 10 Gb/s is 16
times less than that at 2.5 Gb/s. On old fiber links, the PMD value can be as high as
2 ps/

√
km. For this value, assuming a 1 dB penalty requirement, the distance limit

calculated from (5.23) is about 25 km at 10 Gb/s. Electronic regeneration or PMD
compensation is required for longer distances. The PMD-induced distance limit may
be even lower because of additional PMD caused by splices, connectors, and other
components along the transmission path. PMD does not pose a problem in newly
constructed links where the PMD value can be kept as low as 0.1 ps/

√
km.

Finally, nonlinear effects such as self-phase modulation limit the maximum trans-
mission power per channel, resulting in a need for closer amplifier spacing, and thus
more amplifiers in the link, leading to somewhat higher costs. At 10 Gb/s, transmis-
sion powers are usually limited to under 5 dBm per channel.

Today 10 Gb/s TDM systems are widely deployed in long-haul networks, mostly
in conjunction with WDM, and 40 Gb/s TDM systems will soon become commer-
cially available.

13.2.3 Using WDM

It may be preferable to maintain a modest transmission bit rate, say, 10 Gb/s, and
have multiple wavelengths over the fiber, than to go to a higher bit rate and have fewer
wavelengths. Keeping the bit rate low makes the system less vulnerable to chromatic
dispersion, polarization-mode dispersion, and some types of nonlinearities, such as
self-phase modulation. On the other hand, WDM systems are generally not suitable
for deployment over dispersion-shifted fiber because of the limitations imposed by
four-wave mixing (see Chapter 5).

WDM systems can be designed to be transparent systems. This allows different
wavelengths to carry data at different bit rates and protocol formats. This can be a
major advantage in some cases.

Finally, WDM provides great flexibility in building networks. For example, if
there is a network node at which most of the traffic is to be passed through and
a small fraction is to be dropped and added, it may be more cost-effective to use
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Figure 13.7 (a) Unidirectional and (b) bidirectional transmission systems.

a WDM optical add/drop element than terminating all the traffic and doing the
add/drop in the electrical domain.

Today’s state-of-the-art long-haul systems carry about 100 channels at 10 Gb/s
each and have regenerator spacings of 600 to 1500 km. The ultra-long-haul systems
expand spacing between regenerators to about 4000 km but have somewhat lower
capacities than the long-haul systems.

13.2.4 Unidirectional versus Bidirectional WDM Systems

A unidirectional WDM system uses two fibers, one for each direction of traffic, as
shown in Figure 13.7(a). A bidirectional system, on the other hand, requires only one
fiber and typically uses half the wavelengths for transmitting data in one direction
and the other half for transmitting data in the opposite direction on the same fiber.
Both types of systems are being deployed and have their pros and cons. We will
compare the two types of systems, assuming that technology limits us to having a
fixed number of wavelengths, say, W , per fiber in both cases.

1. A unidirectional system is capable of handling W full-duplex channels over two
fibers. A bidirectional system handles W/2 full-duplex channels over one fiber.
The bidirectional system, therefore, has half the total capacity, but allows a user
to build capacity more gradually than a unidirectional system. Thus it may have a
slightly lower initial cost. However, to go beyond W/2 channels, the user must buy
a second bidirectional system and pay for this additional equipment at that time.

2. If only one fiber (not two) is available, then there is no alternative but to deploy
bidirectional systems. Implementing 1 + 1 or 1:1 configurations with unidirec-
tional WDM systems requires a minimum of two pairs of fibers routed separately,
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Figure 13.8 Implementing 1 + 1 protected configurations using unidirectional and bidirectional
transmission systems: (a) two unidirectional systems using four fibers, (b) two bidirectional systems
using two fibers.

but only requires two fibers with bidirectional systems, as shown in Figure 13.8.
Note, however, that as mentioned above, the bidirectional systems provide half
as much capacity.

3. Systems using distributed Raman amplification tend to be unidirectional.

4. As we saw in Chapter 9, if optical layer protection is required, unlike unidi-
rectional systems, bidirectional systems do not require an automatic protection-
switching (APS) protocol between the two ends of the link, since both ends detect
a fiber cut simultaneously.

5. Consider two equivalent all-optical networks in terms of capacity. One network
uses a bidirectional link between nodes with a total of W wavelengths per link.
Another network uses two unidirectional links between nodes, with a total of
W/2 wavelengths on each unidirectional link. Problem 10.10 shows that the
bidirectional network is less efficient at utilizing the available capacity than the
unidirectional network due to inefficiencies in wavelength assignment.

6. Bidirectional systems can potentially be configured to handle asymmetric traffic.
Given a total number of wavelengths in the fiber, more wavelengths could be
used in one direction compared to the other. Although this may be easy to do for
unamplified systems, it is more difficult to do in amplified systems because these
systems typically use separate amplifiers for each direction.

7. In general, it is slightly more difficult to design the transmission system in bidirec-
tional systems since more impairments must be taken into account, in particular,
reflections, as discussed in Section 5.6.4. There are more components in the path,
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such as filters for separating the wavelengths in different directions, leading to
higher losses. However, at high channel counts, even unidirectional systems may
require these filters.

8. Although amplifiers for bidirectional systems may employ more complicated
structures than unidirectional systems, they need to handle only half as many
channels as unidirectional systems, which means that they can produce higher
output powers per channel and provide more gain flatness. This of course as-
sumes the use of a different amplifier for each direction, which is typically the
case. However, for a given total capacity, twice as many amplifiers are required
in a bidirectional system compared to a unidirectional system.

9. Bidirectional systems usually require a guard band between the two sets of wave-
lengths traveling in opposite directions to avoid crosstalk penalties. However,
high-channel-count unidirectional systems may also require guard bands due to
the hierarchical nature of the multiplexing and demultiplexing in these systems.
(We studied this in Section 3.3.10.) The guard band can be eliminated by in-
terleaving the wavelengths in opposite directions, that is, by having adjacent
wavelengths travel in opposite directions on the fiber. This also has the added
advantage of effectively doubling the channel spacing. For instance, if we trans-
mit 100 channels spaced 50 GHz apart over a fiber, then we have 50 channels
spaced 100 GHz apart in each direction.

13.2.5 Long-Haul Networks

The long-haul carriers in North America have links spanning several hundred to a
few thousand kilometers. In Europe the links are somewhat shorter but still several
hundred kilometers in length. The economics for deploying WDM on these links is
quite compelling, based on the enormous savings in regenerator costs enabled by
the use of optical amplifiers, as well as the time to market to deploy new services.
Thus most long-haul carriers have deployed WDM extensively in their networks. The
specific combination of WDM and TDM depends very much on the carrier’s installed
base of fiber and the type of services delivered. Among the major established carriers,
AT&T and Sprint have primarily installed standard single-mode fiber. Thus WDM
is an attractive option for them, and they have actively deployed WDM systems
on many of their routes. Most of their links operate at 2.5 Gb/s (OC-48) rather
than 10 Gb/s (OC-192). This is because of the older fiber base, with potential PMD
problems as well as because of the need for a large amount of chromatic dispersion
compensation on standard single-mode fiber at 10 Gb/s. In addition, these carriers for
the most part provide services at relatively low bit rates, such as DS3 (45 Mb/s). The
OC-192 terminals initially provided low-speed interfaces down to OC-48 rates but
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now provide lower-speed interfaces down to OC-3/12 rates. Thus carriers providing
DS3 services need to buy additional equipment to multiplex DS3s to OC-12s or
OC-48s, which adds to their equipment cost.

A number of newer carriers have built long-haul networks worldwide. In the
United States, these include Qwest and Level 3 Communications. When these carriers
laid new fiber routes, many decided to install nonzero-dispersion fiber or the large
effective area fiber (LEAF). In some cases, they hedged their bets with respect to fiber
type by leaving space in the conduits to pull additional fiber through later as needed.
These carriers are for the most part delivering bulk bandwidth at OC-12/48/192
rates to their customers. Thus it makes sense for them to deploy WDM at OC-192
rates, and that is what they have done.

As we have mentioned earlier, systems operating in the C-band and L-band are
available. The L-band requires a separate amplifier and is relatively more expensive
than the C-band to deploy, due to the higher cost of the L-band amplifiers, compared
to the C-band amplifiers (this is partially because L-band amplifiers require higher
pump powers than their C-band counterparts). Although most long-haul carriers
have deployed C-band WDM systems, they have been slow to adopt L-band systems.
This is because it is usually cheaper to deploy another C-band system over a new
pair of fibers rather than add the L-band to an existing C-band system. Some of the
newer carriers that have built new fiber networks particularly have a large number
of excess fibers and use this approach. Carriers that have deployed dispersion-shifted
fibers are likely to be early adopters of the L-band for WDM (and other fiber bands
besides the C-band) due to the difficulties associated with four-wave mixing and
other nonlinearities in the C-band on this type of fiber.

13.2.6 Long-Haul Network Case Study

In this section, we present an example of designing a North American long-haul
backbone network. We use the network topology shown in Figure 13.6(a). We look
at using conventional-reach long-haul (LH) systems as well as ultra-long-haul (ULH)
systems. We also examine the benefits of different types of protection architectures.

The network of Figure 13.6(a) has 19 nodes and 28 links interconnecting the
nodes. Table 13.1 shows the assumed traffic matrix between the various nodes in
terms of 10 Gb/s channels. The total end-to-end traffic amounts to 9.99 Tb/s.

The first step in the design process is to route the end-to-end traffic and determine
the amount of working and protection capacity required. Sophisticated algorithms
are used to perform this function in practice, but we use fairly simple algorithms for
this study. For 1+1 protection, we have to calculate a pair of working and protection
paths that are node disjoint, that is, do not have any intermediate nodes (and links)
in common. This ensures that the protection path will be available in case a node or
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Table 13.1 Traffic matrix for the long-haul mesh network case study. The fiber topology is shown
in Figure 13.6(a). The traffic is shown in terms of the number of 10 Gb/s wavelengths between pairs
of nodes in the upper-right triangle of this matrix.

Node Node Destination Node Number Total
Number Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Traffic

1 Seattle 0 6 7 5 6 4 5 9 10 2 9 10 5 3 10 8 6 10 8 123
2 San Francisco 0 0 9 7 8 9 10 8 6 4 2 3 4 2 3 7 8 6 4 106
3 Los Angeles 0 0 0 3 4 5 9 4 2 9 4 5 3 10 2 3 10 2 9 100
4 Salt Lake City 0 0 0 0 6 4 2 9 7 2 6 10 2 6 4 5 6 10 2 96
5 El Paso 0 0 0 0 0 3 7 8 6 7 8 6 4 2 9 7 2 6 4 103
6 Denver 0 0 0 0 0 0 6 7 8 6 4 8 6 7 8 3 4 5 6 103
7 Houston 0 0 0 0 0 0 0 3 10 5 6 10 8 9 10 5 9 7 2 123
8 Dallas 0 0 0 0 0 0 0 0 3 7 2 9 4 5 3 10 2 3 4 100
9 Kansas City 0 0 0 0 0 0 0 0 0 3 7 8 9 4 2 6 10 2 3 106

10 Chicago 0 0 0 0 0 0 0 0 0 0 3 10 5 6 10 8 9 10 2 108
11 Nashville 0 0 0 0 0 0 0 0 0 0 0 6 10 8 3 7 5 9 4 103
12 Atlanta 0 0 0 0 0 0 0 0 0 0 0 0 6 4 5 9 4 2 6 121
13 Tampa 0 0 0 0 0 0 0 0 0 0 0 0 0 9 7 2 6 7 8 105
14 Miami 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 5 6 4 100
15 Charlotte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 2 6 97
16 Philadelphia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 2 99
17 New York 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 10 112
18 Boston 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 103
19 Cleveland 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90

link along the working path fails. We choose the working path as the shortest-length
path between the end nodes. To calculate the protection path for a given pair of
end nodes, we delete the intermediate nodes in the working path between those two
nodes, and calculate the shortest-length path in the resulting topology.

For shared mesh protection, we use the same working and protection paths as in
the 1+1 protection case. However, we do not need to allocate protection capacity for
each path separately. Instead we provide only as much protect capacity as is needed
to reroute the working paths affected by a single link failure. To do this, we calculate
the protection capacity required on the links for every possible link failure and take
the maximum over all possible link failures.

Table 13.2 shows the assumed link distances and the number of 10 Gb/s wave-
lengths required on each link as a result of the routing and capacity allocation
discussed above. Even though the end-to-end traffic requirement between any pair
of nodes is no more than 30 Gb/s (three 10 Gb/s wavelengths), there are several links
that carry more than 100 wavelengths (or equivalently over 1 Tb/s of capacity). For
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Table 13.2 Link distances in the network topology of Figure 13.6(a). Also shown are the
number of wavelengths required on each link to support the working traffic and the protection
traffic for the cases of 1+1 and shared mesh protection, assuming the traffic matrix of Table 13.1.

Link Length Working Protection Protection
(km) Capacity Capacity Capacity

1 + 1 Shared Mesh

Seattle–San Francisco 1072 13 129 100
San Francisco–Los Angeles 535 107 35 29
Seattle–Salt Lake City 1086 76 103 49
Los Angeles–Salt Lake City 932 132 114 67
Seattle–Chicago 2731 34 119 119
Salt Lake City–Denver 601 274 83 43
Los Angeles–El Paso 1123 43 161 155
El Paso–Denver 878 64 231 110
Denver–Chicago 1438 137 80 56
Denver–Kansas City 867 230 233 120
El Paso–Houston 1053 58 213 103
Houston–Dallas 355 129 142 90
Dallas–Kansas City 699 126 154 46
Dallas–Atlanta 1133 57 130 76
Kansas City–Nashville 758 204 305 238
Kansas City–Chicago 651 78 188 88
Nashville–Atlanta 337 188 146 43
Atlanta–Tampa 644 144 91 43
Tampa–Miami 321 101 134 74
Miami–Charlotte 1027 43 192 144
Nashville–Charlotte 519 91 323 139
Charlotte–Philadelphia 707 55 220 139
Nashville–Cleveland 708 82 265 105
Boston–Cleveland 886 78 35 25
New York–Cleveland 652 149 179 67
Philadelphia–New York 143 104 171 75
New York–Boston 297 25 88 78
Chicago–Cleveland 474 267 157 128

example, the Denver–Kansas City link carries 230 working wavelengths and 233
protection wavelengths (in the case of 1 + 1 protection), or 120 protection wave-
lengths (in the case of shared mesh protection). In many of these links, we will end
up using multiple WDM systems in parallel to meet the capacity demand.

We assume each of the 19 nodes has one or more electrical core crossconnects.
The crossconnects terminate all the traffic at the node, including both traffic pass-
ing through the node and traffic being added/dropped at the node. Thus, there is
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Table 13.3 Number of crossconnect ports required at each of the 19 nodes in the case of 1+1 and
shared mesh protection. In 1+ 1 protection, each add/drop wavelength consumes three crosscon-
nect ports, one for the local add/drop, one on the working path, and one on the protection path.
The passthrough traffic consists of both working and protection traffic not terminating at the local
node. In the shared mesh case, each add/drop wavelength consumes one port for the local add/drop
and one additional port for the working path. The passthrough ports include ports to carry all the
working traffic passing through the node, as well as all the ports reserved for shared protection.

1 + 1 Protection Shared Mesh Protection

Node Add/drop Passthrough Total Passthrough Total
λ λ Ports λ Ports

Seattle 123 228 597 145 514
San Francisco 106 72 390 37 355
Los Angeles 100 392 692 333 633
Salt Lake City 96 590 878 449 737
El Paso 103 564 873 327 636
Denver 103 1126 1435 828 1137
Houston 123 296 665 134 503
Dallas 100 538 838 324 624
Kansas City 106 1306 1624 918 1236
Chicago 108 844 1168 691 1015
Nashville 103 1398 1707 884 1193
Atlanta 121 514 877 309 672
Tampa 105 260 575 152 467
Miami 100 270 570 162 462
Charlotte 97 730 1021 417 708
Philadelphia 99 352 649 175 472
New York 112 492 828 274 610
Boston 103 20 329 0 309
Cleveland 90 1032 1302 721 991

no optical passthrough at the nodes. Table 13.3 shows the number of crosscon-
nect ports required for the 1 + 1 and shared mesh protection cases. Each node re-
quires a few hundred such ports. For 1+ 1 protection, the largest node is Nashville,
which has 1707 ports and handles 15.02 Tb/s of traffic. For shared mesh protection,
the largest node is Kansas City, which has 1624 ports and handles 14.12 Tb/s of
traffic.

The next step in the design is to cost out the network, based on the type and
quantity of equipment deployed at all the sites. Table 13.4 shows the capabilities and
costs of the LH and ULH systems assumed for this study, as well as the crossconnects.

Table 13.5 shows the quantity of different types of LH and ULH equipment
and crossconnects required to support the link distances and capacities shown in
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Table 13.4 Characteristics of the equipment used in the backbone net-
work study. All costs are in thousands of U.S. dollars. The ULH amplifier
and transponder costs are somewhat higher compared to their LH counter-
parts, and the ULH system has fewer wavelengths than the LH system. For
terminals (including transponders), regenerators, and crossconnects, there is
a common equipment cost, and in addition a cost per port equipped. For ex-
ample, an LH terminal equipped with 10 transponders would cost $120,000,
and a crossconnect equipped with two ports would cost $57,000.

LH System

Number of wavelengths per system 80
Spans between regeneration 8× 80 km (640 km total)
Terminal common equipment cost $30
10 Gb/s transponder cost $9
Regenerator common equipment cost $30
10 Gb/s regenerator cost $15
Amplifier cost $30

ULH System

Number of wavelengths per system 60
Spans between regeneration 25× 80 km (2000 km total)
Terminal common equipment cost $30
10 Gb/s transponder cost $11
Regenerator common equipment cost $30
10 Gb/s regenerator cost $19
Amplifier cost $36

Crossconnect

Number of 10 Gb/s ports 128
Common equipment cost $45
Cost per 10 Gb/s port $6

Table 13.2. Figure 13.9 shows the corresponding network costs in graphical form
and illustrates how the network cost varies with the different options as well as the
cost breakdown among the various components. Observe that both ULH and mesh
protection provide cost savings. Also, with this model, the amplifier cost is relatively
small compared to the cost of transponders/regenerators and crossconnects.

Note that we have assumed the use of crossconnects for both the 1+1 case and the
shared mesh case. Crossconnects are essential in the shared mesh scenario, as they are
the ones that provide this capability. However, 1+ 1 protection can be implemented
directly by the transponders, and we do not need crossconnects for this purpose.
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Table 13.5 Number of amplifiers, transponders, regenerators, and crossconnects re-
quired for LH and ULH systems to realize the capacities and link distances shown in
Table 13.2, for both 1+ 1 and shared mesh protection.

Part Quantity
1 + 1 Shared Mesh

LH ULH LH ULH

Amplifiers 876 1219 711 993
Transponders 15,020 15,020 11,268 11,268
Terminal common equipment 198 263 153 202
Regenerators 5621 153 4305 153
Regenerator common equipment 80 3 65 3
Crossconnect ports 17,018 17,018 13,274 13,274
Crossconnect common equipment 143 143 110 110

At the intermediate nodes, passthrough connections can be patched through using
manual patch panels. However, if full flexibility is desired in provisioning end-to-end
connections, then crossconnects will be needed in both cases.

The outcome of the study depends critically on the relative cost and capabilities of
different types of equipment, and the routing algorithm used. For instance, we have
assumed that there is a small premium in cost for ULH amplifiers and transponders
relative to their LH counterparts, and a small decrease in number of wavelengths
per system. If the relative cost changes, the study conclusions can change quite
substantially. Figure 13.10 plots the relative cost of LH and ULH options as a
function of the relative cost of transponders (and regenerators) and amplifiers.

We have only touched some of the issues affecting network design. A number
of additional factors need to be taken into account while designing a more realistic
network:

We can use LH systems on shorter links and ULH systems on longer links to
optimize the cost further.

Many systems include optical add/drop capability to pass through signals at inter-
mediate nodes in the optical domain, rather than requiring all wavelengths to be
terminated. This capability can be used to reduce the nodal costs by eliminating
some of the transponders required to terminate the passthrough traffic. In this
case, we also have to deal with the routing and wavelength assignment problem
discussed in Chapter 10, as signals being passed through optically cannot be con-
verted to other wavelengths. An example that compares electronic crossconnects
with OXCs that have optical passthrough is given in a problem at the end of this
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Figure 13.9 Breakdown of network costs for LH and ULH systems with 1 + 1 and
shared mesh protection.

chapter. The comparison is with respect to the number of transponders, costs,
and floor space.

Using more sophisticated routing and capacity allocation algorithms will bring
the cost down for both 1+ 1 and shared mesh protection.

We have decoupled the network costing from the routing and capacity allocation.
However, further cost optimization is possible by considering the two parts
together. For example, in the LH case, we might choose slightly longer paths
if it means using fewer regenerators on some of the links in the path.

We have not taken into account the cost of blocking when considering cross-
connects. Observe that many nodes require more than one crossconnect, given
our assumption of a 1.28 Tb/s crossconnect. In this analysis, we have simply
used as many crossconnects as needed to obtain the desired port counts, without
considering the cost of scaling the crossconnect or the cost of blocking.

We have implicitly assumed that there is no protection between the client equip-
ment (for example, routers) and the optical layer equipment (such as crosscon-
nects). In practice, we’ll need to have some protection here as well and factor its
cost into account.
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Figure 13.10 Sensitivity of study results to the relative cost of ULH and LH transpon-
ders (and regenerators) and amplifiers. The x axis indicates the ULH transponder and
regenerator cost relative to the LH transponder and regenerator cost. The y axis indicates
the relative network cost for ULH and LH systems assuming 1+ 1 protection.

Traffic demands are at 10 Gb/s. We have not dealt with aggregating and grooming
lower-speed demands.

13.2.7 Long-Haul Undersea Networks

The economics of long-haul undersea links is similar to that of the long-haul terres-
trial links, but with a few subtle differences. First, there are several types of undersea
links commonly deployed. One type spans several thousands of kilometers across
the Atlantic or Pacific oceans to interconnect North America with Europe or Asia, as
shown in Figure 13.11. Another type tends to be relatively shorter haul (a few hun-
dred kilometers), interconnecting countries either in a festoon type of arrangement
or by direct links across short stretches of water. The term festoon means a string
suspended in a loop between two points. In this context, it refers to an undersea
cable used to connect two locations that are not separated by a body of water, usu-
ally neighboring countries. A trunk-and-branch configuration is also popular, where
an undersea trunk cable serves several countries. Each country is connected to the
trunk cable by a branching cable, with passive optical components used to perform
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Figure 13.11 Different types of undersea networks, showing a couple of ultra-long-haul trans-
Atlantic links, shorter-haul direct repeaterless links, a trunk-and-branch configuration, and a festoon.

the branching at the branching units. If a branch cable is cut, access to a particular
country is lost, but other countries continue to communicate via the trunk cable.
WDM is widely deployed in all these types of links.

The long-haul undersea systems tend to operate at the leading edge of technol-
ogy and have to overcome significant impairments to attain the distances involved.
The links use the dispersion management technique described in Section 5.8.6 by
having alternating spans with positive and negative dispersion fiber to realize a total
chromatic dispersion of zero but at the same time have finite chromatic dispersion
at all points along the link.

The shorter-distance undersea links also stretch design objectives but in a different
way. The main objective of these links is to eliminate any undersea amplifiers or
repeater stations, due to their relatively higher cost of installation and maintenance.
As a result, these systems use relatively high-power transmitters.
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The trunk-and-branch configuration is also evolving. The early branching units
contained passive splitters and combiners, but optical add/drop multiplexers are now
being used to selectively drop and add specific wavelengths at different locations.

Undersea systems are designed to provide very high levels of reliability and
availability due to the high cost of servicing or replacing failed parts of the network.
Optical amplifiers with redundant pumping arrangements have proven to be highly
reliable devices, and their failure rates are much lower than those of electronic
regenerators. Likewise, optical add/drop multiplexers using passive WDM devices
have been qualified for use in undersea branching configurations.

Undersea networks are very expensive to build, and the capacity on these net-
works is shared among a number of users. WDM allows traffic from different users
to be segregated by carrying them on different channels—a useful feature.

One key difference between undersea links and terrestrial links is that, in most
cases, undersea links are deployed from scratch with new fibers rather than over
existing fiber plant. It is rare to upgrade an existing long-haul amplified undersea
link, as the cost of laying a new link is not significantly higher than the cost of
upgrading an existing link. This provides more flexibility in design choices.

13.2.8 Metro Networks

The metro network can be broken up into two parts. The first part is the metro
access network and extends from the carrier’s central office to the carrier’s customer
locations, serving to collect traffic from them into the carrier’s network. The second
part of this network is the metro interoffice network—the part of the network
between carrier central offices. The access network today typically consists of rings a
few kilometers to a few tens of kilometers in diameter, and traffic is primarily hubbed
into the central office. The interoffice network tends to be several to a few tens of
kilometers between sites, and traffic tends to be more distributed.

Because of the shorter spans involved, the case for WDM links is less compelling
in metro networks. The other alternatives, namely, using multiple fibers or using
higher-speed TDM, are quite viable in many situations. Nonetheless, there has been
no widespread deployment of OC-192 in the metro network. One reason is that
OC-192 interfaces have only recently appeared on metro systems. Another reason
is that carriers in this part of the network are interested in delivering low-speed
services at DS1 (1.5 Mb/s) or DS3(45 Mb/s) rates and OC-192 equipment is only
now becoming a cost-effective alternative for this application.

On the other hand, reasons other than pure capacity growth are driving the
deployment of WDM in these networks. Metro carriers need to provide a variety
of different types of connections to their customers. The service mix includes leased
private-line services and statistical multiplexing types of services such as IP, Ethernet,
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Gigabit Ethernet, and Fibre Channel. In many cases, this service mix is supported by
having a set of overlay networks, each dedicated to supporting a different service.
These overlay networks are ideally realized using a single infrastructure. Because of
its transparent nature, a WDM network provides a better infrastructure than most
others, such as SONET/SDH, for this purpose.

Another factor is that the traffic distribution changes much more rapidly in metro
networks than in long-haul networks. This drives the need to be able to rearrange
network capacity quickly and efficiently as needed. Reconfigurable WDM networks
allow capacity to be provided as needed in an efficient manner.

A big driver for WDM deployment in metro networks has been the need for
large enterprises to interconnect their data centers. These data centers are sep-
arated by several kilometers to a few tens of kilometers. All transactions are
mirrored at both sites. This allows the enterprise to recover quickly from a dis-
aster when one of the centers fails. There may be other reasons to have sep-
arate data centers, such as lower real estate costs at one location than at the
other. Peripheral equipment such as disk farms can be placed at the cheaper
site. The bandwidth requirement for such applications is large. The large main-
frames at these data centers need to be interconnected by several hundred chan-
nels, each up to several gigabits per second. Typically, these data centers tend to
be located in dense metropolitan areas where most of the installed fiber is al-
ready in use. Moreover, these networks use a large variety of protocols and bit
rates. These two factors make WDM an attractive option for these types of net-
works. These networks are sometimes called storage-area networks. This is the
primary application for most of the WDM networks deployed in metro networks
today.

Because of the nature of the traffic and a large amount of passthrough traffic in
these networks, a strong case can be made for deploying WDM rings with optical
add/drop multiplexers instead of higher-speed TDM rings. We present a detailed case
study of a metro access network in Section 13.2.9.

Despite the shorter spans for metro networks, optical amplifiers may still be
needed, for several reasons:

1. Although spans are short, in many cases the fiber in the ground is old, has many
connectors in its path, and thus has relatively high loss. For example, a 10 km
metro link may have a loss as high as 10 dB.

2. The loss is not just due to spans—a large component of the loss comes from the
loss of optical add/drop multiplexers, each of which can add several decibels of
loss.

3. Finally, protection requirements drive the need for alternate spans that may be
much longer (for example, around a ring) than the working spans.
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As of this writing, there has been widespread deployment of private WDM links
for enterprise applications in the metro network. Several carriers in the United States
have deployed WDM in their metro networks, but many are still considering the
relative benefits of WDM versus other alternatives in this part of the network. As
such, the deployment is not yet as ubiquitous as it is in the long-haul network.

13.2.9 Metro Ring Case Study

We now look at a detailed example of upgrading a metro ring. Consider a four-node
access ring with three remote nodes homing into a hub node. Assume for simplicity
that all traffic is between the hub node and the remote nodes, with no traffic between
the remote nodes themselves. Initially, we have a SONET ring operating at OC-
48 (2.5 Gb/s) capacity. Suppose the capacity on this ring is exhausted and that
no spare fibers are available along the ring. We now have a couple of different
options for upgrading the ring. The first option is to upgrade the ring to the next
higher speed—OC-192 (10 Gb/s). This requires replacing or upgrading the SONET
add/drop multiplexers (ADMs) at all the nodes.

This is the TDM upgrade path. The other alternative is to introduce WDM
and build multiple “virtual” rings at different wavelengths over the same fiber pair.
We can do so in incremental steps, one additional ring at a time. For example, as
shown in Figure 13.12, we can start by adding another ring at a different wavelength
connecting one of the remote nodes (the one that needs more capacity, say, node 1)
to the hub. In order to do this, we would need to introduce WDM optical add/drop
multiplexers (OADMs) at each node to drop the appropriate wavelengths. These can
be “coarse” OADMs, since it is likely that the original ring is operating at 1310 nm,
and we would add new rings in the 1550 nm WDM window. We would also need to
add SONET ADMs at node 1 and at the hub, say, at OC-48 rates, if node 1 desires
another OC-48 of capacity into the hub. Note that only two SONET OC-48 ADMs
need to be added in this scenario. We can continue this upgrade path by adding
more rings, as shown in Figure 13.13. As we add more rings, we will need to deploy
additional “dense” OADMs at the nodes to separate out the different wavelengths
used inside the 1550 nm wavelength window.

The key point to note in the WDM scenario is that, compared to the TDM sce-
nario, the existing SONET equipment is preserved, and additional (SONET) hard-
ware is only added at nodes that need greater capacity, requiring a potentially smaller
upfront capital expense.

The WDM approach allows flexibility in dealing with non-SONET protocols
and new protocols by having the capacity to provide each protocol with its own set
of wavelengths. Also, as we have seen, as the capacity of wavelengths becomes full,
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Figure 13.12 Using WDM to upgrade a four-node access ring. One additional ring is
added at a different wavelength. (a) The physical topology and (b) the lightpath topology
showing the connectivity between the SONET ADMs.

ADM ADM ADM

ADM

ADM

ADM

ADM

ADM

ADM ADM

A
D

M
A

D
M

A
D

M

A
D

M

A
D

M

A
D

M

1310 nm

1310 nm1310 nm

1310 nm

1551 nm 1552 nm

1552 nm

1552 nm

1551 nm

1310 nm 1551 nm

1

23

Hub

Original ring

New rings

(a) (b)

OADM OADM

Figure 13.13 Continuing the upgrade process from Figure 13.12. Two additional rings
are added at different wavelengths to the base configuration. (a) The physical topology
and (b) the lightpath topology showing the connectivity between the SONET ADMs.
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Table 13.6 Equipment cost assumptions for the Metro ring upgrade.

Equipment Cost without WDM Cost with WDM
Interfaces (U.S. $) Interfaces (U.S. $)

OC-48 ADM 60,000 80,000
OC-192 ADM 175,000
Coarse OADM 10,000

Table 13.7 Metro ring upgrade costs assuming Ta-
ble 13.6.

Upgrade Cost (thousands)
Interfaces (U.S. $)

OC-192 TDM Ring 700
WDM OC-48 1 Node 200
WDM OC-48 2 Nodes 360
WDM OC-48 3 Nodes 520

additional wavelengths can be added at the same or higher bit rates. Therefore the
WDM solution is more “future-proof,” compared to the TDM solution.

The key question we have left unanswered is how the two approaches compare
from a cost perspective. This depends to a large extent on the cost of the OADMs
relative to the SONET ADMs. Table 13.7 shows the network cost for the upgrades
described in this example, assuming the equipment costs shown in Table 13.6. In
Table 13.7, ‘OC-192 TDM Ring’ is the cost of the TDM solution of replacing
ADMs at all nodes with OC-192 ADMs at the same 1310 nm wavelength. In the
table, ‘WDM OC-48 N Nodes’ is the cost of the WDM solution when N nodes
are upgraded with a new OC-48 connection to the hub node and each of these
connections is on its own wavelength. Note that all nodes have a coarse WDM
OADM, and each of the N upgraded nodes has a new OC-48 ADM. Also, the hub
node has N new OC-48 ADMs. For the equipment cost assumptions, the WDM
solution is less expensive.

13.2.10 From Opaque Links to Agile All-Optical Networks

The optical layer itself is evolving, not just in terms of raw capacity, but also in terms
of functionality. The optical network originally consisted of WDM links, with all the
functions at the end of the link performed in the electrical domain. These networks
are sometimes called opaque networks. Due to the high cost of optical-to-electrical
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(O/E) conversions, particularly at the higher bit rates, it makes sense to minimize
the number of these converters in the network. The first step in this direction was
the development of ultra-long-haul systems, which provided longer reach between
regenerators. The second step was to handle as much of the traffic passing through
a node in the optical domain as possible. An all-optical OADM or OXC performs
this function. Having optical passthrough instead of electrical processing can lead
to an order of magnitude savings in the cost, given that the cost of O/E conversions
dominates the cost of the node itself. There are associated savings in power and floor
space as well, given that the O/E devices consume most of the power and occupy most
of the floor space in WDM equipment. Even further cost savings can be realized by
passing signals through in bands of wavelengths, instead of individual wavelengths.
These networks are called all-optical or transparent networks.

The next step in the evolution of the optical layer was to add agility. An agile
network provides the ability to set up and take down lightpaths as needed and allows
carriers to provision and deploy services rapidly. This can be realized with optical
crossconnects and reconfigurable optical add/drop multiplexers.

Although an all-optical network provides significant advantages, it also has its
limitations. Certain functions, such as wavelength conversion, regeneration, and
traffic grooming at fine granularities (for example, at STS-1 or 51 Mb/s) will need
to be done in the electrical domain. As we saw in Chapter 10, we may not be
able to completely handle all the passthrough traffic in the optical domain, due to
inefficiencies in how traffic is groomed in the network. For these reasons, a practical
node will end up using a combination of all-optical and electrical crossconnects.
The all-optical crossconnects can be used to switch signals through in the optical
domain as much as possible, and signals needing to be regenerated, converted from
one wavelength to another, or groomed will be handed down to the electrical layer.

Another subtle aspect of the all-optical network is related to interoperability be-
tween systems from multiple vendors. As we saw in Chapter 8, it is difficult for equip-
ment from different vendors to interoperate at the wavelength layer. Interoperability
between vendors needs to be done through regenerators/transponders. This implies
that the all-optical network by itself is a single-vendor network. Transponders are
needed at the edges of this network to provide interoperability with other all-optical
networks. A realistic network will therefore consist of all-optical islands or subnets,
interconnected with other such subnets through transponders at the boundaries.

Summary

This chapter addressed architectural alternatives for the new generation of carrier
networks. These networks are different from the established legacy networks based
on SONET/SDH. Their designs are driven by the dominance of data over voice
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and the emergence of new carriers with vastly different business models offering
different types of services. An established carrier offering a mix of services may
choose to overlay SONET/SDH and IP/MPLS or Ethernet over the optical layer. New
carriers offering predominantly data-oriented services may opt to deploy IP/MPLS
or Ethernet directly over the optical layer and not deploy any SONET/SDH at all.
The optical layer is becoming ubiquitous in both long-haul and metro networks. The
optical layer here provides circuit-switched lightpaths to the higher layers. Note that
the optical layer is not performing any packet-switching functions. These functions
are best left to the electronic layers. Optical packet-switching technology is still in
research laboratories.

The next-generation metro access network will use a hybrid packet-circuit net-
work element as the key element to deliver services. The core of the network is
migrating away from a SONET ring-based architecture to a meshed optical-layer-
based architecture, with protection functions implemented in the optical layer or
client layer.

Within the optical layer, TDM, WDM, and SDM are all used to provide capacity.
The right combination of these techniques is not an easy choice and depends on a
variety of factors, including length of the link, availability of spare fibers, type of fiber
and its dispersion and nonlinear characteristics, and type of services to be deployed
using the network. The problems at the end of this chapter will give the reader an
inkling of what such a comparison might involve. Network planners need to make
their own analysis of the different alternatives, perhaps with the aid of some network
planning and design tools, to decide which way to go.

The optical layer itself is migrating from an opaque network, consisting of WDM
links with electrical processing at the ends of the link, to an all-optical network, where
traffic is passed through in the optical domain at intermediate nodes. At the same
time, the optical network is moving from a static network to an agile network, where
lightpaths can be set up and taken down as needed.

Further Reading

The subject matter in this chapter is widely covered in the business press and by
investment houses. Several market research firms publish reports on various seg-
ments of the optical networking industry. These include Communications Indus-
try Researchers (www.cir-inc.com), Electronicast (www.electronicast.com), Ovum
(www.ovum.com), Pioneer Consulting (www.pioneerconsulting.com), Strategies Un-
limited (www.strategies-u.com), and Yankee Group (www.yankeegroup.com). Many
studies have been published about the relative economics of various architectural
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options. Be warned that these are rather biased views. The assumptions made sig-
nificantly impact the outcome, and these assumptions are usually biased toward
supporting the products offered by the vendor doing the study.

Network design methods and considerations are in [Sim08]. The various options
for supporting IP over WDM have been explored in many papers; for instance,
[Mae00] provides a relative cost analysis. See [PCW+00, Coo00, OSF00, PCK00]
for a sampling of papers related to metro WDM economics. [DSGW00, Dos01]
explore the value proposition behind ultra-long-haul WDM systems. The National
Fiber Optic Engineers’ Conference usually has many papers on these topics.

Problems

13.1 Imagine that you are a planner for a long-haul carrier planning to deploy an IP over
WDM network. Your job is to make the right technology and vendor choice for
your network. You are given the following information. The initial requirement is
to deploy 20 Gb/s of capacity between two nodes. You anticipate that this capacity
will grow to 80 Gb/s in a year and over a few years grow to 320 Gb/s. You have a
choice of several WDM systems from different vendors with the following prices and
capabilities:

Vendor A B C

Number of channels 80 128 32
Bit rate per channel OC-192 OC-48 OC-192
Distance between regenerators 640 km 1920 km 1920 km
Amplifier spacing 80 km 80 km 80 km
OLT common equipment $40,000 $43,000 $60,000
Transponder $10,000 $5,000 $16,000
Amplifier $30,000 $20,000 $25,000

Assume that the common equipment prices for the optical line terminals include
any amplifiers if needed. One transponder is needed for each channel at each end of
the link. Once the distance between regenerators is exceeded, the signals need to be
regenerated by using two terminals back to back with transponders.

Compute the cost of each solution for a 640 km link, a 1280 km link, and a
1920 km link. Draw a diagram of each configuration. What are your conclusions?
Other than the costs computed above, what other factors might influence your
choice?
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13.2 Consider the same problem as in Problem 13.1 with one difference. For the 1280
and 1920 km cases, between the two nodes is a third node spaced 600 km from
the first node, where half the capacity needs to be dropped and added. For this
case, assume that vendor B and vendor C offer systems where you can use back-
to-back terminals at this intermediate node without requiring transponders for the
passthrough channels. (Transponders are still needed for the channels dropped and
added.) Repeat your analysis. What are your conclusions?

13.3 Imagine that you are a planner for a metro carrier. The links in your network are
fairly short, with a maximum span length of 40 km. You want to compare SDM,
TDM, and WDM options for realizing a two-node link. Assume the following costs.

Equipment Cost (U.S. $)

Pulling fiber through 300
existing conduit (per km)

Laying new conduit, including 20,000
fiber (per km)

OC-48 BLSR/2 ADM
Common equipment 40,000
Additional per OC-12 drop 5,000
Additional per STS-1 drop 750

OC-192 BLSR/2 ADM
Common equipment 125,000
Additional per OC-12 drop 5000

OC-12 BLSR/2 ADM 15,000
Additional per STS-1 drop 750

Metro WDM terminal (OLT)
Common equipment 30,000
Additional per transponder 10,000

You need to deliver 10 Gb/s of capacity in the form of OC-12s (622 Mb/s) to your
customers. Compare the cost of the following options for the scenario where fibers
are available versus fiber needs to be pulled through existing conduit versus new
conduit needs to be laid: (a) OC-48 ADMs over separate fibers, (b) OC-48 ADMs in
conjunction with WDM terminals over a single fiber pair, (c) OC-192 ADMs, and
(d) WDM terminals with no SONET equipment.

Factor in the cost of protection as well. Assume that two diversely routed fiber
pairs are available between the two sites. Whenever SONET is used, protection is
done in the SONET boxes, and no protection is done in the OLTs. For the case with
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no SONET equipment, the protection is done at the optical multiplex section by the
OLTs—assume that the cost is already factored into the OLTs.

Repeat this problem for the case where the capacity needs to be delivered in the
form of STS-1s to your customers. In this case, the options available to you are: (a)
OC-48 ADMs over separate fibers, (b) OC-48 ADMs in conjunction with WDM
terminals over a single fiber pair, (c) OC-192 ADMs back-ended by OC-12 ADMs,
and (d) WDM terminals back-ended by OC-12 ADMs.

Draw a diagram of the different configurations. What are your conclusions?
Other than the costs computed above, what other factors might influence your
choice?

13.4 This is an extension of the previous problem related to planning a metro network.
We will explore the use of optical add/drops in this problem. You now have to
create a linear network of three nodes, A, B, and C. The link between node A
and node B is 40 km, and the link between node B and node C is also 40 km.
You need 5 Gb/s of capacity between A and B, 5 Gb/s between B and C, and
another 5 Gb/s between A and C. All capacity is to be delivered as OC-12s. In
addition to the equipment available above, you also have the option of using an
OADM at node B that works with OLTs at node A and node C. The WDM sys-
tem has a reach of 80 km with an intermediate OADM. The OADM has a com-
mon equipment cost, including any needed amplifiers, of $40,000 and can drop as
many wavelengths as needed. Transponders are needed for the added and dropped
channels.

In addition, assume that SONET ADMs have a maximum reach of 40 km. Signals
need to be regenerated after this, and the regenerator costs are as follows: OC-48
regenerator, $5,000; OC-192 regenerator, $15,000.

Now consider the following solutions: (a) Fibers are available, and you use OC-48
ADMs over them. In this case you need to use a regenerator at node B for passthrough
traffic or another OC-48 ADM for multiplexing and demultiplexing local traffic.
Consider also the cases where fiber needs to be pulled through existing conduit
and also of conduit exhaust. (b) OC-48 ADMs along with OLTs and OADMs.
(c) OC-12 delivery directly using OLTs and OADMs, no SONET. (d) OC-192 ADM
with another ADM at node B to demultiplex and multiplex local traffic.

For this problem, ignore any protection needed. Note that this could result in
cheaper equipment, but for our purposes, assume that the equipment costs do not
change.

Compare the costs of these alternatives. What do you conclude?

13.5 You are looking at deploying an optical crossconnect at a large node in a carrier net-
work. The crossconnect is connected to OLTs and drops traffic down to IP routers.
You have three options to consider: (1) an electrical crossconnect (EXC) solution,
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where the crossconnect uses short-reach interfaces connected to transponders in the
OLTs and to short-reach interfaces in the routers; (2) an opaque photonic crosscon-
nect solution, where the photonic crossconnect (PXC) is connected to transponders
in the OLTs and to short-reach interfaces in the routers; and (3) a transparent pho-
tonic crossconnect solution, where the photonic crossconnect is connected to the
OLTs directly without transponders, but transponders are used between the routers
and the crossconnect.

Assume the following:

Item Cost (U.S. $) Power Footprint

WDM OC-48 transponder $4,500 75 W 64 ports/rack
WDM OC-192 transponder $9,000 150 W 32 ports/rack
EXC switch fabric 10,000 W 1 rack
EXC OC-48 port $3,000 50 W 256 ports/rack
EXC OC-192 port $6,000 100 W 64 ports/rack
PXC port $4,500 2 W 256 ports/rack

Assume that the EXC supports a maximum of 512 OC-48 ports or 128 OC-192
ports and that the PXC supports 1024 ports.

Compare the cost and floor space taken up for the three options above for the
following situations. (Include any transponders used, but neglect the routers as they
are common to all the scenarios.) Summarize your findings.

(a) The node is switching 256 OC-48 wavelengths coming in from the WDM
systems, of which 25%, 50%, or 75% of the traffic may be dropped locally
into router ports. (For example, with a 25% drop, you would need a total
of 320 ports on the crossconnect.)

(b) The node is switching 256 OC-192 wavelengths coming in from the WDM
systems, of which 25%, 50%, or 75% of the traffic may be dropped locally
into router ports.
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Acronyms

Acronym Expansion

1R Regeneration without reshaping or retiming
2R Regeneration with reshaping but no retiming
3R Regeneration with retiming and reshaping
AAL ATM adaptation layer
ACTS Advanced communications technologies and services
ADM Add/drop multiplexer
AGC Automatic gain control
AIS Alarm indication signal
ANSI American National Standards Institute
AON All-optical network
AOTF Acousto-optic tunable filter
APON ATM passive optical network
APD Avalanche photodetector
APS Automatic protection switching
AR Anti-reflective
ASE Amplified spontaneous emission
ASON Automatic switched optical network
ASTN Automatic switched transport network
ATM Asynchronous transfer mode
ATMOS ATM optical switching
AWG Arrayed waveguide grating
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Acronym Expansion

B-DA Backbone destination address
B-SA Backbone source address
B-Tag Backbone tag
BCH Bose-Chaudhuri-Hochquenghem (code)
BDI Backward defect indicator
BEI Backward error indicator
BER Bit error rate
BIAE Backward incoming alignment error
BLSR Bidirectional line-switched ring
BPDU Bridge protocol data units
BPON Broadband passive optical network
C-DA Customer destination address
C-SA Customer source address
C-Tag Customer tag
CBR Constant bit rate
CCM Continuity check message
CGM Cross-gain modulation
CIR Committed information rate
CLP Cell loss priority
CMIP Common management information protocol
CO Central office
CORBA Common object request broker
CORD Contention resolution by delay lines
CPM Cross-phase modulation
CRC Cyclic redundancy check
CR-LDP Constrained-based routing label distribution protocol
CRO Contention resolution optics
CSMA/CD Carrier sense multiple access/collision detection
CW Continuous wave
DA Destination address
DARPA Defense Advanced Research Projects Agency
DBA Dynamic bandwidth allocation
DBR Distributed Bragg reflector
DCE Dynamic channel equalizer
DCF Dispersion compensating fiber
DCN Data communications network
DCS Digital crossconnect system
DFB Distributed feedback
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Acronym Expansion

DGD Differential group delay
DM Direct modulation
DPRing Dedicated protection ring
DSB Double sideband
DSF Dispersion-shifted fiber
DSL Digital subscriber line
DTMF Dielectric thin film multicavity filter
DWDM Dense wavelength division multiplexing
E-LAN Ethernet-LAN
E-Line Ethernet-line
E-TREE Ethernet-tree
EA Electro absorption
EDFA Erbium-doped fiber amplifier
EDFFA Erbium-doped fluoride fiber amplifier
EIR Excess information rate
EMB Effective modal bandwidth
EMS Element management system
EPON Ethernet passive optical network
ER Extended range
ERP Ethernet ring protection
ESCON Enterprise serial connection
EXP Experimental
FAS Frame alignment signal
FC Fibre Channel
FCC Federal Communications Commission
FCS Frame check sequence
FDDI Fiber distributed data interface
FDI Forward defect indicator
FDM Frequency division multiplexing
FEC Forward error correction
FET Field effect transistor
FIFO First in first out
FOM Figure of merit
FP Fabry-Perot
FSAN Full service access network
FSR Free spectral range
FTFL Fault type and fault location
FTP File transfer protocol
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Acronym Expansion

FTTC Fiber to the curb
FWHM Full-width half maximum
FWM Four-wave mixing
GCC General communications channel
GCSR Grating-coupled sampled reflector
GDMO Guidelines for definition of managed objects
GEM GPON encapsulation method
GEPON Gigabit ethernet passive optical network
GFC Generic flow control
GFP Generic framing procedure
GFP-F Frame mapped generic framing procedure
GFP-T Transparent mapped generic framing procedure
GMPLS Generalized multiprotocol label switching
GPON Gigabit PON
GVD Group velocity dispersion
HDLC High-level data link control
HEC Header error check
HEC Header error control
HFC Hybrid fiber coax
HIPPI High performance parallel interface
HO-VCAT High order-virtual concatenation
HOL Head of line
HTTP Hypertext transfer protocol
I-Tag Service identifier tag
IAE Incoming alignment error
IBM International Business Machines
IEEE Institute of Electrical and Electronic Engineers
IETF Internet Engineering Task Force
ILP Integer linear program
IP Internet Protocol
IR Intermediate reach
ISI Intersymbol interference
IS-IS Intermediate system–intermediate system
ISO International Standards Organization
ISP Internet service provider
ITU International Telecommunications Union
IXC Interexchange carrier
JC Justification Control
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Acronym Expansion

JET Just-enough-time
KEOPS Keys to optical packet switching
LACP Link aggregation control protocol
LAG Link aggregation group
LAN Local-area network
LCAS Link capacity adjustment scheme
LDP Label distribution protocol
LEAF Large effective area fiber
LEC Local exchange carrier
LED Light emitting diode
LH Long-haul
LLN Linear lightwave network
LMDS Local multipoint distribution service
LMP Link management protocol
LO-VCAT Low order-virtual concatenation
LR Long range
LR Long reach
LRM Long reach multimode
LSP Label-switched path
LSR Label-switched router
LT Line terminal
LTD Lightpath topology design
LTE Line terminating equipment
MAC Media access control
MAN Metropolitan-area network
MEMS Micro-electro-mechanical systems
MIB Management information base
MILP Mixed integer linear program
MFAS Multi-frame alignment signal
MLM Multilongitudinal mode
MMDS Multichannel multipoint distribution service
MMF Multimode fiber
MP Merge point
MPLS Multiprotocol label switching
MPLS-TP Multiprotocol label switching-transport profile
MS Multiplex section
MSA Multi-source agreements
MSP Multiservice platform



752 Acronyms

Acronym Expansion

MSTP Multiple spanning tree protocol
MZI Mach-Zehnder interferometer
NA Numerical aperture
NALM Nonlinear amplifying loop mirror
NEBS Network equipment building system
NJO Negative justification opportunity
NLSE Nonlinear Schrödinger equation
NNI Network-to-network interface
NOLM Nonlinear optical loop mirror
NP Nonpolynomial
NRZ Non-return-to-zero
NSIF Network and Services Interoperability Forum
NTSC National Television Standards Committee
NZ-DSF Nonzero-dispersion-shifted fiber
OADM Optical add/drop multiplexer
OBLSR Optical bidirectional line-switched ring
OBPSR Optical bidirectional path-switched ring
OCDMA Optical code division multiple access
OCh Optical channel
OC-x Optical carrier-x (x = 1, 3, 12, 48, 192, 768, . . .)
O/E/O Optical-to-electrical-to-optical
ODU Optical channel data unit
OFC Optical Fiber Communications Conference
OFL Overfilled Launch
OIF Optical Internetworking Forum
OLT Optical line terminal
OMS Optical multiplex section
ONU Optical network unit
OOK On-off keying
OPU Optical channel payload unit
OSC Optical supervisory channel
QSFP Quad small form factor pluggable
OSI Open systems interconnection
OSPF Open shortest path first
OTDM Optical time division multiplexing
OTN Optical transport network
OTS Optical transmission system
OTU Optical channel transport unit
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OUPSR Optical unidirectional path-switched ring
OXC Optical crossconnect
PBB Provider backbone bridges
PBB-TE Provider backbone bridges-traffic engineering
PBT Provider backbone transport
PC Personal computer
PCC Protection communication channel
PCF Photonic crystal fiber
PCS Physical coded sublayer
PDH Plesiochronous digital hierarchy
PDL Polarization-dependent loss
PHY Physical layer
PJO Positive justification opportunity
PLI Payload length identifier
PLL Phase-locked loop
PLR Point of local repair
PM Path monitoring
PMA Physical media attachment
PMD Polarization-mode dispersion
PMMA polymethyl methacrylate
PNNI Private network-to-network interface
PON Passive optical network
PPP Point-to-point protocol
PPS Photonic packet switching
PRE Preamble
PSI Payload structure identifier
PSK Phase-shift keying
PSTN Public switched telephone network
PT Payload type
PTQ primary transit queue
PWDM Point-to-point WDM
QAM Quadrature amplitude modulation
QOS Quality of service
R-APS Ring automatic protection switching
RBOC Regional Bell operating company
RES Reserved
RIN Relative intensity noise
RF Radio frequency
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Acronym Expansion

RPL Ring protection link
RPR Resilient packet ring
RN Remote node
ROADM Reconfigurable optical add drop multiplexer
RS Reduced slope
RSTP Rapid spanning tree protocol
RSVP Resource reservation protocol
RSVP-TE Resource reservation protocol-traffic engineering
RWA Routing and wavelength assignment
RZ Return-to-zero
S/PDIF Sony/Philips Digital Interconnect Format
SA Source address
SAN Storage-area network
SBCON Single byte command code sets connection architecture
SBS Stimulated Brillouin scattering
SCM Subcarrier multiplexing
SDH Synchronous digital hierarchy
SDM Space division multliplexing
SFD Start-of-frame delimiter
SLM Single longitudinal mode
SM Section monitoring
SMF Single-mode fiber
SMTP Simple mail transfer protocol
SN Sequence number
SNMP Simple network management protocol
SNR Signal-to-noise ratio
SOA Semiconductor optical amplifier
SONET Synchronous optical network
SOP State of polarization
SPE Synchronous payload envelope
SPM Self-phase modulation
SPRing Shared protection ring
SR Short range
SR Short reach
SRLG Shared risk link group
SRS Stimulated Raman scattering
SSB Single sideband
SSG Super-structure grating
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Acronym Expansion

SSH Secure shell
STAT Status
STM-x Synchronous transport module-x

(x = 1, 4, 16, 64, 256, . . .)
STP Spanning tree protocol
STQ Secondary transit queue
STS-x Synchronous transport signal-x

(x = 1, 3, 12, 48, 192, . . .)
SWP Spatial walk-off polarizer
T-MPLS Transport multiprotocol label switching
TCM Tandem connection monitoring
TCM ACT Tandem connection monitoring activation
TCP Transmission control protocol
TDM Time division multiplexing
TE Transverse electric
TFMF Thin-film multicavity filter
TL-1 Transaction Language-1
TLV Type-length-value
TM Transverse magnetic
TMN Telecommunications management network
TOAD Terahertz optical asymmetric demultiplexer
TOSLINK R© Toshiba-link
TPON PON for telephony
TTI Trail trace identifier
TTL Time to live
TWC Tunable wavelength converter
UBR Unspecified bit rate
UDP User datagram protocol
ULH Ultra-long-haul
UNEQ Unequipped
UNI User network interface
UPSR Unidirectional path-switched ring
UV Ultraviolet
VC Virtual circuit
VC Virtual container
VCG Virtual concatenation group
VCAT Virtual concatenation
VCI Virtual circuit identifier
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Acronym Expansion

VCO Voltage control oscillator
VCSEL Vertical cavity surface emitting laser
VLAN Virtual local area network
VLSI Very large scale integrated circuits
VOA Variable optical attenuator
VP Virtual path
VPI Virtual path identifier
VPN Virtual private network
VSB Vestigial sideband
VSR Very-short-reach
VT Virtual tributary
WA Wavelength assignment
WAN Wide-area network
WDM Wavelength division multiplexing
WPON Wavelength PON
WRPON Wavelength-routed PON
WSS Wavelength selective switch
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Symbols and Parameters

Table B.1 Parameters and symbols used in Part I (dimensionless unless other-
wise indicated).

Parameter Symbol Typical Value/Units

Effective area Ae 50 μm2

Pulse envelope A(z, t)

Fiber core radius a 4 μm (SMF)
Bit rate B Mb/s or Gb/s
Electrical bandwidth Be GHz
Optical bandwidth Bo GHz
Bit error rate BER 109–10−15

Normalized effective index b

Capacitance C μF (microfarad)
Speed of light in vacuum c 3× 108 m/s
Dispersion parameter D ps/nm-km
Electric flux density D coulombs/m2

Material dispersion DM ps/nm-km
Polarization-mode dispersion DPMD ps/

√
km

Waveguide dispersion DW ps/nm-km
Dispersion-shifted fiber DSF D = 0 (1.55 μm)
Electric field E V/m
Energy level E differences, �E, expressed

in nm using �E = hc/λ

Electronic charge e 1.6× 10−19 coulombs
Amplifier noise figure F dB
Finesse F
Optical carrier frequency fc THz
Pump frequency fp THz
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Table B.1 Parameters and symbols used in Part I (dimensionless unless otherwise
indicated) (continued).

Parameter Symbol Typical Value/Units

Signal frequency fs THz
Amplifier gain G

Amplifier unsaturated gain Gmax
Brillouin gain coefficient gB 4× 10−11 m/W
Raman gain coefficient gR 6× 10−14 m/W
Magnetic field H A/m
Planck’s constant h 6.63 × 10−34 J/Hz
Photocurrent Ip μA or nA
Thermal noise current Ith 3 pA/

√
Hz

Boltzmann’s constant kB 1.38 × 10−23 J/◦K
Dispersion length LD km
Effective length Le km
Link length L km
Nonlinear length LNL km
Coupling length l μm
Distance between amplifiers l km
Average number of photons

per 1 bit M

Nonzero-dispersion-shifted-fiber NZ-DSF −6 ≤ D ≤ 6 ps/nm-km
(1.55 μm)

Effective index neff
Refractive index n

Spontaneous emission factor nsp
Core refractive index n1
Cladding refractive index n2
Nonlinear index coefficient n̄ 2.2–3.4× 10−8 μm2/W
Amplifier output saturation power P sat

out mW
Amplifier saturation power P sat mW
Electric polarization P coulombs/m2

Linear polarization �L coulombs/m2

Local-oscillator power PLO dBm
Nonlinear polarization �NL coulombs/m2

Power P W or mW
Power penalty PP dB
Penalty (signal-dependent noise) PPsig-dep dB
Penalty (signal-independent noise) PPsig-indep dB
Receiver sensitivity P̄sens dBm
Load resistance RL � or k�

Photodetector responsivity � A/W
Reflectivity R
Real part of x [x]
Extinction ratio r
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Table B.1 Parameters and symbols used in Part I (dimensionless unless otherwise
indicated) (continued).

Parameter Symbol Typical Value/Units

Standard single-mode fiber SMF D = 17 ps/nm-km (1.55 μm),
D = 0 (1.3 μm)

Signal-to-noise ratio SNR dB or no units
Bit period T ns
Decision threshold Td

V -number V

Optical frequency ν Hz
Number of wavelengths W

Absorption coefficient α 1/cm
Fiber attenuation α 0.22 dB/km at 1.55 μm
Propagation constant β 1/μm
Group velocity 1/β1 m/s
GVD parameter β2 s2/m (or in terms of D)
Coupling ratio γ 0–1
Nonlinear propagation

coefficient γ 2.6 /W-km
Fractional core-cladding

refractive index difference �

Brillouin gain bandwidth �fB 20 to 100 MHz at 1.55 μm
Interchannel spacing �λ nm
Permittivity of vacuum ε0 8.854× 10−12 F/m
Detector quantum efficiency η 1 for pinFETs
Four-wave mixing efficiency η

Input coupling efficiency ηi

Output coupling efficiency ηo

Chirp factor κ

Coupling coefficient κ 1/μm
Grating period � μm
Filter center wavelength λ0 μm
Wavelength λ μm or nm
Permeability of vacuum μ0 4π × 10−7 H/m
Shot noise power σ 2

shot
Thermal noise

power σ 2
th

Signal-spontaneous
noise power σ 2

sig-spont
Spontaneous-spontaneous

noise power σ 2
spont-spont

Phase φ radians
Susceptibility χ

Third-order susceptibility χ(3) 6× 10−15 cm3/erg
Angular frequency ω, ω0
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appendix

Standards

C.1 International Telecommunications Union (ITU-T)

These standards can be ordered through www.itu.ch.

C.1.1 Fiber

G.652. Characteristics of a single-mode optical fiber cable.

G.653. Characteristics of a dispersion-shifted single-mode optical fiber cable.

G.655. Characteristics of a nonzero-dispersion-shifted single-mode optical fiber
cable.

C.1.2 SDH (Synchronous Digital Hierarchy)

G.691. Optical interfaces for single-channel STM-64, STM-256 systems, and other
SDH systems with optical amplifiers.

G.707. Network node interface for the SDH.

G.708. Sub STM-0 network node interface for SDH.

G.774. SDH management information model for the network element view. Several
addendums exist.

G.780. Vocabulary of terms for SDH networks and equipment.

G.781. Synchronization layer functions.
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G.783. Characteristics of SDH equipment functional blocks.

G.784. SDH management.

G.803. Architecture of transport networks based on SDH.

G.805. Generic functional architecture of transport networks.

G.831. Management capabilities of transport networks based on SDH.

G.841. Types and characteristics of SDH network protection architectures.

G.842. Interworking of SDH network protection architectures.

G.957. Optical interfaces for equipments and systems relating to SDH.

C.1.3 Optical Networking

G.692. Optical interfaces for multichannel systems with optical amplifiers.

G.709. Interface for the optical transport network (OTN).

G.798. Characteristics for the OTN equipment functional blocks.

G.871. Framework for recommendations.

G.872. Architecture for OTNs.

G.874. Management aspect of OTN elements.

G.875. OTN management information model for the network element view.

G.957. Optical interfaces for equipment and systems related to SDH.

G.959. Optical networking physical layer interfaces.

G.983. Broadband optical access systems based on passive optical networks (PONs).

G.975. Forward error correction for submarine systems.

G.975.1. Forward error correction for high-bit-rate DWDM submarine systems.

G.8080. Architecture for the automatically switched optical network (ASON).

G.8081. Terms and definitions for ASON.

G.vsr. Optical interfaces for intraoffice systems.

C.1.4 Management

M.3000. Overview of telecommunication management network (TMN) recommen-
dations.

M.3010. Principles for a TMN.

M.3100. Generic network information model.
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Q.822. Stage 1, stage 2, and stage 3 description for the Q3 interface—performance
management.

X.744. Information technology—open systems interconnection—systems manage-
ment: Software management function.

C.2 Telcordia

These standards can be ordered through www.telcordia.com.

C.2.1 Physical and Environmental

FR-2063. Network Equipment-Building System (NEBS) family of requirements
(NEBSFR).

C.2.2 SONET

GR-253. Synchronous optical network (SONET) transport systems: Common
generic criteria.

GR-496. SONET add-drop multiplexer (SONET ADM) generic criteria.

GR-1230. SONET Bidirectional line-switched ring equipment generic criteria.

GR-1244. Clocks for the synchronized network: Common generic criteria.

GR-1250. Generic requirements for SONET file transfer.

GR-1365. SONET private line service interface generic criteria for end users.

GR-1374. SONET intercarrier interface physical layer generic criteria for carriers.

GR-1377. SONET OC-192 transport system generic criteria.

GR-1400. SONET dual-fed unidirectional path switched ring (UPSR) equipment
generic criteria.

GR-2875. Generic requirements for digital interface systems.

GR-2899. Generic criteria for SONET two-channel (1310/1550-nm) wavelength
division multiplexed systems.

GR-2900. SONET asymmetric multiplex functional criteria.

GR-2950. Information model for SONET digital crossconnect systems (DCSs).

GR-2954. Transport performance management based on TMN architecture.

GR-2996. Generic criteria for SONET digital crossconnect systems.
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GR-3000. Generic requirements for SONET element management systems (EMSs).

GR-3001. Generic requirements for SONET network management systems (NMSs).

C.2.3 Optical Networking

GR-1209. Generic requirements for fiber optic branching components.

GR-1377. SONET OC-192 transport system generic criteria.

GR-2918. DWDM network transport systems with digital tributaries for use in
metropolitan area applications: Common generic criteria.

GR-2979. Common generic requirements for optical add-drop multiplexers
(OADMs) and optical terminal multiplexers (OTMs).

GR-2998. Generic requirements for wavelength division multiplexing (WDM)
element management systems (EMSs).

GR-2999. Generic requirements for wavelength division multiplexing (WDM)
network management systems (NMSs).

GR-3009. Optical crossconnect generic requirements.

C.3 American National Standards Institute (ANSI)

These can be ordered from www.ansi.org.

C.3.1 SONET

T1.105. Telecommunications—SONET—basic description including multiplex
structures, rates, and formats.

T1.105.01. Telecommunications—SONET—automatic protection switching.

C.3.2 Fibre Channel

X3.289. Information technology—Fibre Channel—fabric generic requirements (FC-
FG).

X3.303. Fibre Channel physical and signaling interface-3 (FC-PH-3).



D
appendix

Wave Equations

The propagation of electromagnetic waves is governed by the following Maxwell’s
equations:

∇ ·D = ρ (D.1)

∇ · B = 0 (D.2)

∇ × E = −∂B
∂t

(D.3)

∇ ×H = J+ ∂D
∂t

(D.4)

Here, ρ is the charge density, and J is the current density. We assume that there are
no free charges in the medium so that ρ = 0. For such a medium, J = σE, where σ

is the conductivity of the medium. Since the conductivity of silica is extremely low
(σ ≈ 0), we assume that J = 0; this amounts to assuming a lossless medium.

In any medium, we also have, from (2.5) and (2.6),

D = ε0E+ P,

where P is the electric polarization of the medium and

B = μ0(H+M),

where M is the magnetic polarization of the medium. Since silica is a nonmagnetic
material, we set M = 0.
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766 Wave Equations

Using these relations, we can eliminate the flux densities from Maxwell’s curl
equations (D.3) and (D.4) and write them only in terms of the field vectors E and H,
and the electric polarization P. For example,

∇ × ∇ × E = −μ0ε0
∂2E
∂t2 − μ0

∂2P
∂t2 . (D.5)

To solve this equation for E, we have to relate P to E. If we neglect nonlinear
effects, we can assume the linear relation between P and E given by (2.7) and further,
because of the homogeneity assumption, we can write χ(t) for χ(r, t). We relax this
assumption when we discuss nonlinear effects in Section 2.5.

We can solve (D.5) for E most conveniently by using Fourier transforms. The
Fourier transform Ẽ of E is defined by (2.4); P̃ and H̃ are defined similarly. It follows
from the properties of Fourier transforms that

E(r, t) = 1
2π

∫ ∞

−∞
Ẽ(r, ω) exp(−iωt) dω.

By differentiating this equation with respect to t, we obtain the Fourier transform of
∂E/∂t as −iωẼ.

Taking the Fourier transform of (D.5), we get

∇ × ∇ × Ẽ = μ0ε0ω
2Ẽ+ μ0ω

2P̃.

Using (2.8) to express P̃ in terms of Ẽ, this reduces to

∇ × ∇ × Ẽ = μ0ε0ω
2Ẽ+ μ0ε0ω

2χ̃ Ẽ.

We denote c = 1/
√

μ0ε0; c is the speed of light in a vacuum. When losses are
neglected, as we have neglected them, χ̃ is real, and we can write n(ω) =

√
1+ χ̃(ω),

where n is the refractive index. Note that this is the same as (2.9), which we used as
the definition for the refractive index. With this notation,

∇ × ∇ × Ẽ = ω2n2

c2 Ẽ. (D.6)

By using the identity,

∇ × ∇ × Ẽ = ∇(∇ · Ẽ)−∇2Ẽ,

(D.6) can be rewritten as

∇2Ẽ+ ω2n2

c2 Ẽ = ∇(∇ · Ẽ). (D.7)
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Because of our assumption of a homogeneous medium (χ independent of r) and
using (D.1) and (2.9), we get

0 = ∇ · D̃ = ε0∇ · (1+ χ̃)Ẽ = ε0n
2∇ · Ẽ. (D.8)

This enables us to simplify (D.7) and obtain the wave equation (2.10) for Ẽ. Following
similar steps, the wave equation (2.11) can be derived for H̃.
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E
appendix

Pulse Propagation in
Optical Fiber

In mathematical terms, chromatic dispersion arises because the propagation constant
β is not proportional to the angular frequency ω, that is, dβ/dω �= constant (inde-
pendent of ω). dβ/dω is denoted by β1, and β−1

1 is called the group velocity. As we
will see, this is the velocity with which a pulse propagates through the fiber (in the
absence of chromatic dispersion). Chromatic dispersion is also called group velocity
dispersion.

If we were to launch a pure monochromatic wave at frequency ω0 into a length
of optical fiber, the magnitude of the (real) electric field vector associated with the
wave would be given by

|E(r, t)| = J (x, y) cos(ω0t − β(ω0)z). (E.1)

Here the z coordinate is taken to be along the fiber axis, and J (x, y) is the distribution
of the electric field along the fiber cross section and is determined by solving the wave
equation. This equation can be derived as follows.

For the fundamental mode, the longitudinal component is of the form Ez =
2πJl(x, y) exp(iβz). Here Jl(x, y) is a function only of ρ =

√
x2 + y2 due to the

cylindrical symmetry of the fiber and is expressible in terms of Bessel functions.
The transverse component of the fundamental mode is of the form Ex(Ey) =
2πJt (x, y) exp(iβz), where again Jt (x, y) depends only on

√
x2 + y2 and can be

expressed in terms of Bessel functions. Thus, for each of the solutions corresponding
to the fundamental mode, we can write

Ẽ(r, ω) = 2πJ (x, y)eiβ(ω)zê(x, y), (E.2)
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where J (x, y) =
√

Jl(x, y)2 + Jt (x, y)2 and the ê is the unit vector along the direction
of Ẽ(r, ω). In this equation, we have explicitly written β as a function of ω to
emphasize this dependence. In general, J () and ê() are also functions of ω, but
this dependence can be neglected for pulses whose spectral width is much smaller
than their center frequency. This condition is satisfied by pulses used in optical
communication systems. Equation (E.1) now follows from (E.2) by taking the inverse
Fourier transform.

This pure monochromatic wave propagates at a velocity ω0/β(ω0). This is called
the phase velocity of the wave. In practice, signals used for optical communication
are not monochromatic waves but pulses having a nonzero spectral width. To un-
derstand how such pulses propagate, consider a pulse consisting of just two spectral
components: one at ω0 +�ω and the other at ω0 − �ω. Further assume that �ω is
small so that we may approximate

β(ω0 ±�ω) ≈ β0 ± β1�ω,

where β0 = β(ω0) and

β1 = dβ

dω

∣∣∣∣
ω=ω0

.

The magnitude of the electric field vector associated with such a pulse would be given
by

|E(r, t)| = J (x, y) [cos ((ω0 +�ω)t − β(ω0 +�ω)z)+
cos ((ω0 −�ω)t − β(ω0 −�ω)z)]

≈ 2J (x, y) cos(�ωt − β1�ωz) cos(ω0t − β0z).

This pulse can be viewed in time t and space z as the product of a very rapidly varying
sinusoid, namely, cos(ω0t − β0z), which is also called the phase of the pulse, and a
much more slowly varying envelope, namely, cos(�ωt − β1�ωz). Note that in this
case the phase of the pulse travels at a velocity of ω0/β0, whereas the envelope of the
pulse travels at a velocity of 1/β1. The quantity ω0/β0 is called the phase velocity of
the pulse, and 1/β1 is called the group velocity.

In general, pulses used for optical communication can be represented in this
manner as the product of a slowly varying envelope function (of z and t), which is
usually not a sinusoid, and a sinusoid of the form cos(ω0t −β0z), where ω0 is termed
the center frequency of the pulse. And just as in the preceding case, the envelope of
the pulse propagates at the group velocity, 1/β1. This concept can be stated more
precisely as follows.
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Consider a pulse whose shape, or envelope, is described by A(z, t) and whose
center frequency is ω0. Assume that the pulses have narrow spectral width. By this we
mean that most of the energy of the pulse is concentrated in a frequency band whose
width is negligible compared to the center frequency ω0 of the pulse. This assumption
is usually satisfied for most pulses used in optical communication systems. With this
assumption, it can be shown that the magnitude of the (real) electric field vector
associated with such a pulse is

|E(r, t)| = J (x, y)[A(z, t)e−i(ω0t−β0z)], (E.3)

where[q] denotes the real part of q (see, for example, [Agr97]). Here β0 is the value
of the propagation constant β at the frequency ω0. J (x, y) has the same significance
as before. It is mathematically convenient to allow the pulse envelope A(z, t) to be
complex valued so that it captures not only the change in the pulse shape during prop-
agation but also any induced phase shifts. Thus if A(z, t) = |A(z, t)| exp(iφA(z, t)),
the phase of the pulse is given by

φ(t) = ω0t − β0z − φA(z, t). (E.4)

To get the description of the actual pulse, we must multiply A(z, t) by
exp (−i(ω0t − β0z)) and take the real part. We will illustrate this in (E.6).

Here we have also assumed that the pulse is obtained by modulating a nearly
monochromatic source at frequency ω0. This means that the frequency spectrum of
the optical source has negligible width compared to the frequency spectrum of the
pulse. We will consider the effect of relaxing this assumption later in this section.

By assuming that the higher derivatives of β with respect to ω are negligible, we
can derive the following partial differential equation for the evolution of the pulse
shape A(z, t) [Agr97]:

∂A

∂z
+ β1

∂A

∂t
+ i

2
β2

∂2A

∂t2 = 0. (E.5)

Here,

β2 = d2β

dω2

∣∣∣∣
ω=ω0

.

Note that if β were a linear function of ω, that is, β2 = 0, then A(z, t) = F(t−β1z),
where F is an arbitrary function that satisfies (E.5). Then A(z, t) = A(0, t−β1z) for all
z and t, and arbitrary pulse shapes propagate without change in shape (and at velocity
1/β1). In other words, if the group velocity is independent of ω, no broadening of the
pulse occurs. Thus β2 is the key parameter governing group velocity or chromatic
dispersion. It is termed the group velocity dispersion parameter or, simply, GVD
parameter.
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E.1 Propagation of Chirped Gaussian Pulses

Mathematically, a chirped Gaussian pulse at z = 0 is described by the equation

G(t) = 
[
A0e

− 1+iκ
2

(
t

T0

)2

e−iω0t

]

= A0e
− 1

2

(
t

T0

)2

cos

(
ω0t +

κ

2

(
t

T0

)2
)

. (E.6)

The peak amplitude of the pulse is A0. The parameter T0 determines the width of the
pulse. It has the interpretation that it is the half-width of the pulse at the 1/e-intensity
point. (The intensity of a pulse is the square of its amplitude.) The chirp factor κ

determines the degree of chirp of the pulse. From (E.4), the phase of this pulse is

φ(t) = ω0t +
κt2

2T 2
0

.

The instantaneous angular frequency of the pulse is the derivative of the phase and
is given by

d

dt

(
ω0t + κ

2
t2

T 2
0

)
= ω0 + κ

T 2
0

t .

We define the chirp factor of a Gaussian pulse as T 2
0 times the derivative of its

instantaneous angular frequency. Thus the chirp factor of the pulse described by
(E.6) is κ . This pulse is said to be linearly chirped since the instantaneous angular
frequency of the pulse increases or decreases linearly with time t, depending on the
sign of the chirp factor κ . In other words, the chirp factor κ is a constant, independent
of time t, for linearly chirped pulses.

Let A(z, t) denote a chirped Gaussian pulse as a function of time and distance.
At z = 0,

A(0, t) = A0e
− 1+iκ

2

(
t

T0

)2

. (E.7)

If we solve (E.5) for a chirped Gaussian pulse (so the initial condition for this
differential equation is that A(0, t) is given by (E.7)), we get

A(z, t) = A0T0√
T 2

0 − iβ2z(1+ iκ)

exp

(
− (1+ iκ)(t − β1z)

2

2
(
T 2

0 − iβ2z(1+ iκ)
)
)

. (E.8)
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This can be rewritten in the form

A(z, t) =
[
Aze

− 1+iκ
2

(
t−β1z

Tz

)2

eiφz

]
(E.9)

Comparing with (E.6), we see that A(z, t) is also the envelope of a chirped Gaussian
pulse for all z > 0, and the chirp factor κ remains unchanged. However, the width
of this pulse increases as z increases if β2κ > 0. This happens because the parameter
governing the pulse width is now

T 2
z =

(

[

1+ iκ

T 2
0 − iβ2z(1+ iκ)

])−1

= T 2
0

⎡
⎣
(

1+ β2zκ

T 2
0

)2

+
(

β2z

T 2
0

)2
⎤
⎦ , (E.10)

which monotonically increases with increasing z if β2κ > 0. A measure of the pulse
broadening at distance z is the ratio Tz/T0. The analytical expression (2.13) for this
ratio follows from (E.10).

E.2 Nonlinear Effects on Pulse Propagation

So far, we have understood the origins of self-phase modulation (SPM) and cross-
phase modulation (CPM) and the fact that these effects result in changing the phase
of the pulse as a function of its intensity (and the intensity of other pulses at different
wavelengths in the case of CPM). To understand the magnitude of this phase change
or chirping and how it interacts with chromatic dispersion, we will need to go back
and look at the differential equation governing the evolution of the pulse shape as
it propagates in the fiber. We will also find that this relationship is important in
understanding the fundamentals of solitons in Section 2.6.

We will consider pulses for which the magnitude of the associated (real) electric
field vector is given by (E.3), which is

|E(r, t)| = J (x, y)[A(z, t)e−i(ω0t−β0z)].

Recall that J (x, y) is the transverse distribution of the electric field of the fundamental
mode dictated by the geometry of the fiber, A(z, t) is the complex envelope of the
pulse, ω0 is its center frequency, and [·] denotes the real part of its argument. Let
A0 denote the peak amplitude of the pulse, and P0 = A2

0 its peak power.
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We have seen that the refractive index becomes intensity dependent in the pres-
ence of SPM and is given by (2.23) for a plane monochromatic wave. For non-
monochromatic pulses with envelope A propagating in optical fiber, this relation
must be modified so that the frequency and intensity-dependent refractive index is
now given by

n̂(ω,E) = n(ω)+ n̄|A|2/Ae. (E.11)

Here, n(ω) is the linear refractive index, which is frequency dependent because
of chromatic dispersion, but also intensity independent, and Ae is the effective
cross-sectional area of the fiber, typically 50 μm2 (see Figure 2.15 and the accompa-
nying explanation). The expression for the propagation constant (2.22) must also be
similarly modified, and the frequency and intensity-dependent propagation constant
is now given by

β̂(ω,E) = β(ω)+ ω

c

n̄|A|2
Ae

. (E.12)

Note that in (E.11) and (E.12) when we use the value n̄ = 3.2 × 10−8 μm2/W, the
intensity of the pulse |A|2 must be expressed in watts (W). We assume this is the
case in what follows and will refer to |A|2 as the power of the pulse (though, strictly
speaking, it is only proportional to the power).

For convenience, we denote

γ = ω

c

n̄

Ae

= 2π

λ

n̄

Ae

and thus β̂ = β + γ |A|2. Comparing this with (E.11), we see that γ bears the same
relationship to the propagation constant β as the nonlinear index coefficient n̄ does
to the refractive index n. Hence, we call γ the nonlinear propagation coefficient. At
a wavelength λ = 1.55 μm and taking Ae = 50 μm2, γ = 2.6 /W-km.

To take into account the intensity dependence of the propagation constant, (E.5)
must be modified to read

∂A

∂z
+ β1

∂A

∂t
+ i

2
β2

∂2A

∂t2 = iγ |A|2A. (E.13)

In this equation, the term i
2β2

∂2A
∂t2 incorporates the effect of chromatic dispersion, as

discussed in Section 2.4, and the term iγ |A|2A incorporates the intensity-dependent
phase shift.

Since this equation incorporates the effect of chromatic dispersion also, the com-
bined effects of chromatic dispersion and SPM on pulse propagation can be analyzed
using this equation as the starting point. These effects are qualitatively different from
those of chromatic dispersion or SPM acting alone.
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In order to understand the relative effects of chromatic dispersion and SPM, it is
convenient to introduce the following change of variables:

τ = t − β1z

T0
, ξ = z

LD
= z|β2|

T 2
0

, and U = A√
P0

. (E.14)

In these new variables, (E.13) can be written as

i
∂U

∂ξ
− sgn(β2)

2
∂2U

∂τ 2 +N2|U |2U = 0, (E.15)

where

N2 = γP0LD = γP0

|β2|/T 2
0

.

Equation (E.15) is called the nonlinear Schrödinger equation (NLSE).
The change of variables introduced by (E.14) has the following interpretation.

Since the pulse propagates with velocity β1 (in the absence of chromatic dispersion),
t − β1z is the time axis in a reference frame moving with the pulse. The variable
τ is the time in this reference frame but in units of T0, which is a measure of the
pulse width. The variable ξ measures distance in units of the chromatic dispersion
length LD = T 2

0 /|β2|, which we already encountered in Section 2.4. The quantity
P0 represents the peak power of the pulse, and thus U is the envelope of the pulse
normalized to have unit peak power.

Note that the quantity 1/γP0 also has the dimensions of length; we call it the
nonlinear length and denote it by LNL. Using γ = 2.6 /W-km and P0 = 1 mW,
we get LNL = 384 km. If the pulse power P0 is increased to 10 mW, the nonlinear
length decreases to 38 km. The nonlinear length serves as a convenient normalizing
measure for the distance z in discussing nonlinear effects, just as the chromatic
dispersion length does for the effects of chromatic dispersion. Thus the effect of SPM
on pulses can be neglected for pulses propagating over distances z 	 LNL. Then we
can write the quantity N introduced in the NLSE as N2 = LD/LNL. Thus it is the
ratio of the chromatic dispersion and nonlinear lengths. When N 	 1, the nonlinear
length is much larger than the chromatic dispersion length so that the nonlinear
effects can be neglected compared to those of chromatic dispersion. This amounts
to saying that the third term (the one involving N) in the NLSE can be neglected.
In this case, the NLSE reduces to (E.5) for the evolution of pulses in the presence of
chromatic dispersion alone, with the change of variables given by (E.14).

The NLSE serves as the starting point for the discussion of the combined effects
of GVD and SPM. For arbitrary values of N , the NLSE has to be solved numerically.
These numerical solutions are important tools for understanding the combined effects
of chromatic dispersion and nonlinearities on pulses and are discussed extensively
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in [Agr95]. The qualitative description of these solutions in both the normal and
anomalous chromatic dispersion regimes is discussed in Section 2.5.5.

We can use (E.13) to estimate the SPM-induced chirp for Gaussian pulses. To do
this, we neglect the chromatic dispersion term and consider the equation

∂A

∂z
+ β1

∂A

∂t
= iγ |A|2A. (E.16)

By using the variables τ and U introduced in (E.14) instead of t and A, and LNL =
(γ P0)

−1, this reduces to

∂U

∂z
= i

LNL

|U |2U. (E.17)

Note that we have not used the change of variable ξ for z since LD is infinite when
chromatic dispersion is neglected. This equation has the solution

U(z, τ ) = U(0, τ )eiz|U(0,τ )|2/LNL. (E.18)

Thus the SPM causes a phase change but no change in the envelope of the pulse.
Note that the initial pulse envelope U(0, τ ) is arbitrary; so this is true for all pulse
shapes. Thus SPM by itself leads only to chirping, regardless of the pulse shape; it
is chromatic dispersion that is responsible for pulse broadening. The SPM-induced
chirp, however, modifies the pulse-broadening effects of chromatic dispersion.

E.3 Soliton Pulse Propagation

In the anomalous chromatic dispersion regime (1.55 μm band for standard
single-mode fiber and most dispersion-shifted fibers), the GVD parameter β2 is neg-
ative. Thus sgn(β2) = −1, and the NLSE of (E.15) can be written as

i
∂U

∂ξ
+ 1

2
∂2U

∂τ 2 +N2|U |2U = 0. (E.19)

An interesting phenomenon occurs in this anomalous chromatic dispersion
regime when N is an integer. In this case, the modified NLSE (E.19) can be solved
analytically, and the resulting pulse envelope has an amplitude that is independent
of ξ (for N = 1) or periodic in ξ (for N ≥ 2). This implies that these pulses propa-
gate with no change in their widths or with a periodic change in their widths. The
solutions of this equation are termed solitons, and N is called the order of the soliton.

It can be verified that the solution of (E.19) corresponding to N = 1 is

U(ξ, τ ) = eiξ/2sechτ. (E.20)
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The pulse corresponding to this envelope is called the fundamental soliton. The
fundamental soliton pulse and its envelope are sketched in Figure 2.25(a) and (b),
respectively. (As in the case of chirped Gaussian pulses in Section 2.4, the frequency
of the pulse is shown vastly diminished for the purposes of illustration.)

Note that (in a reference frame moving with the pulse) the magnitude of the
fundamental soliton pulse envelope, or the pulse shape, does not change with the
distance coordinate z. However, the pulse acquires a phase shift that is linear in z as
it propagates.

Recall that the order of the soliton, N , is defined by

N2 = γP0LD = γP0

|β2|/T 2
0

.

Since γ and β2 are fixed for a given fiber and operating wavelength, for a fixed soliton
order, the peak power P0 of the pulse increases as the pulse width T0 decreases. Since
operation at very high bit rates requires narrow pulses, this also implies that large
peak powers are necessary in soliton communication systems.

It can also be verified that the solution of (E.19) corresponding to N = 2 is

U(ξ, τ ) = 4eiξ/2 cosh 3τ + 3 cosh τei4ξ

cosh 4τ + 4 cosh 2τ + 3 cos 4ξ
. (E.21)

The magnitude of this normalized pulse envelope is sketched in Figure E.1 as a func-
tion of ξ and τ . The periodicity of the pulse envelope with respect to ξ can be clearly
seen from this plot. In each period, the pulse envelope first undergoes compression
due to the positive chirping induced by SPM and then undergoes broadening, finally
regaining its original shape.

Further Reading

Pulse propagation is covered in detail in [Agr95]. The classic papers by Marcuse
[Mar80, Mar81] are a must-read for anyone wishing to dig deeper into the mathe-
matics of Gaussian and chirped Gaussian pulse propagation.
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Figure E.1 The magnitude of the pulse envelope of the second-order soliton.
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appendix

Nonlinear Polarization

The linear equation (2.7) for the relationship between the induced polarization
P and the applied electric field E holds when the power levels and/or bit rates

are moderate. When this is not the case, this must be generalized to include higher
powers of E(r, t). For an isotropic medium and an electric field polarized along one
direction so that it has a single component E(r, t), this relationship can be written
as follows:

�(r, t) = ε0

∫ t

−∞
χ(1)(r, t − t1)E(r, t1) dt1

+ ε0

∫ t

−∞

∫ t

−∞
χ(2)(t − t1, t − t2)E(r, t1)E(r, t2) dt1 dt2

+ ε0

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3)(t − t1, t − t2, t − t3)E(r, t1)E(r, t2)E(r, t3) dt1 dt2 dt3

+ · · · . (F.1)

Now χ(1)(r, t) is called the linear susceptibility to distinguish it from χ(i)(r, t), i =
2, 3, . . . , which are termed the higher-order nonlinear susceptibilities. Owing to
certain symmetry properties of the silica molecule, χ(2)(r, t) = 0. The effect of the
higher-order susceptibilities χ(4)(, ), χ(5)(, ), . . . , is negligible in comparison with that
of χ(3)(, ). Thus we can write (F.1) as

�(r, t) = �L(r, t)+ �NL(r, t).
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Here �L(r, t) is the linear polarization given by (2.18). The nonlinear polarization
�NL(r, t) is given by

�NL(r, t) = ε0

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3)(t − t1, t − t2, t − t3)

E(r, t1)E(r, t2)E(r, t3) dt1 dt2 dt3 . (F.2)

The nonlinear response of the medium occurs on a very narrow time scale of less
than 100 fs—much smaller than the time scale of the linear response—and thus can
be assumed to be instantaneous for pulse widths greater than 1 ps. Note that even
if the pulse occupies only a tenth of the bit interval, this assumption is satisfied for
bit rates greater than 100 Gb/s. We will consider only this instantaneous nonlinear
response case in this book. When this assumption is satisfied,

χ(3)(t − t1, t − t2, t − t3) = χ(3)δ(t − t1)δ(t − t2)δ(t − t3),

where χ(3) on the right-hand side is now a constant, independent of t. This assump-
tion enables us to simplify (F.2) considerably. It now reduces to

�NL(r, t) = ε0χ
(3)E3(r, t),

which is Equation (2.19).
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appendix

Multilayer Thin-Film
Filters

To understand the principle of operation of dielectric thin-film multicavity
filters (DTMF), we need to digress and discuss some results from electromagnetic

theory.

G.1 Wave Propagation at Dielectric Interfaces

A plane electromagnetic wave is one whose electric and magnetic fields vary only in
the spatial coordinate along the direction of propagation. In other words, along any
plane perpendicular to the direction of propagation, the electric and magnetic fields
are constant. The ratio of the amplitude of the electric field to that of the magnetic
field at any such plane is called the impedance at that plane. In a medium that supports
only one propagating wave (so there is no reflected wave), this impedance is called
the intrinsic impedance of the medium and is denoted by η. If ε is the dielectric
permittivity of the medium and μ is its magnetic permeability, η = √

μ/ε. If we
denote the intrinsic impedance of vacuum by η0, for a nonmagnetic dielectric medium
with refractive index n, the intrinsic impedance η = η0/n. (A nonmagnetic dielectric
material has the same permeability as that of a vacuum. Since most commonly
used dielectrics are nonmagnetic, in the rest of the discussion, we assume that the
dielectrics considered are nonmagnetic.)

Consider the interface between two dielectrics with refractive indices n1 and n2,
illustrated in Figure G.1(a). Assume that a plane electromagnetic wave is incident
normal to this interface. The reflection coefficient at this interface is the ratio of the
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Figure G.1 (a) The interface between two dielectric media. (b) A dielectric slab or film
placed between two other dielectric media. (c) Multiple dielectric slabs or films stacked
together.

amplitude of the electric field in the reflected wave to that in the incident wave. From
the principles of electromagnetics [RWv93, Section 6.7], it can be shown that the
reflection coefficient at this interface (for normal incidence) is

ρ = η2 − η1

η2 + η1
= n1 − n2

n1 + n2
. (G.1)

Thus the fraction of power transmitted through this interface is

1− |ρ|2 = 1−
∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣
2
.

Here, as in the rest of the discussion, we assume that the dielectrics are lossless so
that no power is absorbed by them.

Now consider a slab of a dielectric material of thickness l and refractive index
n2 (dielectric 2) that is placed between two dielectrics with refractive indices n1 and
n3 (dielectrics 1 and 3, respectively). Assume that dielectrics 1 and 3 have very large,
essentially infinite, thicknesses. This is illustrated in Figure G.1(b). A part of any
signal incident from dielectric 1 will be reflected at the 1-2 interface and a part
transmitted. Of the transmitted part, a fraction will be reflected at the 2-3 interface.
Of this reflected signal, another fraction will be reflected at the 2-1 interface and
the remainder transmitted to dielectric 1 and added to the first reflected signal, and
so on. In principle, the net signal reflected at the 1-2 interface can be calculated by
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adding all the reflected signals calculated using the reflection coefficients given by
(G.1), with the proper phases. But the whole process can be simplified by using the
concept of impedances and the following result concerning them.

If the impedance at some plane in a dielectric is ZL, called the load impedance,
the impedance at distance l in front of it, called the input impedance, is given, as a
function of the wavelength λ, by

Zi = η

(
ZL cos(2πnl/λ)+ iη sin(2πnl/λ)

η cos(2πnl/λ)+ iZL sin(2πnl/λ)

)
. (G.2)

Here, η is the intrinsic impedance of the dielectric, and n is its refractive index. Note
that in a single dielectric medium, ZL = η, and (G.2) yields Zi = η as well. This
agrees with our earlier statement that the impedance at all planes in a single dielectric
medium is η.

The concept of impedance is useful for us because the reflection and transmission
coefficients may be expressed in terms of impedances. Specifically, the reflection
coefficient at an interface with load impedance ZL, in a dielectric with intrinsic
impedance η, is given by

ρ = ZL − η

ZL + η
. (G.3)

The transmission coefficient at the same interface is given by

τ = 1− ρ = 2ZL

ZL + η
. (G.4)

Note that (G.1) is a special case of (G.3) obtained by setting η = η1 and ZL = η2.
Now consider again the case of a single dielectric slab, placed between two other

dielectrics, illustrated in Figure G.1(b). The impedance at the 2-3 interface is η3. Thus
the impedance at the 1-2 interface may be calculated using (G.2) as

Z12 = η2

(
η3 cos(2πnl/λ)+ iη2 sin(2πnl/λ)

η2 cos(2πnl/λ)+ iη3 sin(2πnl/λ)

)
.

Using this, the reflection coefficient at the 1-2 interface can be obtained from (G.3)
as

ρ = Z12 − η1

Z12 + η1
.

If the slab of a dielectric of thickness l shown in Figure G.1(b) is viewed as a filter,
its power transfer function—the fraction of power transmitted by it—is given by

T (λ) = 1− |ρ|2.
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Figure G.2 Transfer function of the filter shown in Figure G.1(b) for n1 = n3 = 1.52,
n2 = 2.3, and l = λ0/2n2.

Let λ0 = 2nl so that the optical path length in the slab is a half wavelength. Note
that T (λ0) = 1. In Figure G.2, T (λ) is plotted as a function of λ0/λ, assuming
n1 = n3 = 1.5 and n2 = 2.3.

Note that for the case n1 = n3, this filter becomes a Fabry-Perot filter (see
Problem 3.12).

This result can be generalized to an arbitrary number of dielectric slabs as follows.
Consider a series of k dielectrics with refractive indices n1, n2, . . . , nk (not necessarily
distinct) and thicknesses l1, l2, . . . , lk , which are stacked together as shown in Fig-
ure G.1. We also assume that l1 and lk are very large, essentially infinite. This can
be viewed as a filter of which a special case is the DTMF. We assume that the input
signal is incident normal to the 1-2 interface. If we find the reflection coefficient, ρ,
at the 1-2 interface, we can determine the power transfer function, T (λ), of the filter,
using T (λ) = 1− |ρ|2.

Using the impedance machinery, we find this is quite easy to do. If ηi is the
intrinsic impedance of dielectric i, i = 1, . . . , k, ηi = η0/ni . We start at the right
end of the filter, at the (k − 1)-(k) interface. The impedance at this plane is just
the intrinsic impedance of medium k, namely, ηk. The intrinsic impedance at the
(k − 2)-(k − 1) interface can be calculated using (G.2) with ZL = ηk, η = ηk−1,
n = nk−1, and l = lk−1. Continuing in the same manner, we can recursively calculate
the input impedances at the interfaces (k−3)-(k−2), . . . , 1-2. From this, the reflection
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coefficient at the 1-2 interface can be calculated using (G.3), and the power transfer
function of the filter can be determined.

G.2 Filter Design

Although the power transfer function of any given stack of dielectrics can be deter-
mined using the preceding procedure, designing a filter of this type to meet a given
filter requirement is a more typical problem encountered in practice. The multiple
dielectric slab structure exemplified by Figure G.1(c) is quite versatile, and a number
of well-known filter transfer functions, such as the Butterworth and the Chebyshev,
may be synthesized using it [Kni76]. However, the synthesis of these filters calls for a
variety of dielectric materials with different refractive indices. This may be a difficult
requirement to meet in practice.

It turns out, however, that very useful filter transfer functions can be synthesized
using just two different dielectric materials, a low-index dielectric with refractive in-
dex nL and a high-index dielectric with refractive index nH [Kni76]. Assume we want
to synthesize a bandpass filter with center wavelength λ0. Then, a general structure
for doing this is to use alternate layers of high-index and low-index dielectrics with
thicknesses equivalent to a quarter or a half wavelength at λ0. (A quarter-wavelength
slab of the dielectric with refractive index nL would have a thickness λ0/4nL.) Since
these thicknesses at optical wavelengths are quite small, the term thin film is more
appropriately used instead of slab. The dielectric thin films that are a half-wavelength
thick at λ0 are called the cavities of the filter. A particularly useful filter structure
consists of a few cavities separated by several quarter-wavelength films. If H and L

denote quarter-wavelength films (at λ0) of the high- and low-index dielectrics, re-
spectively, then we can represent any such filter by a sequence of H s and Ls. Two Ls
or two H s in succession would represent a half-wavelength film. For example, if the
lightly shaded dielectrics are of low index and the darker shaded are of high index,
the filter consisting of the multiple dielectric films 2-8 shown in Figure G.1(c) can be
represented by the sequence HLHLLHLH . If the surrounding dielectrics, 1 and 9,
are denoted by G (for glass), the entire structure in Figure G.1(c) can be represented
by the sequence GHLHLLHLHG. If we know the refractive indices nG, nL, and nH

of the G, L, and H dielectrics, respectively, the transfer function of the filter can be
calculated using the procedure outlined. For nG = 1.52, a typical value for the cover
glass, nL = 1.46, which is the refractive index of SiO2 (a low-index dielectric), and
nH = 2.3, which is the refractive index of TiO2 (a high-index dielectric), this transfer
function is plotted in Figure G.3. From this figure, we see that the main lobe is quite
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Figure G.3 Transfer function of the filter shown in Figure G.1(c) for nG = 1.52, nL =
1.46, and nH = 2.3.

wide compared to the center wavelength, and the side lobe suppression is less than
10 dB. Clearly, a better transfer function is needed if the filter is to be useful.

A narrower passband and greater side lobe suppression can be achieved by the
use of more quarter-wavelength films than just three. For example, the filter described
by the sequence

G(HL)9HLL(HL)9HG

has the transfer function shown in Figure G.4. The notation (HL)k denotes the
sequence HL ·HL · . . . ·HL (k times). Note that this filter is a single-cavity filter since
it uses just one half-wave film. However, it uses 38 quarter-wave films, 19 on each
side of the cavity.

The transfer function of a dielectric thin-film filter is periodic in frequency or in
λ0/λ, just like the Fabry-Perot filter. In Figure G.4(a), the transfer function of the filter
for one complete period is shown. However, this figure hides the passband structure
of the filter. Therefore, the transfer function of the filter is shown in Figure G.4(b) for
a narrow spectral range around the center wavelength λ0. The passband structure of
the filter can now be clearly seen. The resemblance to the Fabry-Perot filter transfer
function (Figure 3.17) is no accident (see Problem 3.12).

The use of multiple cavities leads to a flatter passband and a sharper transition
from the passband to the stop band. Both effects are illustrated in Figure 3.19,
where the filter transfer function, around the center wavelength λ0, is plotted for a
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Figure G.4 Transfer function of a single-cavity dielectric thin-film filter. The sequence
structure is G(HL)9HLL(HL)9HG. nG = 1.52, nL = 1.46, and nH = 2.3.

single-cavity, two-cavity, and three-cavity dielectric thin-film filter. The single-cavity
filter is the same as the one considered here. The two-cavity filter is described by the
sequence

G(HL)6HLL(HL)12HLL(HL)6HG.
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The three-cavity filter is described by the sequence

G(HL)5HLL(HL)11HLL(HL)11HLL(HL)5HG.

Again, the values nG = 1.52, nL = 1.46, and nH = 2.3 were used.
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H
appendix

Random Variables and
Processes

In many places in the book, we use random variables and random processes to
model noise, polarization, and network traffic. Understanding the statistical nature

of these parameters is essential in predicting the performance of communication
systems.

H.1 Random Variables

A random variable X is characterized by a probability distribution function

FX(x) = P {X ≤ x}.
The derivative of FX(x) is the probability density function

fX(x) = dFX(x)

dx
.

Note that∫ ∞

−∞
fX(x)dx = 1.

In many cases, we will be interested in obtaining the expectation, or ensemble aver-
age, associated with this probability function. The expectation of a function g(x) is
defined as

E[g(X)] =
∫ ∞

−∞
fX(x)g(x)dx.

789
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The mean of X is defined to be

E[X] =
∫ ∞

−∞
xfX(x)dx,

and the mean square (second moment) of X is

E[X2] =
∫ ∞

−∞
x2fX(x)dx.

The variance of X is defined as

σ 2
X = E[X2]− (E[X])2.

In many cases, we are interested in determining the statistical properties of two or
more random variables that are not independent of each other. The joint probability
distribution function of two random variables X and Y is defined as

FX,Y (x, y) = P {X ≤ x, Y ≤ y}.
Sometimes we are given some information about one of the random variables and
must estimate the distribution of the other. The conditional distribution of X given
Y is denoted as

FX|Y (x|y) = P {X ≤ x|Y ≤ y}.
An important relation between these distributions is given by Bayes’ theorem:

FX|Y (x|y) = FX,Y (x, y)

FY (y)
.

H.1.1 Gaussian Distribution

A random variable X is said to follow a Gaussian distribution if its probability
density function

fX(x) = 1√
2πσ

e(x−μ)2/σ 2
, −∞ ≤ x ≤ ∞.

Here, μ is the mean and σ 2 the variance of X. In order to compute bit error rates,
we will need to compute the probability that X ≥ v, which is defined as the function

Q(v) =
∫ ∞

v

fX(x)dx.

This function can be numerically evaluated. For example, Q(v) = 10−9 if v = 6, and
Q(v) = 10−15 if v = 8.
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Also, if X and Y are jointly distributed Gaussian random variables, then it can
be proved that

E[X2Y 2] = E[X2]E[Y 2]+ 2(E[XY ])2. (H.1)

H.1.2 Maxwell Distribution

The Maxwellian probability density function is useful to calculate penalties due to
polarization-mode dispersion. A random variable X is said to follow a Maxwellian
distribution if its probability density function

fX(x) =
√

2
α3√π

x2e−x2/2α2
, x ≥ 0,

where α is a parameter associated with the distribution. The mean and mean-square
value of X can be computed as

E[X] = 2α

√
2
π

and

E[X2] = 3α2 = 3
8
π(E[X])2.

Therefore, the variance

σ 2
X = E[X2]− (E[X])2 = α2

(
3− 8

π

)
.

It can also be shown that

P(X > 3E[X]) ≈ 4× 10−5.

H.1.3 Poisson Distribution

A discrete random variable X takes on values from a discrete but possibly infinite set
S = {x1, x2, x3, . . .}. It is characterized by a probability mass function P(x), which
is the probability that X takes on a value x. The expectation of a function g(X) is
defined as

E[g(X)] =
∑

i|xi∈S

g(xi)P (xi).

X is a Poisson random variable if

P(i) = e−rri

i!
, i = 0, 1, 2, . . . ,
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where r is a parameter associated with the distribution. It is easily verified that
E[X] = r and σ 2

X = r.

H.2 Random Processes

Random processes are useful to model time-varying stochastic events. A random
process X(t) is simply a sequence of random variables X(t1),X(t2), . . . , one for each
instant of time. The first-order probability distribution function is given by

F(x, t) = P {X(t) ≤ x},

and the first-order density function by

f (x, t) = ∂F (x, t)

∂x
.

The second-order distribution function is the joint distribution function

F(x1, x2, t1, t2) = P {X(t1) ≤ x1,X(t2) ≤ x2},

and the corresponding second-order density function is defined as

f (x1, x2, t1, t2) = ∂2F(x1, x2, t1, t2)

∂x1∂x2
.

The mean of the process is

μ(t) = E[X(t)] =
∫ ∞

−∞
xf (x, t)dx.

The autocorrelation of the process is

RX(t1, t2) = E[X(t1)X(t2)] =
∫ ∞

−∞

∫ ∞

−∞
x1x2f (x1, x2, t1, t2)dx1dx2.

The autocovariance of the process is defined as

LX(t1, t2) = RX(t1, t2)− E[X(t1)]E[X(t2)].

The random process is wide-sense stationary if it has a constant mean

E[X(t)] = μ,

and the autocorrelation (and autocovariance) depends only on τ = t1 − t2, that is,
RX(τ) = E[X(t)X(t + τ )] and LX(τ) = RX(τ) − μ2. For a wide-sense stationary
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random process, the power spectral density is the Fourier transform of the autoco-
variance and is given by

SX(f ) =
∫ ∞

−∞
LX(τ)e−i2πfτ dτ.

Note that the variance of the random process is given by

σ 2
X = LX(0) = 1

2π

∫ ∞

−∞
SX(f )df.

In many cases, we will represent noise introduced in the system as a stationary
random process. In this case, the spectral density is useful to represent the spectral
distribution of the noise. For example, in a receiver, the noise X(t) and signal are sent
through a low-pass filter with impulse response h(t). The transfer function of the
filter H(f ) is the Fourier transform of its impulse response. In this case, the spectral
density of the output noise process Y (t) can be expressed as

SY (f ) = SX(f )|H(f )|2.
Suppose the filter is an ideal low-pass filter with bandwidth Be; that is, H(f ) =
1,−Be ≤ f ≤ Be and 0 otherwise. The variance of the noise process at its output is
simply

σ 2
Y = LY (0) = 1

2π

∫ Be

−Be

SX(f )df.

H.2.1 Poisson Random Process

Poisson random processes are used to model the arrival of photons in an optical
communication system. They are also used widely to model the arrival of traffic in
a communication network. The model is accurate primarily for voice calls, but it is
used for other applications as well, without much real justification.

A Poisson process X(t) is characterized by a rate parameter λ. For any two time
instants t1 and t2 > t1, X(t2)−X(t1) is the number of arrivals during the time interval
(t1, t2]. The number of arrivals during this interval follows a Poisson distribution;
that is,

P (X(t2)−X(t1) = n) = e−λ(t2−t1)
(λ(t2 − t1))

n

n!
,

where n is a nonnegative integer. Therefore, the mean number of arrivals during this
time interval is

E[X(t2)− X(t1)] = λ(t2 − t1).
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A Poisson process has many important properties that make it easier to analyze
systems with Poisson traffic than other forms of traffic. See [BG92] for a good
summary.

H.2.2 Gaussian Random Process

In many cases, we model noise as a wide-sense stationary Gaussian random process
X(t). It is also common to assume that at any two instants of time t1 �= t2 the random
variables X(t1) and X(t2) are independent Gaussian variables with mean μ. For such
a process, we can use (H.1) and write

E[X2(t)X2(t + τ )] = (E[X2(t)])2 + 2(E[X(t)]E[X(t + τ )])2,

that is,

E[X2(t)X2(t + τ )] = R2
X(0)+ 2R2

X(τ).

Further Reading

There are several good books on probability and random processes. See, for example,
[Pap91, Gal99].
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Receiver Noise Statistics

W e start out by deriving an expression for the statistics of the photocurrent
in the pin receiver, along the lines of [BL90, RH90]. It is useful to think of the

photodetection process in the following way. Each time a photon hits the receiver,
the receiver generates a small current pulse. Let tk denote the arrival times of photons
at the receiver. Then the photocurrent generated can be expressed as

I (t) =
∞∑

k=−∞
eh(t − tk), (I.1)

where e is the electronic charge and eh(t − tk) denotes the current impulse due to a
photon arriving at time tk. Note that since eh(t − tk) is the current due to a single
electron, we must have∫ ∞

−∞
eh(t − tk)dt = e.

The arrival of photons may be described by a Poisson process, whose rate is given
by P(t)/hfc . Here, P(t) is the instantaneous optical power, and hfc is the photon
energy. The rate of generation of electrons may then also be considered to be a
Poisson process, with rate

λ(t) = �
e

P (t),

where � = ηe/hfc is the responsivity of the photodetector, η being the quantum
efficiency.
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To evaluate (I.1), let us break up the time axis into small intervals of length δt,
with the kth interval being [(k − 1/2)δt, (k + 1/2)δt). Let Nk denote the number of
electrons generated during the kth interval. Using these notations, we can rewrite
(I.1) as

I (t) =
∞∑

k=−∞
eNkh(t − kδt).

Note that since the intervals are nonoverlapping, the Nk are independent Poisson
random variables, with rate λ(kδt)δt .

We will first compute the mean value and autocorrelation functions of the pho-
tocurrent for a given optical power P(.). The mean value of the photocurrent is

E[I (t)|P(.)] =
∞∑

k=−∞
eE[Nk]h(t − kδt) =

∞∑
k=−∞

eλ(kδt)δt h(t − kδt).

In the limit when δt → 0, this can be rewritten as

E[I (t)|P(.)] =
∫ ∞

−∞
eλ(τ)h(t − τ )dτ = �

∫ ∞

−∞
P(τ)h(t − τ )dτ.

Similarly, the autocorrelation of the photocurrent can be written as

E[I (t1)I (t2)|P(.)] =
∫ ∞

−∞
e2λ(τ)h(t1 − τ )h(t2 − τ )dτ

+ E[I (t1)|P(.)]E[I (t2)|P(.)]

= e�

∫ ∞

−∞
P(τ)h(t1 − τ )h(t2 − τ )dτ

+�2
∫ ∞

−∞
P(τ)h(t1 − τ )dτ

∫ ∞

−∞
P(τ)h(t2 − τ )dτ.

An ideal photodetector generates pure current impulses for each received photon. For
such a detector h(t) = δ(t), where δ(t) is the impulse function with the properties that
δ(t) = 0, t �= 0 and

∫∞
−∞ δ(t)dt = 1. For this case, the mean photocurrent becomes

E[I (t)|P(.)] = �P(t),

and its autocorrelation is

E[I (t1)I (t2)|P(.)] = e�P(t1)δ(t2 − t1)+�2P(t1)P (t2).
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Removing the conditioning over P(.) yields

E[I (t)] = �E[P(t)], (I.2)

and

E[I (t1)I (t2)] = e�E[P(t1)]δ(t2 − t1)+�2E[P(t1)P (t2)].

The autocovariance of I (t) is then given as

LI (t1, t2) = E[I (t1)I (t2)]− E[I (t1)]E[I (t2)]
= e�E[P(t1)]δ(t2 − t1)+�2LP (t1, t2),

(I.3)

where LP denotes the autocovariance of P(t).

I.1 Shot Noise

First let us consider the simple case when there is a constant power P incident on
the receiver. For this case, E[P(t)] = P and LP (τ) = 0, and (I.2) and (I.3) can be
written as

E[I (t)] = �P

and

LI (τ ) = e�Pδ(τ),

where τ = t2 − t1. The power spectral density of the photocurrent is the Fourier
transform of the autocovariance and is given by

SI (f ) =
∫ ∞

−∞
LI (τ )e−i2πf τ dτ = e�P.

Thus the shot noise current can be thought of as being a white noise process with a
flat spectral density as given here. Within a receiver bandwidth of Be, the shot noise
power is given by

σ 2
shot =

∫ Be

−Be

SI (f )df = 2e�PBe.

Therefore, the photocurrent can be written as

I = I + is,

where I = �P and is is the shot noise current with zero mean and variance e�PBe .
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I.2 Amplifier Noise

An optical amplifier introduces spontaneous emission noise to the signal in addition
to providing gain. Consider a system with an optical preamplifier shown in Figure 4.7.
The electric field at the input to the receiver may be written as

E(t) =
√

2P cos(2πfct +�)+N(t).

Here, P is the signal power, fc is the carrier frequency, and � is a random phase
uniformly distributed in [0, 2π]. N(t) represents the amplifier spontaneous emission
noise. For our purposes, we will assume that this is a zero-mean Gaussian noise
process with autocorrelation RN(τ).

The received power is given by

P(t) = E2(t) = 2P cos2(2πfct +�)+ 2
√

2PN(t) cos(2πfct +�)+ N2(t).

The mean power is

E[P(t)] = P + RN(0). (I.4)

To calculate the autocovariance, note that since N(t) is a Gaussian process,

E[N2(t)N2(t + τ )] = R2
N(0)+ 2R2

N(τ)

using the moment formula (H.1). Using this fact, the autocovariance of P(.) can be
calculated to be

LP (τ) = 2R2
N(τ)+ 4PRN(τ) cos(2πfcτ)+ P 2

2
cos(4πfcτ). (I.5)

The corresponding spectral density is given by

SP (f ) =
∫ ∞

−∞
LP (τ)e−i2πfτ dτ

= 2SN(f ) ∗ SN (f )+ 2P [SN(f − fc)+ SN(f + fc)]

+ P 2

4
[δ(f − 2fc)+ δ(f + 2fc)]. (I.6)

The ∗ denotes the convolution operator, where f (x) ∗ g(x) = ∫∞
−∞ f (u)g(x − u)du.

After photodetection, the last term in (I.5) and (I.6) can be omitted because the
2fc components will be filtered out.

In order to derive the noise powers, we return to (I.3) and substitute for E[P(.)]
and LP (.) from (I.4) and (I.6), respectively, to obtain

LI (τ ) = e�[P + RN(0)]δ(τ )+�2[4PRN(τ) cos(2πfcτ)]+�2[2R2
N(τ)].



I.2 Amplifier Noise 799

We also have

SI (f ) = e�[P + RN(0)]+�22P [SN (f − fc)+ SN(f + fc)]

+�2[2SN(f ) ∗ SN(f )]. (I.7)

The first term on the right-hand side represents the shot noise terms due to the
signal and the amplifier noise. The second term represents the signal-spontaneous
beat noise, and the last term is the spontaneous-spontaneous beat noise. Note that
we have so far assumed that the amplifier noise is Gaussian but with an arbitrary
spectral shape SN (f ). In practice, it is appropriate to assume that the amplifier noise
is centered at fc and is white over an optical bandwidth Bo < 2fc, with

SN(f ) =
{

Pn(G−1)
2 , |f ± fc| ≤ Bo

2
0, otherwise.

Here, Pn is given by nsphfc, where nsp is the spontaneous emission factor. Corre-
spondingly, we have

RN(0) =
∫ ∞

−∞
SN(f )df = Pn(G− 1)Bo.

The spectral density of the photocurrent SI (f ) from (I.7) is plotted in Figure I.1,
assuming the preceding value for SN (f ). Note that, as before, the shot noise is
white, but the signal-spontaneous beat noise spectrum has a rectangular shape, and
the spontaneous-spontaneous beat noise a triangular shape. Moreover, the incident
optical power P is given by GPi , where Pi is the input power to the amplifier.

Shot

Signal-spontaneous

Spontaneous-spontaneous

e GP P G BR[ ( 1) ]i n o� �

R
2 2
[ ( 1)]P G Bn o�

2 ( 1)R
2
P G GP

n o�

n i�

BoBe Bo/2 Frequency

Power spectral density

Figure I.1 Photocurrent spectral density.
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Note that the photocurrent is passed through a low-pass filter with bandwidth
Be. The noise power at the output of the filter is given by

σ 2 =
∫ Be

−Be

SI (f )df = σ 2
shot + σ 2

sig-spont + σ 2
spont-spont,

where

σ 2
shot = 2e�[GPi + Pn(G− 1)Bo]Be,

σ 2
sig-spont = 4�2GPiPn(G− 1)Be,

and

σ 2
spont-spont = �2[Pn(G− 1)]2(2Bo − Be)Be.
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appendix

Asynchronous Transfer
Mode

Asynchronous transfer mode (ATM) is a network standard that was developed with
many goals, one of which was the integration of voice and data networks. At the time
of its development, voice networks were for the telecommunications industry while
data networks were for the computer industry and community. When IP became
the dominant data network, ATM was used to provide connection-oriented packet
transport of IP traffic. Today it has largely been replaced by multiprotocol label
switching (MPLS), though it is in many legacy systems. It implements many ideas of
modern packet switching, some of which are described in this appendix.

An ATM network uses packets or cells with a fixed size of 53 bytes; this packet size
is a compromise between the conflicting requirements of voice and data applications.
A small packet size is preferable for voice since the packets must be delivered with
only a short delay. A large packet size is preferable for data since the overhead
involved in large packets is smaller. Of the 53 bytes in an ATM packet, 5 bytes
constitute the header, which is the overhead required to carry information such as
the destination of the packet. ATM networks span the whole gamut from local-area
networks (LANs) to metropolitan-area networks (MANs) to wide-area networks
(WANs).

One of the key advantages of ATM is its ability to provide quality-of-service
guarantees, such as bandwidth and delay, to applications even while using statistical
multiplexing of packets to make efficient use of the link bandwidth (see Chapter 1).
ATM achieves this by using a priori information about the characteristics of a connec-
tion (say, a virtual circuit), for example, the peak and average bandwidth required by
it. ATM uses admission control to block new connections when necessary to satisfy
the guaranteed quality-of-service requirements.

801
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Another advantage of ATM is that it employs switching even in a local-area
environment, unlike other LAN technologies like Ethernets, token rings, and FDDI,
which use a shared medium such as a bus or a ring. This enables it to provide
quality-of-service guarantees more easily than these other technologies. The fixed
size of the packets used in an ATM network is particularly advantageous for the
development of low-cost, high-speed switches.

Various lower or physical layer standards are specified for ATM. These range
from 25.6 Mb/s over twisted-pair copper cable to 622.08 Mb/s over single-mode
optical fiber. Among the optical interfaces is a 155.52 Mb/s optical interface that
operates over distances up to 2 km using LEDs over multimode fiber in the 1300 nm
band. Using the specified minimum transmit and receive powers, the loss budget for
this interface is 9 dB. The line code used in this case is the (8, 10) line code specified
by the Fibre Channel standard.

These interfaces are called private user–network interfaces in ATM terminology,
since they are meant for interconnecting ATM users and switches in networks that
are owned and managed by private enterprises. A number of public user–network
interfaces, which are meant for connecting ATM users and switches to the public or
carrier network, are also defined. In these latter interfaces, ATM uses either PDH or
SONET/SDH as the immediately lower layer. These interfaces are defined at many of
the standard PDH and SONET/SDH rates shown in Tables 6.1 and 6.2, respectively.
Among these are DS3, STS-3c, STS-12c, and STS-48c interfaces. In the terminology
of the ATM standards, since the layer below ATM is called the physical layer, these
interfaces to PDH and SONET/SDH are called physical layer interfaces. On the other
hand, in the classical layered view of networks, which we discussed in Section 1.4,
PDH and SONET/SDH must be viewed as data link layers when ATM is viewed as
a network layer.

J.1 Functions of ATM

ATM data can be transmitted from an ATM user to an ATM network across a
user-to-network interface (UNI) or the data can be transmitted across a network-to-
network interface (NNI) between two ATM switches. Of the 53 bytes in an ATM
cell, 48 bytes form the payload, that is, carry information sent from the higher layers,
and 5 bytes constitute the header inserted by the ATM layer. The structure of the
5-byte ATM header is slightly different for the UNI and NNI. The two headers are
shown in Figure J.1.

The fields in the ATM header are as follows.

GFC or Generic Flow Control: 4 bits on UNI, not present on NNI.
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VCI

VPI

PT CLP

VPI
GFC

HEC

4 bits 3 bits 1 bit

VCI

VPI

PT CLP
HEC

4 bits 3 bits 1 bit

(a) (b)

Figure J.1 The header structure of ATM cells across (a) the UNI and (b) the NNI. The
GFC field is used for flow control across the UNI. The VPI and VCI fields are used for
forwarding the cells within the network. PT indicates the payload type and CLP is the
cell loss priority bit. The HEC field provides error checking for the ATM header.

VPI or Virual Path Identifier: 8 bits on UNI, 12 bits on NNI.

VCI or Virtual Circuit Identifier: 16 bits.

PT or Payload Type: 3 bits.

CLP or Cell Loss Priority: 1 bit.

HEC or Header Error Control: 8 bits. The HEC constitutes a CRC on the 5 ATM
header bytes and is used to detect corrupted ATM cells.

The functions of each of these fields are described in the following sections.

J.1.1 Connections and Cell Forwarding

ATM establishes a connection between two end points for the purpose of transferring
data between them. This is unlike IP (which we study in the next section), which
transfers data in a connectionless manner. ATM connections are termed virtual chan-
nels and are assigned a virtual channel identifier (VCI). The VCI for a connection is
unique for each link that the ATM connection traverses between its end points but
can vary from link to link on the path, as illustrated in Figure J.2(a). For example,
the top connection has a VCI of a1, a2, and b on the three links it traverses. The
VCIs for each connection on every link of the path are determined at the time of
connection setup and released when the connection is torn down.

Each node (switch) maintains a VCI table as illustrated in Figure J.2(b). The
table specifies, for each incoming VCI, the outgoing link and the outgoing VCI. For
example, at node 1, incoming cells with a VCI of a1 are sent on the link 1–2 with a
VCI of a2.
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VCI = a1 VCI = a2

0 1 2

3

4

VCI = c1 VCI = c2

(a)

Incoming
VCI

Outgoing
link

Outgoing
VCI

a1 a2

c1 c2

1 to 2

1 to 2

(b)

VCI = b

VCI = d

Figure J.2 The use of ATM VCIs for cell forwarding across a path. The ATM switches use the
VCI to determine the outgoing link for a cell. The switches also rewrite the VCI field with the value
assigned to the virtual channel on the outgoing link. (a) Illustration of the cell forwarding and VCI
swapping. (b) The VCI table maintained at node 1 of (a).

J.1.2 Virtual Paths

There could be millions of virtual channels sharing a link. Looking up a VCI table
larger than 216 = 65,536 entries for forwarding every single cell is expensive. Thus
we need to have some mechanism for bundling or aggregating virtual channels for
the purpose of forwarding. It is quite likely that thousands of virtual channels will
have the same path, if not end to end, at least over significant parts of the network.
This property of virtual channels can be used for aggregation and is accomplished by
the use of VPIs. The use of VPIs can be understood through the following example.

Consider Figure J.3. Here we have four links, connecting the nodes 0, 1, 2, and 3,
as shown. The two virtual circuits shown share the links 0–1 and 1–2. These virtual
channels can be assigned a common VPI on each of these links (which can be, and
generally is, different on the two individual links). For example, a VPI of x can be
assigned on link 0–1 and a VPI of y on link 1–2. The set of two links constitutes
a virtual path in the network, with node 0 constituting the beginning of the virtual
path and node 2 constituting the end of the virtual path. All cells belonging to any
virtual circuit assigned to this path are routed on these links based on the smaller VPI
value. When the cells reach the end of the virtual path, node 2 in this example, they
are again forwarded based on the VCI values. Simply put, the virtual channels treat
each virtual path as a segment in their route between the source and destination: the
switches within a virtual path forward cells based only on the VPI field.

Use of the two level labels, VPI and VCI, simplifies the cell-forwarding process
and enables the development of cost-effective ATM switches. If a single field were
used, it would be 24 bits long across the UNI and 28 bits long across the NNI. Such
a large field would make the cell-forwarding process expensive.

Another advantage of virtual paths is that it enables the creation of logical links
between nodes: the virtual path between two nodes is treated like a logical link by
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VPI = x, VCI = a VPI = y, VCI = a

0 1 2
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4

VPI = x, VCI = c VPI = y, VCI = c
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VCI = b

VCI = d

Incoming
VPI

Outgoing
link

Outgoing
VPI

x y1 to 2

(b)

Figure J.3 Use of ATM VPIs for simplifying cell-forwarding across a shared route segment. Virtual
channels sharing a common route segment are assigned the same VPI values on the links of this
segment, and routing within this segment is based on the smaller VPI field rather than on the VCI
field. (a) The two virtual channels are assigned the same VPIs x and y, on the links 0–1 and 1–2,
respectively. (b) The switching at node 1 is now based on the VPI field and thus results in a smaller
table, enabling more efficient switching.

the virtual channels. In the example of Figure J.3, the virtual path from node 0 to
node 2 is treated as a logical link by the virtual channels.

J.2 Adaptation Layers

ATM uses fixed-size cells for transport, but applications using ATM either are con-
tinuous media such as voice or video, or use variable (and large) packets like IP. In
this case, it is necessary to map the user data (voice, video, IP packets) into ATM
cells. This is accomplished by an ATM adaptation layer (AAL). The main function
of an AAL is segmentation and reassembly (SAR): an AAL segments the user data
at the source into ATM cells and reassembles the ATM cells into user data at the
destination.

Four ATM adaptation layers, AAL-1, AAL-2, AAL-3/4 and AAL-5, are described
in ITU recommendation I.363. (AAL-3 and AAL-4 started life separately but have
since been merged into a single AAL.) Next, we briefly describe AAL-1 and AAL-5.

J.2.1 AAL-1

AAL-1 is meant for transport of constant bit rate data such as circuits, voice, and
video. Here, the source can be considered to send a continuous stream of data. This
data is segmented by AAL-1 into 47-byte AAL payloads. AAL-1 adds a 1-byte header,
containing a sequence number field, and sends the resulting 48-byte packet, which
constitutes the ATM payload, to the ATM layer for transport to the peer AAL-1
process at the destination node in the network. Although the sequence number field
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is protected by a CRC (4 bits of SN are protected by a 3-bit CRC and a 1-bit parity
check), the 47-byte payload is unprotected. This is considered adequate for the circuit
emulation and voice applications that AAL-1 is designed to support.

J.2.2 AAL-5

AAL-5 is designed to transport variable-sized packets, up to 216 = 65,536 bytes
in length, over an ATM network. Its most significant use is for the transport of
IP packets over an ATM network. AAL-5 segments the user packets into cells but
does not add any overhead (AAL header or trailer) in every cell. Instead, it uses the
Payload Type field in the ATM header to indicate whether a cell is the last cell of a
segmented IP packet or not. If a cell is the last cell of a segmented IP packet, the last
2 bytes of the cell constitute the AAL-5 trailer and contain the length of the IP packet
and a CRC covering the entire IP packet. Thus, in all but one cell, the AAL-5 payload
is equal to the 48-byte ATM payload, and AAL-5 has lower overhead compared to
AAL-1. Also note that AAL-5 provides error detection for its payload through the
use of a CRC, whereas AAL-1 does not.

J.3 Quality of Service

The primary motivation for use of ATM is that it is capable of providing quality-
of-service (QoS) guarantees for connections. These guarantees take the form of
bounds on cell loss, cell delay, and jitter. ATM provides such guarantees through
a combination of traffic shaping and admission control. Roughly speaking, this
works as follows:

1. Traffic Shaping: ATM requires that all user traffic adhere to a contract that has
been established between the user and the network. This contract usually specifies
the peak cell rate, the average cell rate, and the burst size (number of consecutive
cells at the peak cell rate) that the user can transfer across the UNI. The ATM
network may monitor these contracted parameters for each connection across
the UNI and can drop those cells that violate this contract. Alternatively, it can
admit the violating cells but mark the CLP bit for these cells so that they are
preferentially dropped in the event of congestion. As a result, ATM can carefully
control the traffic from each connection that enters the network. The network’s
half of this bargain is the QoS guarantees that it provides to the user in terms of
cell loss, delay, and jitter.

2. Admission Control: Based on knowledge of the user traffic characteristics that
are enforced through traffic shaping, the ATM network can determine the set of
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connections it can admit without violating the guranteed QoS for the connections
when the cells from these connections are transferred across the network. A new
connection will not be admitted if it would potentially result in the violation of
QoS guarantees provided to connections that have already been established.

Based on the QoS parameters that the network can guarantee (cell loss, delay,
jitter) and the traffic parameters that the user can specify (peak cell rate, average cell
rate, burst size), ATM identifies a number of service classes to which a connection
can belong. Among these are the constant bit rate (CBR) and the unspecified bit
rate (UBR) service classes. A CBR connection specifies only the peak cell rate and is
guaranteed a specified cell loss, delay, and jitter. A UBR connection also specifies only
the peak cell rate but has no QoS guarantees. AAL-1 has been designed specifically
to support CBR connections, whereas AAL-5 is used for UBR connections.

Another aspect of guaranteeing QoS, in addition to traffic shaping and admission
control, is the use of queueing policies. ATM uses sophisticated queueing techniques
to ensure that the QoS guarantees for each service class are met in the face of misbe-
having traffic from other service classes. ATM also uses sophisticated mathematical
techniques to determine the admission control policy so that QoS guarantees are
met.

J.4 Flow Control

ATM also provides a mechanism to control the traffic from a user, not based on a
prespecified contract, but based on feedback about congestion levels in the network.
Such a mechanism is applicable to some service classes designed primarily for data
traffic, such as file transfers, which are capable of being flow controlled (but not for
CBR). The flow control is implemented across the UNI using the GFC bytes in the
ATM UNI header. Using messages encoded by these bytes, the ATM network can
instruct the user across the UNI whether data can be transmitted or whether data
transmission should be halted.

J.5 Signaling and Routing

While the VCI and VPI fields are used for forwarding ATM cells on a given route,
the determination of this route is the responsibility of a routing protocol. The rout-
ing protocols used in ATM networks are the PNNI (private network-to-network
interface) and B-ICI (broadband intercarrier interface) protocols standardized by the
ATM forum. Here we provide a brief overview of PNNI routing.
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The goal of PNNI routing is to determine a path through the network from the
source to the destination. This path should be capable of meeting the QoS require-
ments of the user. Each link in the network is characterized by a set of parameters,
which describe the state of the link. Examples of link state parameters include cell
loss, maximum cell delay, and available link bandwidth. Another parameter for each
link is its administrative cost or weight. This is meant to reflect the cost to the net-
work for using this link. These parameters are advertised by each ATM switch for
all the links outgoing from it. The link state advertisements are flooded to all other
ATM switches in the network. As a result of these link state advertisements, each
ATM switch has the current topology of the network with the states of all the links.
Using this topology and link state information, the ingress switch in the network that
receives an ATM connection request can calculate a path through the network that
is capable of satisfying the QoS requested by the connection and that also minimizes
some administrative cost in the network.

Once a route has been computed, each switch on the route should be informed
of the new connection and its QoS requirement. The VCI/VPI labels also need to be
set up at each switch. This is accomplished by the PNNI signaling protocol. Once
the signaling protocol terminates successfully, the connection setup is complete and
data traffic can begin to flow. The signaling protocol is invoked again to tear down
the connection.
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Institute) standards, 764
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ATM (asynchronous transfer mode),
801–807

adaptation layers, 805–806
flow control, 807
functions of, 802–805
quality of service (QoS), 806–807
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ATM Passive Optical Network (APON)
standard, 642–643

attenuation. See optical power and loss
augmented model, control plane, 499,

499f
automatic gain control (AGC), 302–303,

304f
automatic protection-switching (APS)

protocol, 516
APS channel bytes, SONET, 383, 392f
APS/PCC bytes, OTN, 393f, 395

automatic repeat request (ARQ), 274
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(ASTN), 495
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SONET/SDH vs. PDH, 373
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SOA, 168, 169–170
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defined, 26
enhanced HFC systems, 636f
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growing demands of, 1–2
material absorption and, 48–50, 49f
narrowing, to reduce crosstalk,

312–313, 313f
optical packet switching and, 654
packet-switched networks, 7–8
requirements for services, 630t
satellites, 635

bandwidth trading, 494
bandwidth windows, 48–50, 49f
bandwidth-on-demand service, 694
baseband modulated fiber coax bus

(BMFCB), 639. See also fiber to
the curb (FTTC)

beat noise, 262–263, 268
power penalty from, 291

bend radius, 51
bending loss, 51
Beneš, 209t
Beneš switches, 212–213, 213f
BER. See bit error rate (BER)
BER floor, 275
best-effort services, 8
BGP (border gateway protocol), 414
bidirectional protection switching,

515–516, 516f
bidirectional line-switched rings

(BLSRs), 520t, 523f, 525–530,
527f, 528f

low-priority traffic in, 530
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bidirectional protection switching
(continued)

bidirectional line-switched rings
(BLSRs) (continued)

node failures, handling, 528–530
self-healing, 524t

bidirectional path-switched rings
(BPSRs), 388, 547

Ethernet, 535–536
bidirectional ring networks, 521
bidirectional systems, crosstalk in,

309–311
bidirectional WDM systems, 721f,

722–724, 723f
binary block line codes, 247
BIP-8 byte, OTN, 393f, 394
BIP-8 byte, SONET, 381, 382t, 392f
birefringence, 61, 66

acousto-optic tunable filters, 150
spatial walk-off polarizers (SWPs), 92,

120, 667–668
in waveguide construction, 69

bit error rate (BER), 256, 264–269, 291
BER floor, 275
dispersion-managed (DM) solitons,

344–345, 345f
measuring, 482–483
modulation instability and, 98–99
Reed-Solomon codes, 276

bit interleaved parity (BIP), 274
bit interleaving, 660–661, 661f, 662f

framing pulses, 658, 659f
bit rate–distance limitation, 54–55, 56f
bit rates, 26. See also bit error rate

transparency to. See transparency
blazing (blazed gratings), 127, 128f
blocked ports, Ethernet, 404, 535
blocking model (statistical dimensioning),

600, 601–609, 603f, 604f
blocking switches, 208

BLSRs. See bidirectional line-switched
rings

border gateway protocol (BGP), 414
BPDUs (bridge protocol data units), 405
BPSRs. See bidirectional path-switched

rings
Bragg gratings, 125t, 129–132, 131f, 132f

chirped fiber Bragg gratings, 322–324,
323f

fiber Bragg gratings, 133–136, 134f
Bragg wavelength, 130
bridge protocol data units (BPDUs), 405
Brillouin gain coefficient, 331
Brillouin scattering. See stimulated

Brillouin scattering
British Telecom (BT) Laboratories, 693
broadband digital crossconnects (DCSs),

389, 389f
broadcast and select ROADMs, 449, 450f,

451f
broadcast services, 630, 631
broadening, pulse. See dispersion
bronze service class (example), 548
BT Labs testbeds for PPS networks, 689t,

693
buffered data packets, 7
buffering, 656
buffering, PPS networks, 674–688, 683t

deflection routing, 683–688
wavelengths for contention resolution,

680–683
bulk mechanical switches, 214t, 215
bulk micromachining, 218
burst switching, 688–689
bursty traffic, 6–7
bypass tunnels, MPLS, 539

C2 byte (SONET), 383
cable networks, 633–635, 633t
cables, network, 10
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capacity limits of optical fiber, 255–256
capital cost, 708
carrier frequency, 248
carrier sense multiple access with collision

detection (CSMA/CD), 400
carrier transport

Ethernet, 407–411, 535–536
multiprotocol label switching (MPLS),

420–421
transmission layer design. See optical

layer design
carriers. See service providers
carriers (semiconductor optical amplifiers),

167
cascaded filters, 313–314
cascaded Raman lasers, 197
cascades, optical amplifiers, 299–300, 300f
cavities, multiple. See multilayer dielectric

thin-film multicavity filters
(TFMFs)

cavity (laser), 173f
external cavity lasers, 177–178, 177f

tunable, 185–186
mode-locked lasers, 182
vertical cavity surface-emitting lasers

(VCSELs), 58, 178–180, 179f,
180f

tunable, 186–187, 186f
C-band systems, 28, 36, 37t, 49–50, 50f

chromatic dispersion, 100f
EDFAs for, 165, 295
with L-band signals in opposite

direction, 350
long-haul networks, 725
nonzero-dispersion fibers and, 95
optical supervisory channel (OSC)

wavelength, 490
CBR (constant-bit-rate connections), 369
cell forwarding, ATM, 803
Cell Loss Priority byte (ATM), 803

center frequency, pulse, 770
central offices (COs), 4, 5f, 631

fiber access networks, 638–641, 638f
PON architectures, 640t
RITENET architecture, 645f
WPONs and WRPONs, 643–647,

644–647f
centralized management, 471
CGM. See cross-gain modulation (CGM)
channel layer, SDH, 378, 518
channel spacing, 27–28

amplifier spacing penalty, 300–302,
301f

four-wave mixing (FWM) and, 93–94
four-wave mixing, reducing, 338
ITU standards. See ITU wavelength

grid
channel-specific chromatic dispersion

compensation, 324, 325f
chirp

direct modulation and, 193
return-to-zero (RZ) pulses, 102

chirp factor, 72, 772
chirped fiber Bragg gratings, 322–324,

323f
chirped Gaussian pulses, 71–75, 71f

broadening of, 72–75, 73f, 74f, 75f
propagation of, 772–773
RZ pulses for soliton systems, 102,

102–103, 344
system design considerations,

343–347, 345f, 346f
SPM-induced, 78–79, 85, 88–90, 89f,

90f, 338–340, 340f
chromatic dispersion, 33–34, 61, 70–77

chirped Gaussian pulses, 71–75, 73f,
74f, 75f

compensation techniques, 35–36,
348–349
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chromatic dispersion (continued)
dispersion-managed (DM) solitons,

344–345
DSFs. See dispersion-shifted fibers
lasers, 172
positive and negative, 97–99, 98f
system design considerations,

314–317, 348–349
fiber nonlinearities and, 340
NRZ modulation, 315–317
RZ modulation, 317–320

chromatic dispersion maps, 321
chromatic dispersion parameter, 75–76
chromatic dispersion slope, 75–76, 99,

100f
compensation of, 324–325

circuit availability, 9, 511
SONET, 20
SONET/SDH vs. PDH, 373

circuit restoration, 9, 511, 512–513
SONET, 21

circuit switching, 5–7, 435
circuit-switched networks, 19. See also

connection management
circulators, 119–121

in bidirectional systems, 310–311,
311f

cladding (optical fibers), 30, 32f, 51
holes in, 104–105

cladding modes, 134–135
Class I safety standard, 502, 505
Class IIIa, IIIb safety standard, 502
classes of service, based on protection,

548–549
ClearCurve fibers (Corning), 104–105
client data frame (CDF), GFP, 397
client frame, GFP, 397
client layers of optical layer. See optical

layer, client layers of
between-layer protection, 564–565

protection in, 532–541
Ethernet, 534–536, 535f
Internet Protocol (IP), 536–538,

537f
multiprotocol label switching

(MPLS), 538–541, 539–540f
Resilient Packet Rings (RPRs),

533–534, 534f
service classes, protection-based,

548–549
client management frame (CMF), GFP, 397
client multiplexing (GFP), 398
clients, network, 433
client-specific aspects, GFP, 396, 399
clipping, 250–251, 250f
clock recovery (timing recovery), 271–272,

272f
Clos switches, 209t, 210–211, 211f

electronic, 220
closest-to-finish rule, 687
CLP byte (ATM), 803
CMIP (common management information

protocol), 475
coarse synchronization, obtaining, 670
coding gain, 276
coherent crosstalk, 304
coherent detection, 269–271
coherent light, 174
collision detection, 400
colorless outputs, 449
common aspects, GFP, 396, 398
common management information

protocol (CMIP), 475
common object request broker (CORBA)

model, 475
compensating wavelengths, 303
competitive LECs (CLECs), 3
compliant wavelength interface, 500, 501f
component failure. See survivability,

network
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components of optical networks. See
equipment management; specific
component

compression, pulse, 74–75
concatenated payloads, 375
conduction band (SOAs), 168
configuration management, 470, 493–501

adaptation management, 470,
499–501

connection management, 470,
494–499

equipment management, 493–494
congestion, 590t
congestion parameter, 586
connection management, 470, 494–499

asynchronous transfer mode (ATM),
803

distributed control, 470, 494–497
interaction with client layers, 497–499

connection trails, 474
connectionless services, 5, 7–8, 16, 370
connection-oriented services, 5, 16, 370

MPLS for, 416
conservation of energy, 117–118
conservative mode, RPR, 425
constant-bit-rate (CBR) connections, 369
constant-drive-current operation, 341–342
Constraint-based Routing LDP (CR-LDP),

420, 497
contention for output ports, 25

resolving in optical switches, 675
resolving with delay lines, 695
resolving with wavelengths, 680–683

contention resolution optics (CRO), 695
control, network. See network

management
control frame, GFP, 397
conversion, optical-to-electrical-to-optical.

See optical-to-electrical-to-optical
(OEO) converters

conversion, wavelength. See wavelength
conversion; wavelength
converters

conversion gain (blocking model), 607
CORBA model, 475
CORD (Contention Resolution by Delay

Lines) testbed, 689t, 694–695,
695f

core (optical fibers), 30, 32f, 51
Core Header, GFP, 398
Corning’s LEAF fiber, 96, 96f, 97f, 348
COs. See central offices
costs

addressing multivendor
interoperability, 480–481

asynchronous and synchronous
multiplexing, 372–373

deployment, 708
life cycle costs, 469. See also network

management
OADM architectures, 442–444, 443f
optical filters, 123
optical-layer vs. client-layer

protection, 541–542, 545f
coupled mode theory, 116
couplers, 114–118, 114f
coupling coefficient, 116
CPM. See cross-phase modulation
CRC codes, 274
critical angle, 53
CR-LDP (Constraint-based Routing LDP),

420, 497
CRO (contention resolution optics), 695
crossbar switches, 209–210, 209t, 210f

optical switch technologies, 214–215,
218–220

cross-gain modulation (CGM), 224, 225f
crossovers, with optical switches, 208
cross-phase modulation (CPM), 79, 90–92,

225
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cross-phase modulation (CPM) (continued)
soliton systems, 344
system design considerations,

338–340
crosstalk, 79, 311–313

to build wavelength converters, 224
coherent, 304
filters, 123
from four-wave mixing, 336–337
optical switches, 207, 214t
Raman amplifiers, 166–167
in semiconductor optical amplifiers,

170, 171
suppression of. See isolators
system design considerations,

304–314
bidirectional systems, 309–311
cascaded filters, 313–314
crosstalk in networks, 309
crosstalk reduction, 311–313
interchannel crosstalk, 307–309,

308f, 310f, 336–337
intrachannel crosstalk, 305–307,

306f, 308f, 310f
customer destination address (C-DA), 409
customer source address (C-SA), 409
customer tag (C-Tag), 409
cutoff wavelength

optical fibers, 64
photodetectors, 198–199, 200t
waveguides, 69

cyclic redundancy check (CRC) codes, 274

D1, D2, D3 bytes (SONET), 382, 382t
D4 through D12 bytes (SONET), 383
dark current, 260
data communication network (DCN), 472,

485–486, 486t
data link layer, networks, 16, 802
data link protocols, 16–17

data packets, 7. See also packet switching
datagram services, 8, 17, 25
DBR. See distributed Bragg reflector (DBR)

lasers
DC balance, 247
DCFs. See dispersion-compensating fibers
DCSs. See digital crossconnects
deadlock, 688
decentralized management, 471
decibel units (dB), 29
decision circuits, 198
decision rules, 264
dedicated bandwidth, 631
dedicated protection, 515

OMS-DPRing protection, 549t,
552–553, 554f

defect conditions, 483–484, 484f
deflection index, 687
deflection routing, 676, 683–688
deflection rules, 687
degeneracy factor, 94
degenerate polarization modes, 66
degree, node, 449
delay lines, 669, 670–671, 671f, 680f, 683t

contention resolution with, 695
feedback delay lines, 675f, 678–679,

679f
feed-forward delay lines, 675, 675f,

679
delays

defection routing and, 685–686
maximum, 477

demand for bandwidth, 1–2
demodulation, 256–272. See also

modulation
APD noise, 261
bit error rates, 264–269
coherent detection, 269–271
equalization, 257, 272–273, 326
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in erbium-doped fiber amplifiers
(EDFAs), 297–299

front-end amplifier noise, 260–261
ideal receivers, 258–259
optical preamplifiers, 261–264
practical direct detection receivers,

259–260
timing recovery, 271–272

demultiplexers. See multiplexers
depletion region, pn-junctions, 201
deploying network components, 493
deployment considerations, 707–741

evolving telecommunication networks,
707–718

next-generation architectures,
712–718

SONET/SDH, 709–712
depth, interleaving, 278
deregulation of telephone industry, 2, 3
design. See network design; system design
designated ports, Ethernet, 404, 535
designing transmission systems. See

transmission system engineering
detectors. See receivers
detour, MPLS fast reroute, 539
DFB. See distributed-feedback lasers
DGD. See differential group delay
diameter, network, 686
dichroics, 119–120
dielectric polarization, 60, 84, 86
dielectric thin-film multicavity filters

(TFMFs). See multilayer dielectric
thin-film multicavity filters
(TFMFs)

dielectric waveguides, 68–69
differential delay, 378
differential group delay (DGD), 66,

326–328, 378
diffraction, 58–59, 126. See also

waveguides

diffraction gratings. See gratings
diffraction patterns, 128–129
Diff-Serv (differentiated services), 415
digital crossconnects (DCSs), 20

carrier backbone networks, 709, 710f
in SONET infrastructure, 388–389

digital signals. See entries at signal
digital subscriber line (DSL) technology,

629, 633t, 635
digital wrapper technology, 389–390
dimensioning wavelength-routing

networks, 596–599
maximum load dimensioning models,

609–617
offline lightpath requests, 609–615,

612f, 614f, 615t, 617t
online lightpath requests, 610,

615–617, 617t
statistical traffic models for, 599–609

blocking model, 600, 601–609,
603f, 604f

first-passage model, 599–600,
600–601, 601f

direct detection
ideal receivers, 258
practical receivers, 259–260

direct modulation, 35, 192–196, 193f
power penalty from, 294, 349
spectral widths, chromatic dispersion

penalty from, 316–317
directional couplers, 114, 114f, 116, 118
DISCONNECT state (OFC protocol), 503,

504f
discrete Rama amplifiers, 166
dispersion, 33–34, 47

chromatic. See chromatic dispersion
intermodal. See intermodal dispersion
NZ-DSFs. See nonzero-dispersion

fibers
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dispersion (continued)
polarization-mode. See

polarization-mode dispersion
(PMD)

positive- and negative-dispersion
fibers, 97–99, 98f

SPM-induced. See self-phase
modulation

system design considerations,
314–328

chromatic, NRZ modulation,
315–317

chromatic, RZ modulation,
317–320

compensation techniques, 320–325
polarization-mode, 325–328, 327f

zero-dispersion wavelength, 71
dispersion-shifted fibers (DSF),

76–77
dispersion length, 72
dispersion slope. See chromatic dispersion

slope
dispersion-compensating fibers (DCFs),

77f, 320–322
dispersion-managed (DM) solitons, 102,

102–103, 344
system design considerations,

343–347, 345f, 346f
dispersion-shifted fibers (DSFs), 34, 75–78,

77, 77f, 97f
four-wave mixing, penalty from,

336–337, 337f
reasons to select, 347

distributed amplifiers, 302
distributed Bragg reflector (DBR) lasers,

176, 176f
distributed network control, 470, 494–497
distributed Rama amplifiers, 166
distributed-feedback (DFB) lasers, 34,

175–177, 176f, 180

output power, 293
sampled grating and super-structure

grating DBR lasers, 190, 191f
spectral widths, chromatic dispersion

penalty from, 315–320
tunable, 187–189, 188f

distribution networks, 631
DM solitons, 344. See dispersion-managed

(DM) solitons
double heterojunction structure, 202
double sideband (DSB) modulation, 254f
DPRings. See dedicated protection
drift, photodetectors, 201
drift, wavelength. See wavelength

stabilization
drive current, wavelength dependence on,

341–342
drop-and-continue functionality, 476, 532
DS0, DS1, etc., 371
DSB, 254f
DSFs. See dispersion-shifted fibers
D-shaped fibers, 68
DSL technology, 629, 633t, 635
dual homing, 531f, 532
dual queue mode, RPR, 423
dynamic range, front-end amplifiers,

204–205
dynamic wavelength crossconnects

(WXCs), 122, 152

E0, E1, etc., 371
E1 byte (SONET), 382, 382t
EA modulators, 194–195
E-band systems, 36–37, 37t
EDFAs. See erbium-doped fiber amplifiers

(EDFAs)
edge-emitting lasers, 179f
EF (expedited forwarding), 415
effective index, fiber mode, 64
effective laser launch, 58
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effective length and area, 79–81, 80f, 81f
large-effective-area fibers, 96–97, 348
system design considerations,

329–331, 330f
effective modal bandwidth (EMB), 57t, 58
efficiency, photodetector, 199, 201
efficiency, spectral. See spectral efficiency
E-LAN service, 408
electric field polarization. See entries at

polarization
electric flux density, 60
electro-absorption (EA) modulators,

194–195
electronic regenerators. See regenerators
electronic switches, large, 220–221
electronic time division multiplexing

(TDM), 11–12, 11f. See also
optical time division multiplexing
(OTDM)

electronics in optical networks, 22–23
electrons (semiconductor optical

amplifiers), 167
electro-optic switches, 214t, 218–219,

219f
element management systems (EMSs),

471–473
elements of optical networks. See optical

network elements
E-line service, 407–408
elliptically shaped fibers, 68
EMB. See effective modal bandwidth
emission of photons, 157
emission powers, safety limits on, 502. See

also optical power and loss
energy bands

erbium-doped fiber amplifiers
(EDFAs), 160f

semiconductors, 168–169, 169f
energy conversation, 117–118

engineering transmission systems. See
transmission system engineering

enhanced HFC systems, 636–638
EPON standard, 643
equal frequency spacing, 351–352
equalization, 257, 272–273, 326

in erbium-doped fiber amplifiers
(EDFAs), 297–299

equalization of gain (EDFAs), 163–164,
297–299

equipment interoperability, 479–481, 480,
739

equipment management, 493–494
erbium-doped fiber amplifiers (EDFAs),

34–35, 160–165, 160f, 163f,
295–296

compared to Raman amplifiers,
165–166

gain flatness (equalization), 163–164,
297–299

gain saturation, 296–297, 297f
L-band EDFAs, 165
multistage designs, 164
usable bandwidth and, 49

ERP. See Ethernet Ring Protection
error detection and correction, 273–278

bit error rate (BER). See bit error rate
(BER)

interleaving, 278
Reed-Solomon codes, 276–277

error propagation, 253
error-correcting codes, 273–274

Reed-Solomon codes, 276–277
repetition codes, 275

error-detecting code, 274
etalons, 124

Fabry-Perot filters, 136–139, 136f,
138f, 784, 786
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etalons (continued)
thin-film filters. See multilayer

dielectric thin-film multicavity
filters

Ethernet, 16, 369, 370, 399–411,
534–536, 535f

carrier transport, 407–411, 535–536
frame structure, 402–403, 402f
linear protection, 532
physical layer, 406–407
protection in, 534–536, 535f
switches, 403–406
topologies, 399f

Ethernet PON (EPON or GEPON)
standard, 643

Ethernet Ring Protection (ERP), 536
E-Tree service, 408
excess loss (couplers), 116
excess noise factor, APD, 261
excited state absorption, 165
EXP bytes, OTN, 393f, 395
expedited forwarding (EF), 415
Experimental bytes, OTN, 393f, 395
explicit routing, MPLS, 416–417
external cavity lasers, 177–178, 177f

tunable, 185–186
external modulation, 35, 192–196, 195f

optical switches for, 206, 206t
power penalty from, 294, 349
spectral widths, chromatic dispersion

penalty from, 316–318
extinction ratio, 192, 206, 293
eye diagrams, 257, 257f
eye safety regulation limits, 294

F1 byte (SONET), 382, 382t
Fabry-Perot (FP) lasers, 174

spectral widths, chromatic dispersion
penalty from, 319–320

Fabry-Perot amplifiers, 173f

Fabry-Perot cavity, 173, 173f
Fabry-Perot filters, 136–139, 136f, 138f,

784, 786
facets (laser), 173f
facility backup, MPLS, 539
failure events. See alarm management;

alarms (traps); survivability,
network

fairness, RPR, 424–425
fairness eligible (FE) packets, 423,

424–425
Faraday factor, 120
FAS bytes (OTN), 392
fast reroute mechanism, MPLS, 532,

538–539
fault management, 470, 477, 481–492

alarm management, 483–485
BER measurement, 482–483
DCN and signaling, 485–487, 486t
optical layer overhead, 487–492, 492

DCN transport over, 486, 488f,
488t

optical trace, 483
policing, 487
transparency, impact of, 481–482

Fault Type and Fault Location byte, OTN,
393f, 395

FCS bytes, Ethernet, 402
FDM (frequency division multiplexing), 12
feasible solutions, mathematical programs,

588
FEC codes. See forward error correction

(FEC)
feedback delay lines, 675f, 678–679, 679f
feeder networks, 631
feed-forward delay lines, 675, 675f, 679
festoons, 732
fiber. See optical fibers
fiber attenuation, 48, 49f. See also optical

power and loss
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fiber delay lines, 669, 670–671, 671f, 680f,
683t

contention resolution with, 695
feedback delay lines, 675f, 678–679,

679f
feed-forward delay lines, 675, 675f,

679
fiber gratings, 132–136

Bragg fiber gratings, 133–136, 134f
Bragg fiber gratings, chirped,

322–324, 323f
fiber lasers, 172
fiber modes, 59, 63–65
fiber nonlinearities. See nonlinear effects in

optical fiber
fiber to the building (FTTB), 638, 638f
fiber to the cabinet (FTTCab), 638, 638f
fiber to the curb (FTTC), 38, 638–639

PON evaluation, 648–649
fiber to the home (FTTH), 38, 638, 638f
fiberless systems (optical), 636
Fibre Channel standard, 37, 370, 426–427,

427f, 764
open fiber control (OFC) protocol,

503–505, 503f
figure of merit (FOM), 321–322
filters, 121–124, 122f, 125t. See also

multiplexers
cascaded, 313–314
costs of, 123
guiding filters, 343
interchannel crosstalk from, 307
MZIs as. See Mach-Zehnder

interferometers
wavelength lockers, 341

fine synchronization, obtaining, 670
finesse, filter, 138f
finite field (Reed-Solomon codes), 276
first fit algorithm, 591

first-generation optical networks, 10, 13,
37, 369

first-passage model (statistical
dimensioning), 599–600,
600–601, 601f

fixed multiplexing, 25
fixed traffic matrix, 597, 598–599
fixed-size packets, 657
fixed-wavelength conversion, 593–596,

594f, 614f, 617t. See also
wavelength conversion

fixed-wavelength lasers, 184
fixed-wavelength transponders, ROADMs

and, 447
flattening EDFA gain, 163–164, 297–299
flooding, 413–414
flow control, ATM, 807
fluoride fiber, 163–164
FOM. See figure of merit
forecasting fixed traffic matrices, 598–599
formats for digital signals, 246–248
forward defect indicators (FDIs), 483–484,

484f
forward equivalence classes, 416
forward error correction (FEC), 274–276,

390, 491
coding gain, 276
Reed-Solomon codes, 276–277

forward-biased pn-junctions, 169–170
forwarding, MPLS, 416, 417–419
forwarding function (of routers), 413–414,

656
four-wave mixing (FWM), 36, 78, 92–95

system design considerations,
334–338, 335f, 337f

for wavelength conversion. See wave
mixing

Frame Alignment Signal byte, OTN, 392,
393f

frame bursting, 400
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Frame Check Sequence byte, GFP, 397
frame check sequence bytes, Ethernet, 402
frame multiplexing (GFP), 398
frame relay services, 8
frame structure

Ethernet, 402–403, 402f
Generic Framing Procedure (GFP),

397–398, 397f
Optical Transport Network (OTN),

392–395
SONET (synchronous optical

network), 379–383, 380f, 381f
Framing bytes, SONET, 381, 392f
framing protocol, 16
framing pulses, 658, 659f
Franz-Keldysh effect, 196
free spectral range (FSR), 138f, 147
free-space lasers, 636
frequencies, 26. See also entries at

wavelength; ITU frequency grid
frequency division multiplexing (FDM), 12
frequency modulation of laser cavity gain,

182
frequency spacing. See channel spacing
front-end amplifiers, 203–205, 204f

noise figure, 260–261
FRONTIERNET switch, 691, 692f
FRONTIERNET testbed, 689t
FSR. See free spectral range
FTFL byte, OTN, 393f, 395
FTTB (fiber to the building), 638, 638f
FTTC. See fiber to the curb
FTTCab (fiber to the cabinet), 638, 638f
FTTH. See fiber to the home
full service, 630
full wavelength conversion, 593, 595–596,

617t. See also wavelength
conversion

fully transparent networks, 22, 23t. See
also transparency

fundamental mode, waveguides, 69, 769
fundamental solitons, 99–101, 101f
FWM. See four-wave mixing

G1 byte (SONET), 383
G.709. See Optical Transport Network

(OTN)
gain equalization (EDFAs), 297–299
gain medium (cavity), laser, 173f

external cavity lasers, 177–178, 177f
tunable, 185–186

mode-locked lasers, 182
VCSELs. See vertical cavity

surface-emitting lasers
gain modulation, laser, 182
gain saturation (EDFAs), 296–297, 297f
Gaussian distribution, 790–791
Gaussian pulses, chirped. See chirped

Gaussian pulses
Gaussian pulses, unchirped. See

return-to-zero (RZ) modulation
Gaussian random processes, 794
GCC0 byte, SONET, 392f, 394
GCC1, GCC2 bytes, OTN, 393f, 395
GCSR. See grating-coupled sampled

reflector (GCSR) lasers
GDMO (guidelines for description of

managed objects), 475
GEM (GPON Encapsulation Method), 643
General Communication Channel bytes,

OTN, 393f, 395
General Communications Channel byte,

SONET, 392f, 394
Generalized MPLS (GMPLS) protocols,

495, 497, 563–564
generator polynomial, 274
Generic Flow Control byte (ATM), 802
Generic Framing Procedure (GFP),

396–399, 711
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geometrical optics approach to light
propagation, 52–54

GEPON standard, 643
GFC byte (ATM), 802
GFP. See Generic Framing Procedure
Gigabit Ethernet, 370, 403

physical layer, 406–407
Gigabit PON (GPON) standard, 643
gigahertz, 26
GMPLS (Generalized MPLS) protocols,

495, 497, 563–564
gold service class (example), 548
Gordon-Haus jitter, 343
GPON Encapsulation Method (GEM), 643
GPON standard, 643
graded-index multimode fibers, 55–57, 56f
grants, OPU, 643
grating circle (arrayed waveguide gratings),

148f
grating equation, 127
grating external cavity lasers, 176–177,

177f
tunable, 185–186

grating plane, 126
grating-coupled sampled reflector (GCSR)

lasers, 191, 192f
gratings, 124–128, 125f

AWGs. See arrayed waveguide
gratings

Bragg gratings. See Bragg gratings
diffraction patterns, 128–129
sampled grating and super-structure

grating DBR lasers, 190, 191f
vertical grating-assisted coupler filter

(VGF) lasers, 190f
grooming, 576

OXC capabilities of, 454
group velocity, 71, 769, 770
group velocity dispersion (GVD), 71, 769,

771

solitons, 99–101
guaranteed bandwidth service, 694
guided beams, 59. See also waveguides
guided rays, 54
guidelines for description of managed

objects (GDMO), 475
guiding filters, 343
GVD. See group velocity dispersion

H1, H2 bytes (SONET), 383
half-wave plates, 120
hard guarantees, MPLS, 419
HDLC. See high-level data link control

protocol
head end, 631
header error check (HEC) based frame

delineation, 398
Header Error Control byte (ATM), 803
header processing, PPS networks, 673–674
head-of-line (HOL) blocking, 677–678,

678f
HEC byte (ATM), 803
helical LAN (HLAN), 694
hertz, 26
heterodyne receivers, 270
heterostructures (semiconductors), 169,

202
HFC (hybrid fiber coax) networks, 633t,

634f
enhanced HFC systems, 636–638

high-channel-count multiplexer
architectures, 154–157

higher-order nonlinear susceptibilities,
779–780

higher-order solitons, 101
high-impedance front-end amplifiers,

203–205, 204f
high-level data link control (HDLC)

protocol, 16
high-power pump sources, 196–197
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history of networks, 30–40
HOL blocking, 677–678, 678f
hold-off time, 565
holes (semiconductor optical amplifiers),

167
holey fibers. See photonic crystal fibers

(PCFs)
homodyne receivers, 270
homogeneity of transmission medium, 62
hops, number of (examples), 580–584
horizontal partitioning, 471
hot spots, wireless, 636
hot-potato routing. See deflection routing
hubs, network, 631, 632f

design of (lightpath topology), 578,
578f, 580–581, 581f, 584f

human error, failures from, 512
hybrid fiber coax (HFC) networks, 633t,

634f
enhanced HFC systems, 636–638

hybrid fiber designs, 324

IEEE 802.11 standard, 636
IEEE 802.16 standard, 636
ILPs (integer linear programs), 587–589,

590t
IM. See information model
imaging plane (gratings), 126, 127
incumbent LECs (ILECs), 3
index guiding, 104–105
index of refraction, 51, 53, 62, 77f

birefringence. See birefrigence
Bragg gratings, 130
effective index, fiber mode, 64
index guiding, 104–105
intensity-dependent, 87
lasing wavelength of tunable lasers,

185
negative, 103
nonlinear index coefficient, 87

induced electric polarization, 60, 84, 86
information model (IM), 473–474
infrastructure. See network infrastructure
inheritance (object-oriented modeling),

473–474
input buffering, PPS networks, 656, 657f,

677–678, 678f
input impedance, 783
insertion loss, 119, 123, 125t

optical switches, 206–207
integer linear programs (ILPs), 587–589,

590t
integrated circuits (ICs), 220
integrated services digital network (ISDN),

635
intensity-dependent nonlinear effects. See

cross-phase modulation (CPM);
four-wave mixing (FWM)

intensity-dependent refractive index, 87
interchannel crosstalk, 305, 307–309,

308f, 310f
from four-wave mixing, 336–337

interchannel spacing, 27–28, 349–350
amplifier spacing penalty, 300–302,

301f
four-wave mixing (FWM) and, 93–94
four-wave mixing, reducing, 338
ITU standards. See ITU wavelength

grid
interconnected rings, 530–532, 531f
interdomain routing protocols, 414
interexchange carriers (IXCs), 3
interference length (blocking model), 607
interference of optical waves, 123
interfering lightpaths (blocking model),

606
interferometers. See Mach-Zehnder

interferometers
interferometric wavelength conversion,

225–228, 226f, 227f
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interleaving, 155–157, 156f, 278, 350
bit interleaving, 660–661, 661f, 662f
framing pulses, 658, 659f
packet interleaving, 661–664,

662–664f
intermodal dispersion, 33, 51–58, 56f, 314

bit rate–distance limitation, 54–55,
56f

defined, 54
geometrical optics approach, 52–54,

54f
multimode fibers, 51–52

graded-index fibers, 55–57
single-mode fibers, 51–52

intermodulation products, 249–251
International Telecommunications Union.

See ITU frequency grid
Internet Protocol (IP), 7–8, 17, 21f, 370,

411–415, 412f
IP over SONET networks, 18, 18f
IP over WDM, 411, 412f
MPLS applications in IP networks,

415–417
next-general transmission layer

architecture, 712–716, 713f, 715f
protection in, 536–538, 537f
quality of service, 414–415
routing and forwarding, 413–414,

413f, 656–657
interoffice networks, 4, 5f
interoperability, multivendor, 479–481,

480, 739
interoperability standards, network, 373
intersymbol interference (ISI), 52, 252

optical duobinary modulation,
252–254

interval graphs, 611f
interworking between layers, protection

for, 564–565

intrachannel crosstalk, 305–307, 306f,
308f, 310f

intradomain routing protocols, 414
intraoffice connections (SONET/SDH),

384
intrinsic impedance, 781, 784, 784f
Int-Serv (integrated services), 419
ionization coefficient ratio, 261
IP. See Internet Protocol
ISDN (integrated services digital network),

635
ISI. See Inter-Symbol Interference
isolators, 118–121
isotropic media, 61, 84
ITU frequency grid, 28–29, 28f, 351, 437

optical supervisory channel (OSC)
wavelength, 490–491

ITU-T (International Telecommunications
Union) standards, 761–763

IXCs (interexchange carriers), 3

J0 byte (SONET), 381, 382t
J1 byte (SONET), 383
JC byte, OTN, 392f, 395
jitter. See timing jitter
jumbo frames, 403
Just-Enough-Time (JET) protocol, 688
Justification bytes, OTN, 392f, 395

k shortest paths problem, 619
K1, K2 bytes (SONET), 383
KEOPS (Keys to Optical Packet Switching)

project, 690–691, 691f, 692f
KEOPS testbed, 689t

Label Distribution Protocol (LDP), 420
label swapping (label switching), 417
labels (MPLS), 417–419
label-switched paths (LSPs), 415, 418f. See

also multiprotocol label switching
(MPLS)
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label-switched paths (LSPs) (continued)
protection switching, 538–541

LACP (line aggregation control protocol),
405–406

LAN PHY PCS sublayer, 407
LANs. See local-area networks (LANs)
large electronic switches, 220–221
large optical switches, 207–213
large-effective-area fibers, 96–97, 348
LARNET architecture, 646–647, 646f
laser arrays, 191–192
laser relative intensity noise, 294
lasers, 172–182. See also specific type of

laser
direct and external modulation, 35,

192–196, 193f
drive current, wavelength dependence

on, 341–342
free-space (optical fiberless systems),

636
important characteristics, 172
peak transmit power, 294
tunable, 184–192

lasing loops, 303–304
lasing threshold, 174
lasing wavelength of tunable lasers, 185
latching switches, 207
layered network infrastructures, 15–21
L-band systems, 28, 36, 37t, 49–50, 50f

with C-band signals in opposite
direction, 350

chromatic dispersion, 99
EDFAs for, 165, 295, 298
long-haul networks, 725
nonzero-dispersion fibers and, 95

LCAS (Link Capacity Adjustment Scheme),
378, 711

LDP (Label Distribution Protocol), 420
lead service class (example), 548
LEAF fiber (Corning), 96, 96f, 97f, 348

LECs (local-exchange carriers), 3
LED slicing, 183–184
LEDs. See light-emitting diodes (LEDs)
length, effective. See effective length and

area
Length byte, Ethernet, 402
LET (line terminating equipment). See

terminal multiplexers (TMs)
LH. See long-haul networks
life cycle costs, 469. See also network

management
light propagation. See propagation in

optical fiber
light sources. See transmitters
light-emitting diodes (LEDs), 32–33,

182–184
multimode fibers in practice, 57–58

lightpath topologies, 435–436, 575, 576f,
585–590

cost trade-offs (example), 577–584
design of (LTD), 576, 585–590
management of, 495

lightpaths, 13, 14f, 19, 433, 478
BER. See bit error rate
offline lightpath requests, 609–615,

612f, 614f, 615t, 617t
path traces, 374
permanent, 19
protection of, by OXCs, 453
provisioning, 205, 476–477. See also

optical layer of network
infrastructure

transparency, 22. See also
transparency

transparency, impact of, 482–483
limited wavelength conversion, 593–596,

594f, 613. See also wavelength
conversion

limited-buffer deflection routing, 687–688
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line aggregation control protocol (LACP),
405–406

line amplifiers, 295–296, 296f, 438. See
also optical amplifiers

Line BIP-8 byte, SONET, 383, 392f
line coding, 247
Line Data Communication Channel bytes,

SONET, 383, 392f
line layer, SONET/SDH, 378, 379, 379f

overhead bytes, 382–383
protection schemes, 517, 518

line networks, 611, 611f
line terminals, 20
line terminating equipment. See terminal

multiplexers (TMs)
linear dielectric polarization, 84
linear polarization, 65–66
linear programs (LPs), 587–589, 590t
linear protection, 532, 535–536
linear susceptibility, 61, 779
linearity of transmission medium, 61
linearly chirped pulses, 772. See also

chirped Gaussian pulses
link aggregation groups (LAGs), 406
link bundling, 496
Link Capacity Adjustment Scheme (LCAS),

378, 711
link state packets, 413–414
link trace messages, 495
links, network, 4, 5f, 290f

crosstalk. See crosstalk
designing. See transmission system

engineering
effective length and area, 79–81, 80f,

81f
large-effective-area fibers, 96–97,

348
system design considerations,

329–331, 330f

failure events. See alarm management;
alarms (traps); survivability,
network

interoperability standards, 373
management of, 496
number of wavelengths, 349–350,

351–353, 434. See also
wavelength

number of wavelengths on. See
dimensioning wavelength-routing
networks; wavelength, selection
and number of

liquid crystal switches, 214t, 218
lithium niobate modulators, 194, 195f,

196f
livelock, 688
LMDS (local multipoint distribution

service), 635–636
load, request, 596
load impedance, 783
local exchanges. See central offices
local fair rate, 425
local management systems, 473
local multipoint distribution service

(LMDS), 635–636
local-area networks (LANs), 4, 5f,

401–402
virtual (VLANs), 401, 403, 535

local-exchange carriers (LECs), 3
locality of response, 60–61
locked payloads, 375
logical (virtual) topology, 575
logical AND gates, 660–661, 664,

665–668
nonlinear optical loop mirrors

(NOLMs), 665–667, 666f
soliton-trapping, 667–668, 668f, 669f

long-haul networks, 4, 5f
SONET/SDH connections, 384
transmission layer design, 724–725
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long-haul networks (continued)
transmission layer design (continued)

case study, 725–732
undersea networks, 732–734

longitudinal component, electric field, 65.
See also polarization modes

longitudinal modes, laser, 174–175
long-period fiber gratings, 132, 133–136,

135f
loop filters, 272f
loopback messages, 495
loss. See optical power and loss
lossless combining, impossibility of, 118
losslessness, 62, 83
LP-relaxation, 588–589, 590t
LPs (linear programs), 587–589, 590t
LR (lightpath routing) problems. See RWA

(routing and wavelength
assignment)

LSPs. See label-switched paths
LTD (lightpath topology design), 576,

585–590
Lucent fibers

TrueWave fiber (Lucent), 95, 96f
TrueWave RS fiber (Lucent), 95–96,

96f, 347–348
TrueWave XL fiber (Lucent), 96

lumped amplifiers, 301–302
lumped Rama amplifiers, 166

MAC. See media access control
Mach-Zehnder interferometers, 115, 142f

AWGs. See arrayed waveguide
gratings

interferometric wavelength
conversion, 225–228, 226f

lithium niobate modulators, 194,
195f, 196f

thermo-optic switches, 214t, 219

Mach-Zehnder interferometers (MZIs),
141–145

magnetic flux density, 60
magnetic polarization, 60
management information base (MIB), 475
management of network. See network

management
management of signal, 390
Manhattan Street network, 684, 684f,

686–687
material absorption, 48–50, 49f, 50f
material dispersion, 70, 76f. See also

chromatic dispersion
maximum load dimensioning models,

609–617
offline lightpath requests, 609–615,

612f, 614f, 615t, 617t
online lightpath requests, 610,

615–617, 617t
max-used-1 and -2 RWA algorithms,

608–609, 609t
Maxwell distribution, 791
Maxwell’s equations, 59–61, 62–63,

765–767
mechanical tuning of filters, 139
mechanical tuning of lasers. See tunable

lasers
media access control (MAC), 17, 400, 421
megahertz, 26
MEMS switches, 214t, 215–218, 217t
merge point (MP), 538
mesh protection schemes, 550t, 557–563
metropolitan (metro) networks, 4, 5f

transmission layer design, 734–736
case study, 736–738

wireless access, 635–636
MFAS byte (OTN), 393
MIB (management information base), 475
micro-electro-mechanical system (MEMS)

switches, 214t, 215–218, 217t
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micrometers (microns), 26
mid-span spectral inversion (MSSI), 325
MILPs (mixed integer linear programs),

588–589, 590t
minimum disjoint paths problem, 592, 619
misrouting packets. See deflection routing
mixed integer linear programs (MILPs),

588–589, 590t
mixing probability, 607
MLM. See multilongitudinal mode lasers
MMDS (multichannel multipoint

distribution service), 635
M:N protection, GMPLS, 563
mode-locked lasers, 180–182, 181f, 183f

phase lock loops with, 672
modular OADM architectures, 442–444,

443f, 443t
modulated lasers

chromatic dispersion, 172
mode-locked lasers, 182

modulation, 245–280
error detection and correction,

273–278
format transparency. See transparency
NRZ. See non-return-to-zero

modulation
on-off keying (OOK), 192, 245–246,

246f
signal formats, 246–248

power penalty, 294
RZ. See return-to-zero modulation
signal formats, 246–248
spectral efficiency, 251–256
spectral widths, chromatic dispersion

penalty from, 315–320
subcarrier modulation and

multiplexing, 248–251
system design considerations, 349

modulation instability, 98–99

molecular vibration in medium. See
Rayleigh scattering

monochromaticity, 63, 84
MPLS. See multiprotocol label switching

protocol
MPLS-Transport Profile (MPLS-TP), 421
MS layer, SDH, 379, 518
MSSI (mid-span spectral inversion), 325
MS-SPRing. See multiplexed

section-shared protection ring
MSTP (multiple spanning tree protocol),

405
multicasting, 476, 532
multicavity filters. See multilayer dielectric

thin-film multicavity filters
(TFMFs)

multichannel multipoint distribution
service (MMDS), 635

multidegree ROADMs, 449–451, 451f
multifiber rings, wavelength assignment in,

614–615, 615f
Multiframe Alignment Signal byte, OTN,

393f, 394
multilayer dielectric thin-film multicavity

filters (TFMFs), 125t, 139–141,
140f, 141f, 781–788

design of, 785–788
wave propagation at dielectric

interfaces, 781–785, 782f
multilevel modulation, 255
multilongitudinal mode lasers. See

multiple-longitudinal mode
(MLM) lasers

multimode fibers, 30–33, 32f, 51–52
graded-index, 55–57, 56f
intermodal dispersion, 51–52
in practice, 57–58

multiple spanning tree protocol (MSTP),
405
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multiple-longitudinal mode (MLM) lasers,
31f, 32–33, 174, 175f

mode-locked, 181f, 182
spectral widths, chromatic dispersion

penalty from, 319–320
multiplex section (MS) layer, SDH, 379,

518
multiplexed section-shared protection ring

(MS-SPRing), 520t
self-healing rings, 524t

multiplexers, 121–124, 122f, 436f. See
also filters; multiplexing; specific
type of multiplexer

filters. See filters
gratings. See gratings
high-channel-count architectures,

154–157
MZIs as. See Mach-Zehnder

interferometers
multiplexing, 6f, 11–12, 11f

add-drop multiplexers. See add/drop
multiplexers; optical add/drop
multiplexers

asynchronous vs. synchronous,
371–373, 372f

bidirectional systems, 310–311, 311f
electronic time division multiplexing

(TDM), 11–12, 11f
fixed, 25
high-channel-count multiplexer

architectures, 154–157
interleaving. See interleaving
intrachannel crosstalk, 306–307, 307f
by optical crossconnects (OXCs), 454
Optical Transport Network (OTN),

395–396
OTDM. See optical time division

multiplexing
as router function, 656

SCM. See subcarrier modulation and
multiplexing

SONET/SDH, 373–376
statistical, 7, 25
subrate multiplexing, 500–501
WDM. See wavelength division

multiplexing
multiplicative gain, 203
multiport bridges, Ethernet, 401, 403–406
multiprotocol label switching (MPLS), 17,

370, 408, 415–421
carrier transport, 420–421
labels and forwarding, 417–419
protection in, 532, 538–541,

539–540f
quality of service, 419
signaling and routing, 420

multisource agreement (MSA), 58
multistage EDFA designs, 164–165
multistage interleavers, 155–157
multistage Mach-Zehnder interferometers,

144–145, 144f, 145f
multistage-banding (de)multiplexing,

154–155
multivendor interoperability, 479–481,

480, 739
MZIs. See Mach-Zehnder interferometers

n 1 wavelength multiplexers, 146
n n star couplers, 114–115, 115f
NALMs (nonlinear amplified loop

mirrors), 665, 666f
nanometers, 26
narrowband digital crossconnects (DCSs),

389, 389f
narrowcasting mode (enhanced HFC), 636
negative refractive index, 103
negative-dispersion fibers, 97–99, 98f
network basics. See optical networks,

basics of
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network cables, 10
network circuits. See entries at circuit
network crosstalk, 309
network deployment, 707–741

evolving telecommunication networks,
707–718

next-generation architectures,
712–718

SONET/SDH, 709–712
transmission layer design, 718–739

long-haul networks, 724–732
long-haul networks, undersea,

732–734
metropolitan (metro) networks,

734–738
opaque and all-optical networks,

738–739
uni- vs. bidirectional WDM

systems, 722–724
using SDM, 719–720
using TDM, 720–721
using WDM, 720–721

network design, 573–619. See also system
design

cost trade-offs (example), 577–584
dimensioning wavelength-routing

networks, 596–599
statistical traffic models for,

599–609, 609–617
LTD (lightpath topology design),

585–590
RWA (routing and wavelength

assignment), 576, 584, 590–593
wavelength conversion, 593–596

network elements. See optical network
elements

network infrastructure. See also specific
kind of network

history and evolution of, 30–40
as layered, 15–21

types of, 5–8
network interface units (NIUs), 631–632,

632f
fiber access networks, 638, 638f

network layer, 17
network links. See links, network
network management, 469–507, 471,

501–505
accounting management, 471
configuration management, 470,

493–501
adaptation management, 470,

499–501
connection management, 470,

494–499
equipment management, 493–494

framework for, 471–473, 472f
information model (IM), 473–474
ITU-T standards, 762–763
lasers and eye safety, 294
multivendor interoperability,

479–481, 480, 739
open fiber control (OFC) protocol,

503–505
optical layer services and interfacing,

476–478
optical layer sublayers, 478–479
performance and fault management,

469–470, 481–492
alarm management, 483–485
BER measurement, 482–483
client layers, 492
DCN and signaling, 485–487
optical layer overhead, 486,

487–492, 488f, 488t
optical trace, 483
policing, 487
transparency, impact of, 481–482

protocols, 474–475
security management, 470–471



868 Index

network management (continued)
types of, 469–471

network management system (NMS), 473
network monitoring and analysis (NMA),

473
network restoration. See restoration of

network circuits
network routes, 10

deflection routing, 676, 683–688
network survivability. See survivability,

network
network topologies. See lightpath

topologies; topologies
network transparency. See transparency
network-to-network interface (NNI), 498
next hop backup tunnel, 538, 540f
next-next hop backup tunnel, 538, 540f
NIUs (network interface units), 631–632,

632f
fiber access networks, 638, 638f

NJO byte, OTN, 392f, 395
NLSE (nonlinear Schrdinger equation), 775
NMS. See network management system

(NMS)
NNI (network-to-network interface), 498
node failures, handling, 512
node failures in BLSRs, 528–530
node management, 495
node structure, RPR, 423, 424f
noise

beat noise, 262–263, 268
power penalty from, 291

crosstalk from. See crosstalk
erbium-doped fiber amplifiers

(EDFAs), 162–164
front-end amplifiers, 260–261
laser relative intensity noise, 294
optical signal-to-noise ratio (OSNR),

268–269, 299–300
Raman amplifiers, 166

receivers (detectors), statistics for,
795–800

semiconductor optical amplifiers, 170
shot noise, 259–260, 797

avalanche photodiodes (APDs), 261
thermal noise. See thermal noise
tunable DBR lasers, 188–189

NOLMs. See nonlinear optical loop
mirrors

nonblocking switches, 208
architectures for, 209–213

noncompliant wavelength interface, 500,
501f

nonlinear amplified loop mirrors
(NALMs), 665, 666f

nonlinear dielectric polarization, 84, 86–87
cross-phase modulation (CPM) and,

91
four-wave mixing (FWM) and, 93–94

nonlinear effects in optical fiber, 36,
78–99, 773–776

capacity limits and, 255–256
cross-phase modulation (CPM), 90–92
effective length and area, 79–81
FWM. See four-wave mixing (FWM)
mitigating, fiber types for, 95–99
propagation in nonlinear media,

83–85
SBS. See stimulated Brillouin

scattering
self-phase modulation (SPM). See

self-phase modulation
SRS. See stimulated Raman scattering
system design considerations,

328–340, 349
chromatic dispersion management

and, 340
cross-phase modulation (CPM),

338–340
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effective length in amplified
systems, 329–331, 330f

four-wave mixing (FWM),
334–338, 335f, 337f

self-phase modulation (SPM),
338–340, 340f

stimulated Brillouin scattering,
331–332

stimulated Raman scattering (SRS),
332–334, 334f

nonlinear element (NLE), of NOLMs, 665
nonlinear index coefficient, 87
nonlinear optical loop mirrors (NOLMs),

665–667, 666f
nonlinear polarization, 779–780
nonlinear propagation coefficient, 774
nonlinear Schrdinger equation (NLSE), 775
nonlinear susceptibility, 84
nonreciprocal devices, 118. See also

isolators
non-return-to-zero (NRZ) modulation,

246–248
chromatic dispersion, system design

and, 315–317
dispersion-managed (DM) solitons,

344–345
power penalty from, 349

nonrevertive protection schemes, 515
nontransparent networks, 22, 23t
nonzero-dispersion fibers (NZ-DSFs),

95–96, 97f, 321–322
four-wave mixing (FWM), 338
reasons to select, 348
soliton systems, 343

normal chromatic dispersion, 71, 76f, 77
notification messages, 475
n-stage planar architecture. See

Spanke-Beneš switches
NTT’s optical packet switches, 689t, 691,

692f

NTZ. See non-return-to-zero (NRZ)
modulation

number of wavelengths, 349–350,
351–353, 434. See also
wavelength

NZ-DSFs. See nonzero-dispersion fibers

OADMs. See optical add/drop multiplexers
O-band systems, 37t
object-oriented modeling, 473–474
OCh. See optical channel (OCh) layers
ODU. See optical channel data unit (ODU)
OEO. See optical-to-electrical-to-optical

(OEO) converters
OFC. See open fiber control protocol
offered load (lightpath traffic), 601
offline computation of protection routes,

561, 563–564
offline RWA problem, 597, 609–615, 612f,

614f, 615t, 617t
OFLBW. See overfilled launch bandwidth
OLTs. See optical line terminals
OM1 fiber, 57
OM3 fibers, 57–58
OM4 fibers, 57–58
OMS. See optical multiplexed section
1 + 1 protection, 518–520, 519f, 520t

Ethernet, 535–536
GMPLS (Generalized MPLS)

protocols, 563
MPLS (multiprotocol label switching),

539–540
1 + 1 OCh protection scheme, 550t,

551f, 553–554, 556f
1 + 1 OMS protection scheme, 550t,

551f, 552
optical layer, 541–543, 545f

1 n wavelength demultiplexers, 146
1:1 protection, 518–520, 519f, 520t

Ethernet, 535–536
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1:1 protection (continued)
GMPLS (Generalized MPLS)

protocols, 563
MPLS (multiprotocol label switching),

539–540
1:1 OMS protection scheme, 552

1:N protection, 518–520, 519f, 520t
for transponders, 553

1R regeneration, 23, 222, 223f
one-to-one backup, MPLS, 539
online computation of protection routes,

561
online RWA problem, 597, 610, 615–617,

617t
on-off keying (OOK), 192, 245–246, 246f

signal formats, 246–248
ONUs (optical network units), 638–648,

638f
evolution from TPON to WRPON,

648–649
PON architectures, 640t

OOK. See on-off keying
opaque configurations of OXCs, 454–458,

455f, 456t
opaque networks, 24

transmission layer design, 738–739
open fiber control (OFC) protocol,

503–505, 503f
Open Shortest Path First (OSPF), 414, 495,

575
OSPF–Traffic Engineering (OSPF-TE),

495
open systems interconnection (OSI), 475
operations cost, 708
optical add/drop multiplexers, 439f

fiber Bragg gratings, 133, 134f
optical add/drop multiplexers (OADMs),

14–15, 14f, 433–434, 434f,
438–452

architectures of, 441–446

reconfigurable (ROADMs), 447–452
for ring interconnection, 530–532,

531f
RWA problem and, 598, 598f

optical amplifiers, 34–37, 157–171, 436f,
438

EDFAs. See erbium-doped fiber
amplifiers (EDFAs)

effective length in amplified systems,
329–331, 330f

front-end amplifiers, 203–205, 204f
noise figure, 260–261

noise. See amplifier noise
preamplifiers, 261–264, 295–296,

296f
Raman. See Raman amplifiers
saturation effects, 160. See also gain

saturation (EDFAs)
SOAs. See semiconductor optical

amplifiers
solitons and, 101
spacing of, 348
spontaneous emission, 159–160
stimulated emission, 158–159
system design considerations,

295–304
amplifier cascades, 299–300, 300f
amplifier spacing penalty, 300–302,

301f
gain equalization (EDFAs), 297–299
gain saturation (EDFAs), 296–297,

297f
lasing loops, 303–304
power transients and automatic

gain control, 302–303
optical AND gates, 660–661, 664,

665–668
nonlinear optical loop mirrors

(NOLMs), 665–667, 666f
soliton-trapping, 667–668, 668f, 669f
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optical carrier frequency, 248
optical channel data unit (ODU), 392,

393f, 394–395, 478f
multiplexing, 395–396
ODU-FDI signals, 484, 485f
optical layer overhead techniques,

488t
optical channel (OCh) layers, 391, 391f,

478, 478f
OCh-FDI signals, 484, 485f
OCh-Mesh protection, 550t, 557–563
OCh-SPRing protection, 557
1 + 1 OCh protection, 550t, 551f,

553–554, 556f
optical layer overhead techniques,

488t
protection switching, 550t

optical channel payload unit (OPU), 392,
394–395

multiplexing, 396
optical channel transport unit (OTU), 392,

393–394, 393f, 478f
line rates, 390, 390t
multiplexing, 396

optical channels. See lightpaths
optical connectors, shuttered, 502
optical crossconnects (OXCs), 14–15, 14f,

389, 389f, 433–434, 434f
all-optical, 454, 455f, 456t, 457,

458–461, 459f
architectures of, 452–461, 453f, 456t
IP over WDM, 713f, 714–716, 715f
protection switching, 546f, 547
RWA problem and, 597–598, 598f
wavelength plane OXCs, 460–461,

460f, 462f
optical duobinary modulation, 252–254
optical feedback loops, 303
optical fiberless systems, 636

optical fibers. See also specific fiber by type
or name

attenuation from, 48. See also optical
power and loss

basics of, 10
capacity limits, 255–256
dispersion effects. See dispersion
dispersion-compensating. See

dispersion-compensating fibers
fiber modes, 63–65
ITU-T standards, 761
maximum power for, 502
multiplexing. See multiplexing
nonlinearities. See nonlinear effects in

optical fiber
ownership and deployment, 2–3
polarization modes, 65–67
pulse propagation in, 769

chirped Gaussian pulses, 772–773
nonlinear effects on, 773–776
soliton pulses, 776–777, 778f
wave propagation at dielectric

interfaces, 781–785, 782f
selection of, 347–348
signal propagation in. See propagation

in optical fiber
transmission system trends, 30–40
virtual, 12
as waveguides. See waveguides

optical filters. See filters
optical gating, 224, 225f
optical layer design, 718–739

long-haul networks, 724–725
case study, 725–732
undersea, 732–734

metropolitan (metro) networks,
734–736

case study, 736–738
opaque and all-optical networks,

738–739
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optical layer design (continued)
uni- vs. bidirectional WDM systems,

722–724
using SDM, 719–720
using TDM, 720–721
using WDM, 720–721

optical layer of network infrastructure,
18–21

client layers of, 18–19, 369–429, 492
connection management,

interaction with, 497–499
Ethernet. See Ethernet
GFP (Generic Framing Procedure),

396–399
IP (Internet Protocol), 411–415,

536–538, 537f
MPLS (multiprotocol label

switching), 415–421, 538–541,
539–540f

OTN. See Optical Transport
Network (OTN)

RPR (Resilient Packet Ring), 370,
421–425, 533–534, 534f

SANs (storage-area networks),
425–427

SONET/SDH. See SONET/SDH
layers within, 478–479
next-generation transport

architectures, 712–718
optical packet switching and, 654
overhead techniques, 487–492

DCN transport over, 486, 488f,
488t

propagation in optical fiber, 420–421,
539–541

protection schemes, 517, 532–565.
See also survivability, network

between-layer protection, 564–565
client-layer protection, 532–541
reasons for, 541–548

specific schemes, 549–564
services and interfacing, 476–478

optical line amplifiers, 295–296, 296f, 438.
See also optical amplifiers

optical line terminals (OLTs), 14–15, 14f,
433–434, 434f, 436–438, 436f,
440

carrier backbone networks, 709, 710f
OLT-FDI signals, 484, 485f

optical multiplexed section (OMS), 391,
391f, 478f, 479

OMS-DPRing protection, 549t,
552–553, 554f

OMS-FDI signals, 484, 485f
OMS-SPRing protection, 549t, 553,

555–556f
1 + 1 OMS protection, 550t, 551f, 552
1:1 OMS protection, 552
optical layer overhead techniques,

488t
protection schemes, 549t

optical multiplexers. See multiplexers
optical network deployment. See network

deployment
optical network design. See network

design; system design
optical network elements, 433–463, 471

element management systems (EMSs),
471–473

line amplifiers, 295–296, 296f, 438
OADMs. See optical add/drop

multiplexers
OLTs. See optical line terminals
OXCs. See optical crossconnects

optical network survivability. See
survivability, network

optical network units (ONUs), 638–648,
638f

PON architectures, 640t
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optical networking components. See
equipment management; specific
component

optical networking standards
ITU-T standards, 762
Telcordia standards, 763–764

optical networks, basics of, 10–15, 37–38.
See also entries at network

electronics, 22–23
first-generation networks, 10, 13, 37,

369
layered architecture, 15–21. See also

transmission system engineering
multiplexing techniques, 11–12
second-generation networks, 13–15,

18, 37
optical layer. See optical layer of

network infrastructure
transparency and all-optical networks,

22–24
optical packet switching, 24–26, 25f,

653–658, 656, 657f
buffering, 674–688, 683t

deflection routing, 683–688
wavelengths for contention

resolution, 680–683
burst switching, 688–689
header processing, 673–674
OTDM. See optical time division

multiplexing
PPS network testbeds, 689–695
routing nodes (routers), 655–656
store-and-forward networks, 654
synchronization, 668–673

optical path traces, 374, 483
optical phase lock loops, 671–673
optical phase lock loops (PLLs), 272f, 670
optical power and loss, 29–30, 48–51

bending loss, 51

effective length and area, 79–81, 80f,
81f

large-effective-area fibers, 96–97,
348

system design considerations,
329–331, 330f

insertion loss, 119, 123, 125t
optical switches, 206–207

material absorption, 48–50, 49f, 50f
optical switches, 214t
PDL. See polarization-dependent loss
pilot tones, 489
policing power levels, 487
power penalty, in system design,

290–292, 293t
safety limits, 502
uniformity of, with switches, 208

optical preamplifiers, 261–264, 295–296,
296f

optical safety, 471, 501–505
lasers and eye safety, 294
open fiber control (OFC) protocol,

503–505
optical signal-to-noise ratio (OSNR),

268–269
amplifier cascades, 299–300

optical single sideband modulation,
254–255, 254f

optical solutions, 588
optical supervisory channels (OSCs),

437–438, 472, 479, 490f
DCN transport over, 486
optical layer overhead, 489–491

optical switches, 205–220. See also
switches

architectures of, 207–213, 209t
contention resolution in, 675
crosstalk reduction, 311–313
interchannel crosstalk from, 307, 308f
suitability considerations, 206–207
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optical switches (continued)
technologies for, 213–220

optical time division multiplexing
(OTDM), 11f, 12, 658–668, 659f

bit interleaving, 660–661, 661f, 662f
AND gates, 665–668
packet interleaving, 661–664,

662–664f
transmission layer design, 720–721

optical trace, 483, 495
optical transmission section (OTS), 391,

391f, 478f, 479
optical layer overhead techniques,

488t
OTS-FDI signals, 484, 485f

Optical Transport Network (OTN), 369,
370, 389–396

frame structure, 392–395
layers of, 391–392, 391f, 478–479,

478f
line rates, 390t
multiplexing, 395–396

optical-to-electrical-to-optical (OEO)
converters, 24f

optimum decision rule, 264
optimum pulse width (chromatic

dispersion), 318
optoelectronic wavelength conversion,

222–224
OPU. See optical channel payload unit
order, grating, 127
Orderwire byte, SONET, 382, 392f
orthogonal polarization, 66
OSCs. See optical supervisory channels
OSI (open systems interconnection), 475
OSNR, 268–269, 299–300
OSPF. See Open Shortest Path First
OTDM. See optical time division

multiplexing

OTN. See Optical Transport Network
(OTN)

OTS. See optical transmission section
OTU. See optical channel transport unit
OTU line rates, 390, 390t
out-of-band networks, 485–486, 486t
output buffering, PPS networks, 656, 657f,

676–677, 676f, 677f, 680f, 681f,
682f, 683t

output port contention, 25
resolving in optical switches, 675
resolving with delay lines, 695
resolving with wavelengths, 680–683

output power, 293
wavelength dependence and, 341–342

overfilled launch bandwidth (OFLBW), 57,
57t

overhead bytes
header processing, 673–674
OTN frames, 392–395, 393f
SONET frames, 381–383, 382t

overlay model, control plane, 498, 499f
overlay plus model, control plane, 498,

499f
overload parameter, receivers, 294–295
owner, RPL, 536
OXCs. See optical crossconnects

packet forwarding, 657f. See also entries at
forward

packet interleaving, 661–664, 662–664f
framing pulses, 658, 659f

packet switching, 7–8, 24–26, 206, 656.
See also optical packet switching

optical switches for, 206t
tunable lasers for, 184

packet transport services. See Ethernet;
multiprotocol label switching
(MPLS)

packets, fixed-size, 657
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packet-switching, optical. See optical
packet switching

parallel OADM architectures, 442–444,
443f, 443t

with reconfigurable optical add/drop
multiplexers (OADMs), 447,
448f

parallel ribbon fibers, 58
parameters, list of, 757–759
partitioning, security. See security

management
passband, filter, 123

LED slices, 183–184
passive optical networks (PONs), 633,

633t, 639–640, 640t, 718
evolution from TPON to WRPON,

648–649
TPONs (telephony passive optical

networks), 633, 633t, 640t,
641–643, 642f

evolution to WRPONs, 648–649
WPONs. See WDM passive optical

networks
WRPONs. See wavelength-routed

passive optical networks
path layer, SONET/SDH, 378–379, 379f

overhead bytes, 382t, 383
protection schemes, 517, 518

Path Monitoring byte, OTN, 393f, 394
path protection switching. See linear

protection
Path Status byte, SONET, 383, 392f
path switching, 516, 517f
path traces, 374, 483
pause frames, Ethernet, 401
Payload Area, GFP, 397
Payload byte, Ethernet, 402
Payload Header, GFP, 397–398
Payload Structure Identifier byte, GFP, 397

Payload Structure Identifier byte, OTN,
392f, 395

Payload Type byte (ATM), 803
PCFs (photonic crystal fibers), 103–105
PCS (physical coded sublayer), 406, 407
PDH (plesiochronous digital hierarchy),

371–373
PDL. See polarization-dependent loss
peak bandwidth, 7
peak transmit power, lasers, 294
peer model, control plane, 498–498, 499f
penultimate hop popping, 417
perfluorinated graded-index fiber (POF),

106
performance management, 469–470,

481–492
alarm management, 483–485
BER measurement, 482–483
DCN and signaling, 485–487, 486t
optical layer overhead, 487–492, 492

DCN transport over, 486, 488f,
488t

optical trace, 483
policing, 487
transparency, impact of, 481–482

permanent lightpaths, 19
permeability of vacuum, 60
permittivity of vacuum, 60
phase, electromagnetic wave, 124
phase conjugation, 325
phase detectors, 272f
phase lock loops (PLLs), 272f, 670
phase masks, 132
phase match, 86
phase modulation, to reduce SBS penalty,

332
phase shifts, 124
phase velocity, 770
phase-matching condition (Bragg gratings),

130
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phase-shift keying (PSK), 284
photocurrent, 198
photodetectors, 198–203, 199f

bandgap energies and cutoff
wavelengths, 198–199, 200t

intrachannel crosstalk, 307
photodiodes, 201–203
photonic bandgap, 105
photonic crystal fibers (PCFs), 103–105
photonic packet-switching (PPS) networks,

653–698
buffering, 674–688, 683t

deflection routing, 683–688
wavelengths for contention

resolution, 680–683
burst switching, 688–689
header processing, 673–674
OTDM. See optical time division

multiplexing
routing nodes (routers), 655–656,

655f
store-and-forward networks, 654,

655f
synchronization, 668–673, 670f

optical phase lock loops, 671–673
tunable delay lines, 669, 670–671,

671f, 680f, 683t
testbeds, 689–695, 689t

AON consortium, 689t, 694, 694f
BT Labs, 689t, 692f
CORD, 689t, 694–695, 695f
FRONTIERNET switch, 689t, 691,

692f
KEOPS project, 689t, 690–691,

691f, 692f
Princeton University, 689t, 693

photons. See spontaneous emission;
stimulated emission

photosensitivity of optical fibers, 132
physical coded sublayer (PCS), 406, 407

physical failures. See failure events
physical layer, networks, 16, 289–290

ATM networks, 802
designing. See transmission system

engineering
Ethernet, 406–407
SONET/SDH, 378, 379, 379f,

384–386
physical media attachment (PMA)

sublayer, Gigabit Ethernet, 406
physical media dependent (PMD) sublayer,

Gigabit Ethernet, 406–407
physical topology, 575
piezoelectric filter, 139
pilot tones, 251, 489
pin photodiodes, 201–203, 203f
ping messages, 495
pitch, grating, 126, 127
PJO byte, OTN, 392f, 395
plain old telephone service (POTS), 629
plane waves, 84
plastic optical fiber, 105–106
platinum service class (example), 548
plesiochronous digital hierarchy (PDH),

371–373
PLL (phase lock loops), 272f, 670
PM byte, OTN, 393f, 394
PMA sublayer, Gigabit Ethernet, 406
PMD. See polarization-mode dispersion
PMD sublayer, Gigabit Ethernet, 406–407
PMMA fibers, 106
pn-junctions, 167, 168. See also

light-emitting diodes (LEDs);
semiconductor optical amplifiers
(SOAs)

reverse-bias, 201, 202f
PNNI routing, 807–808
POF. See perfluorinated graded-index fiber
point of local repair (PLR), 538
pointers, SONET/SDH, 375, 376f



Index 877

points of presence (POPs). See central
offices

point-to-point links
Ethernet, 401
survivability protection, 518–521,

519f, 520t
point-to-point protocol (PPP), 16, 411,

712–713, 713f
point-to-point WDM rings, 578–580,

578f, 579f, 584f
Poisson distribution, 791–792
Poisson random processes, 793–794
polarization, 60

in isolators, 119–120, 120f, 121f
nonlinear, 779–780
power penalty from, 292
spatial walk-off polarizers (SWPs), 92,

120, 667–668
polarization, dielectric, 84
polarization modes, 65–67
polarization-dependent AOTFs, 151
polarization-dependent loss (PDL), 67–68

couplers, 116
filters, 125t
optical switches, 207, 214t

polarization-independent AOTFs, 150f,
151, 152–153, 153f

polarization-mode dispersion (PMD),
66–67, 67f, 314

system design considerations,
325–328, 327f

transmission layer design, 721
polarization-preserving (-maintaining)

fibers, 68
SRS penalty, 333

policing, 487
polymer switches, 214t
polymethyl methacrylate (PMMA) fibers,

106
PONs. See passive optical networks

POPs (points of presence). See central
offices

population inversion, 158, 162
semiconductor optical amplifiers,

169–170
port contention, 25

resolving in optical switches, 675
resolving with delay lines, 695
resolving with wavelengths, 680–683

positive-dispersion fibers, 97–99
POTS (plain old telephone service), 629
power. See optical power and loss; pump

power
power amplification. See optical amplifiers
power amplifiers, 295–296, 296f
power penalty, 293t

amplifier spacing penalty, 300–302,
301f

interchannel crosstalk from, 307–308,
308f, 310f

intrachannel crosstalk, 307–308,
308f, 310f

transmitters, 293–294
power penalty, in system design, 290–292
power spectrum. See spectrum
power transfer functions

acousto-optic tunable filters, 151–152,
152f

dielectric thin-film filters, 140f
Fabry-Perot filters, 137–138, 138f
Mach-Zehnder interferometers, 144f,

145f
power transients, 302–303
PPP. See point-to-point protocol
PPS. See photonic packet-switching

networks
PPS networks. See also optical packet

switching
practical networks, 22, 23t
PRE bytes, Ethernet, 402
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preamble, Ethernet, 402
preamplifiers, 261–264, 295–296, 296f
prechirping, 348
precomputed protection routes, 561,

563–564
preemphasis, with EDFAs, 298, 299f
preequalization, with EDFAs, 298, 299f
preplanned protection rerouting, 561,

563–564
primary transit queue (PTQ), RPR, 423,

424f
Princeton University testbed for PPS

networks, 689t, 693
private line services, 6
private networks, 3–4
private network-to-network interface

routing, 807–808
private user-network interfaces, 802
propagation constant of fiber mode, 63–65
propagation delay (deflection routing), 686
propagation in nonlinear media, 83–85
propagation in optical fiber, 47–108,

769–777
chirped Gaussian pulses, 772–773
chromatic dispersion. See chromatic

dispersion
intermodal dispersion. See intermodal

dispersion
loss and bandwidth windows, 48–51.

See also optical power and loss
bending loss, 51

maximum allowable delay, 477
nonlinearities, 773–776. See also

nonlinear effects in optical fiber
photonic crystal fibers (PCFs),

103–105
plastic optical fiber, 105–106
soliton pulses, 776–777, 778f
solitons. See solitons

wave propagation at dielectric
interfaces, 781–785, 782f

waveguides. See waveguides
propagation modes, 32, 32f, 62

in cladding, 134–135
protect paths, 514–515
protection of lightpaths, by OXCs, 453
protection routes, 496
protection routing tables, 561
protection switching, 205–206, 511,

532–565. See also survivability,
network

basic concepts, 513–517
between-layer protection, 564–565
client layer, 532–541

Ethernet, 534–536, 535f
Internet Protocol (IP), 536–538,

537f
multiprotocol label switching

(MPLS), 538–541, 539–540f
Resilient Packet Rings (RPRs),

533–534, 534f
service classes, protection-based,

548–549
optical layer, 549–564

OCh-SPRing protection, 550t, 557
OMS-SPRing protection, 549t, 553,

555–556f
1 + 1 OCh protection scheme, 550t,

551f, 553–554, 556f
1 + 1 OMS protection scheme,

550t, 551f, 552
1:1 OMS protection scheme, 552

reasons for, 541–548
SONET/SDH, 518–532, 520t

bidirectional line-switched rings
(BLSRs), 523f, 525–530, 527f,
528f

point-to-point links, 518–521, 519f



Index 879

ring interconnection and dual
homing, 530–532

self-healing rings, 521–523, 524t
unidirectional path-switched rings

(UPSRs), 522f, 523–525
protocol transparency. See transparency
Provider Backbone Bridges (PBBs), 408,

409–410
Provider Backbone Bridge–Traffic

Engineering (PBB-TE), 410–411,
410f

Provider Backbone Transport (PBT),
410–411

Provider Bridges, 408–409, 409f
provisioning of lightpaths, 205, 476–477.

See also optical layer of network
infrastructure

pseudowire technology, 420
PSI byte, GFP, 397
PSI byte, OTN, 392f, 395
PSTNs (public-switched telephone

networks), 6
PT byte (ATM), 803
public networks, 2

typical architecture of, 4, 5f
public user-network interfaces, 802
public-switched telephone networks

(PSTNs), 6
pulse walk-off, 92, 120, 332, 667–668
pulse width, optimum (chromatic

dispersion), 318
pulses

broadening of. See dispersion
chirped. See chirped Gaussian pulses
compression from chromatic

dispersion, 74–75
framing pulses, 658, 659f
propagation in optical fiber, 769

chirped Gaussian pulses, 772–773
nonlinear effects on, 773–776

soliton pulses, 776–777, 778f
wave propagation at dielectric

interfaces, 781–785, 782f
solitons. See solitons
time-alignment of streams of. See

synchronization
pump lasers, 172
pump power

with erbium-doped fiber amplifiers
(EDFAs), 162

with Raman amplifiers, 164–165
sources for Raman amplifiers,

196–197
pumped lasers, 34–35
PWDM rings, 578–580, 578f, 579f, 584f

QoS. See quality of service
quality of service (QoS), 8

ATM (asynchronous transfer mode),
806–807

Internet Protocol (IP), 414–415
multiprotocol label switching (MPLS),

419
Resilient Packet Ring (RPR), 422–423

quantum limit, 258
quantum well structures, 185
queueing data packets, 7
queueing delay (deflection routing), 685

Raman amplifiers, 165–167, 166f, 295,
438, 438f

pump sources for, 196–197
Raman scattering. See stimulated Raman

scattering
random access memory, 674
random deflection rule, 687
random processes, about, 792–794

Gaussian random processes, 794
Poisson random processes, 793–794

random variables, about, 789–792
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random variables (continued)
Gaussian distribution, 790–791
Maxwell distribution, 791
Poisson distribution, 791–792

random-1 and -2 RWA algorithms,
608–609, 609t

ranging (ONUs), 641
rapid spanning tree protocol (RSTP), 405,

534–535, 535f
rate-preserving overhead, 491–492
ray theory approach to light propagation,

52–54
Rayleigh scattering, 48, 50. See also

stimulated Brillouin scattering;
stimulated Raman scattering

RBOCs, 3
rearrangeably nonblocking switches, 209

Beneš architecture, 212–213
Spanke-Beneš switches, 213

receivers (detectors), 198–205, 198f
coherent detection and, 269–271,

270f
direct detection receivers, 259–260
front-end amplifiers, 203–205
ideal receivers, 259–260
noise statistics for, 795–800
overload parameter, 294–295
photodetectors, 198–203
sensitivity, 266–268, 267f, 294, 295t

coherent detection and, 269–271
system design considerations,

294–295
reciprocal devices, 118
recirculation buffering, PPS networks,

678–680, 683t
reclocking (retiming), 23, 222, 223f
reconfigurable optical add/drop

multiplexers (ROADMs),
447–452

multidegree, 449

RECONNECT state (OFC protocol), 504,
504f

recovery. See survivability, network
reduced slope fiber, 347–348
redundancy bits, 273
Reed-Solomon codes, 276–277
reflection coefficient, 782
reflection gratings, 125f, 126, 128f

Bragg gratings. See Bragg gratings
diffraction patterns, 128–129

reflections, 53
in bidirectional systems, 309–311
crosstalk from. See intrachannel

crosstalk
reflectivity, mirror, 137
refraction, 53
refractive index, 51, 53, 62, 77f

birefringence. See birefrigence
Bragg gratings, 130
effective index, fiber mode, 64
index guiding, 104–105
intensity-dependent, 87
lasing wavelength of tunable lasers,

185
negative, 103
nonlinear index coefficient, 87

refractive index profile, 77
regenerators, 20, 23, 157

addressing multivendor
interoperability, 480–481

need for, 31–32
regenerator-section layer (SDH), 379
regional Bell operating companies

(RBOCs), 3
relative phase shift, outputs, 118
relaxed mode, RPR, 533–534
reliability

circuits, 9, 511
SONET, 20
SONET/SDH vs. PDH, 373
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optical switches, 207
remote nodes (RNs), 631, 632f

fiber access networks, 638, 638f
repeaters, 401
repetition codes, 275
request loads, 596
RES bytes, OTN, 393f, 395
Reserved bytes, OTN, 393f, 395
reshaping, 23, 222, 223f
resilience against failures. See survivability,

network
Resilient Packet Rings (RPRs), 370,

421–425, 422f, 533–534
fairness, 424–425
node structure, 423, 424f
protection in, 534f
quality of service, 422–423

resonant wavelengths, 137
Resource Reservation Protocol (RSVP),

420
RSVP Traffic Engineering (RSVP-TE),

420, 497
responsivity, photodetectors, 200–201
restoration of network circuits, 9, 511,

512–513
SONET, 21

retiming (reclocking), 23, 222, 223f
return-to-zero (RZ) modulation, 246–248

chirped pulses, 102
chromatic dispersion, system design

and, 317–320
dispersion-managed (DM) solitons,

344–345
external modulation, 194
power penalty from, 349

reuse factor, 601–604, 603f, 604f, 609t
factors governing, 604–607
wavelength assignment algorithms,

608–609
reverse-bias pn-junctions, 201, 202f

revertive protection schemes, 515
ring networks, 4, 5f, 515

cost trade-offs (example), 577–584
dedicated protection rings (DPRings).

See dedicated protection
interconnections, 530–532, 531f
lasing loops, 304
metro ring case study, 736–738
offline lightpath assignment, 612f,

614f
online lightpath requests, 615–617
self-healing, 521–523, 524t
shared protection rings (SPRings). See

shared protection
ring protection links (RPLs), 536
ring switching, 516, 517f, 525. See also

bidirectional line-switched rings
(BLSRs); bidirectional
path-switched rings (BPSRs);
unidirectional path-switched
rings (UPSRs)

RITENET architecture, 644–645, 646f
rms spectral width, 319
RNs (remote nodes), 631, 632f

fiber access networks, 638, 638f
ROADMs. See reconfigurable optical

add/drop multiplexers
rounding, 588, 589, 590t
route computation, 496
router functions, 656–657
router ports, number of (examples),

580–584
routes, network, 10

deflection routing, 676, 683–688
routing, ATM, 807–808
routing, MPLS, 417–419
routing and wavelength assignment

(RWA), 576, 584, 590–593
offline lightpath requests, 609–615,

612f, 614f, 615t, 617t
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routing and wavelength assignment (RWA)
(continued)

online lightpath requests, 610,
615–617, 617t

routing function (of routers), 413–414,
413f, 656

Rowland circle construction, 148, 148f
RPR. See Resilient Packet Ring
RSTP (rapid spanning tree protocol), 405,

534–535, 535f
RSVP (Resource Reservation Protocol),

420
RSVP-Traffic Engineering (RSVP-TE),

420, 497
RWA (routing and wavelength

assignment), 576, 584, 590–593
offline lightpath requests, 609–615,

612f, 614f, 615t, 617t
online lightpath requests, 610,

615–617, 617t
RZ pulses. See return-to-zero (RZ)

modulation

SA byte, Ethernet, 402
safety. See optical safety
sampled grating DBR lasers, 190, 191f
SANs. See storage-area networks (SANs)
SAPs. See service access points
satellites, for access services, 635
saturation effects, 160. See also gain

saturation (EDFAs)
saturation power, 297
S-band systems, 37t, 50, 50f

nonzero-dispersion fibers and, 95
SBS. See stimulated Brillouin scattering
scattering effects. See also nonlinear effects

in optical fiber
Rayleigh scattering, 48, 50
SBS. See stimulated Brillouin

scattering

SRS. See stimulated Raman scattering
scattering matrix, 117
Schrdinger equation, nonlinear (NLSE),

775
SCM. See subcarrier modulation and

multiplexing
SCNP. See subnetwork connection

protection
scrambling, 247
SDH networks. See SONET; SONET/SDH
SDH standard, ITU-T, 761–762
SDM. See space division multiplexing

(SDM)
secondary transit queue (STQ), RPR, 423,

424f
second-generation optical networks,

13–15, 18, 37
optical layer of. See optical layer of

network infrastructure
Section BIP-8 byte, SONET, 381, 392f
Section Data Communication Channel

bytes, SONET, 382, 392f
Section Growth byte, SONET, 381, 392f
section layer, SONET/SDH, 378, 379, 379f

overhead bytes, 381–382
Section Monitoring byte, OTN, 393, 393f
Section Trace byte, SONET, 381, 392f
Section User Channel byte, SONET, 382,

392f
security management, 470–471
self-healing rings, 521–523, 524t
self-phase modulation (SPM), 78, 85–88

cross-phase modulation (CPM) and,
91–92

SPM-induced chirp for Gaussian
pulses, 78–79, 85, 88–90, 89f,
90f, 338–340, 340f

system design considerations,
338–340, 340f

semicircular-cross-section fibers, 68
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semiconductor electro-absorption (EA)
modulators, 194–195

semiconductor lasers, 172. See also lasers
direct modulation, 193f
safety of, 501

semiconductor optical amplifiers, 168f
semiconductor optical amplifiers (SOAs),

167–171
crosstalk in, 171
interferometric wavelength

conversion, 226f, 227f
for switching, 214t, 220
wave mixing in, 229f

sensitivity, receiver, 266–268, 267f, 294,
295t

coherent detection and, 269–271
serial (de)multiplexing, 154
serial OADM architectures, 443f, 443t,

444, 445f
with reconfigurable optical add/drop

multiplexers (OADMs), 447–449,
448f

server layer. See optical layer of network
infrastructure

service access points (SAPs), 16
service classes, protection-based, 548–549
service identifier tag (I-Tag), 410
service providers (carriers), 2, 453. See also

deregulation of telephone
industry

protection-based service classes,
548–549

redesigning transport networks, 708.
See also optical layer design

service tag (S-Tag), 409–410
service transparency. See transparency
services. See telecommunications services
SFD byte, Ethernet, 402
shared bandwidth, 632
shared mesh protection, 550t, 557–563

shared protection, 515, 550t
OCh-SPRing protection, 550t, 557
OMS-SPRing protection, 549t, 553,

555–556f
shared risk link groups (SRLGs), 515, 592
sheath miles, 10
short-haul interoffice connections

(SONET/SDH), 384
short-period fiber gratings, 132–133
shot noise, 259–260, 797

avalanche photodiodes (APDs), 261
shufflenet networks, 684, 685f, 687
shuttered optical connectors, 502
sidebands, 254–255
side-mode suppression ratio, 175
signal formats, 246–248
signal frequency. See frequencies
signal management, 390
signal modulation. See modulation
signal propagation. See propagation in

optical fiber
signal sources. See transmitters
signal transmission, basics of, 26–30
signal transparency. See transparency
signal wavelength. See wavelength
signaling, ATM, 807–808
signaling, MPLS, 420
signaling channels, 472
signaling networks, 477, 486–487
signaling protocols, 496–497
signals, defect, 483–484
signal-spontaneous beat noise, 262–263,

268
power penalty from, 291–292, 310f

silica, material absorption of, 48, 49f
silver service class (example), 548
simple network management protocol

(SNMP), 475
single queue mode, RPR, 423
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single sideband (SSB) modulation,
254–255, 254f

single-cavity dielectric thin-film filters,
786–787, 787f

single-channel OADM (SC-OADMs),
444–445

tunable, 447, 448f
single-longitudinal mode (SLM) lasers, 34,

174, 175f
spectral widths, chromatic dispersion

penalty from, 315–318
single-mode fibers (SMFs), 33–34, 51–52,

63–64
chromatic dispersion, 76f
diffraction effects, 58–59. See also

waveguides
four-wave mixing, penalty from,

336–337, 337f
intermodal dispersion, 51–52
parallel ribbon fibers, 58
soliton systems, 343

single-stage (de)multiplexer, 154
slab waveguides, 69, 785. See also

multilayer dielectric thin-film
multicavity filters (TFMFs)

sliding-frequency guiding filters, 343
SLM. See single-longitudinal mode lasers
slope efficiency, lasers, 172
SM byte, OTN, 393, 393f
small-buffer deflection routing, 687–688
SMFs. See single-mode fibers
Snell’s law, 53–54
SNMP (simple network management

protocol), 475
SOAs. See semiconductor optical amplifiers
soliton trapping, 668
soliton-trapping AND gates, 667–668,

668f, 669f
solitons, 99–103, 101f

dispersion-managed, 102–103,
343–347, 345f, 346f

external modulation with, 194
propagation, 776–777, 778f
system design considerations,

342–347
SONET (synchronous optical network),

10, 20–21, 21f, 37
frame structure, 379–383
IP over SONET networks, 18, 18f
line rates, 390t
SONET/SDH, 369–370, 369–389

continuing evolution of, 709–712
infrastructure elements, 386–389
ITU-T standards, 761–762
layers of, 378–379, 517–518
multiplexing, 373–376
packing low-speed circuits. See

grooming
physical layer, 384–386
survivability protection, 518–532,

520t
VCAT and LCAS, 377–378, 711

standards for
ANSI standards, 764
Telcordia standards, 763–764

transmission layer design, 719–720
SOP. See state of polarization
source address (SA), Ethernet, 402
source frequency chirp factor, 72
space division multiplexing (SDM),

718–720
spacing. See amplifier spacing; interchannel

spacing
span switching, 516, 517f, 525
Spanke switches, 209t, 211–212, 212f

MEMS switches, 215–218
Spanke-Beneš switches, 213, 214f
spanning trees, Ethernet, 404–405,

534–535, 535f
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spare cards, wavelength-specific, 494
spatial dilation, 311, 312f
spatial reuse, BLSRs, 526, 529f
spatial reuse, UPSR, 524
spatial walk-off polarizers (SWPs), 92,

120, 667–668
SPE (synchronous payload envelope), 374,

376f
spectral components of pulse. See

chromatic dispersion
spectral efficiency, 26, 251–256

capacity limits of optical fiber,
255–256

multilevel modulation, 255
optical duobinary modulation,

252–254
optical single sideband modulation,

254–255
spectral width, laser, 172, 771

large, chromatic dispersion penalty
from, 319–320

narrow, chromatic dispersion penalty
from, 315–317

SBS penalty, reducing, 331–332
spectrum, 26
SPM. See self-phase modulation
SPM-induced chirp, 78–79, 85, 88–90,

89f, 90f, 338–340, 340f
spontaneous emission, 157, 159–160

lasing loops, 304
Raman amplifiers, 167
in semiconductor optical amplifiers,

171
spontaneous emission lifetime, 158
spontaneous-spontaneous beat noise,

262–263, 268
SPRings. See shared protection
squelching, 529
SRLGs (shared risk link groups), 515, 592
SRS. See stimulated Raman scattering

SSB (single sideband) modulation,
254–255, 254f

stability, wavelength, 172
system design considerations,

341–342
stacked rings, 709
standard channels. See ITU frequency grid
standards, 761

ANSI (American National Standards
Institute), 764

ATM (asynchronous transfer mode),
801–807

Fibre Channel. See Fibre Channel
standard

ITU-T (International
Telecommunications Union),
761–763

network link interoperability, 373
Telcordia standards, 763–764
TPONs (telephony passive optical

networks), 641–643
for wavelength, 28–29, 437
wireless access, 636

star couplers, 114–115, 115f
Stark effect, 196
Stark splitting, 160f, 161f
start-of-frame delimiter, Ethernet, 402
state of polarization (SOP), 66

insertion loss and, 123
intrachannel crosstalk and, 305
in isolators, 119–120, 120f, 121f
power penalty, 292

static wavelength crossconnects (WXCs),
121–122, 122f

statistical multiplexing, 7, 25
statistical traffic models, 599–609

blocking model, 600, 601–609, 603f,
604f

first-passage model, 599–600,
600–601, 601f
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steering (protection switching)
RPR (Resilient Packet Ring), 533,

534f
T-MPLS (Transport MPLS), 540f

step-index fibers, 55–56, 56f, 77f
Stimax gratings, 125t, 126
stimulated Brillouin scattering (SBS), 78,

81–82, 82f
system design considerations,

331–332
stimulated emission, 158–159. See also

lasers
stimulated Raman scattering (SRS), 78,

82–83, 83f
Raman. See Raman amplifiers
system design considerations,

332–334, 334f
STM-1 signals, 374, 385t
STM-4 signals, 385t
STM-16 signals, 385t, 430t
STM-64 signals, 386t
Stokes wave, 78

stimulated Brillouin scattering and,
81–82, 82f

stimulated Raman scattering and,
82–83, 83f

STOP state (OFC protocol), 504, 504f
storage-area networks (SANs), 425–427,

426f, 427t, 735
store-and-forward networks, 654, 655f,

674
STP (spanning tree protocol), 404–405,

534–535, 535f
strict mode, RPR, 533
strict-sense nonblocking switches, 208

Clos architecture, 210–211
Spanke architecture, 211–212

STS Path BIP-8 byte, SONET, 383, 392f
STS Path Signal Label byte, SONET, 383,

392f

STS Path Trace byte, SONET, 383, 392f
STS Payload Pointer bytes, SONET, 383,

392f
STS signals, 373, 374t, 377

frame structure, 380f, 381f
subcarrier modulated fiber coax bus

(SMFCB), 635
subcarrier modulation and multiplexing

(SCM), 248–251, 249f
applications of, 251
clipping and intermodulation

products, 249–250
optical layer overhead, 489

subnetwork connection protection (SCNP)
protection schemes, 520t
self-healing rings, 524t

subrate multiplexing, 500–501
super-structure grating DBR lasers, 190
surface micromachining, 217–218
surface-emitting lasers, 178–180
survivability, network, 435, 511–567

basic concepts, 513–517
between-layer protection, 564–565
client layer protection, 532–541

Ethernet, 534–536, 535f
Internet Protocol (IP), 536–538,

537f
multiprotocol label switching

(MPLS), 538–541, 539–540f
Resilient Packet Rings (RPRs),

533–534, 534f
service classes, protection-based,

548–549
optical layer protection, 541–564

reasons for, 541–548
schemes for, 549–564

RWA problem and, 591–592
SONET/SDH protection, 518–532,

520t
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bidirectional line-switched rings
(BLSRs), 523f, 525–530, 527f,
528f

point-to-point links, 518–521, 519f
ring interconnection and dual

homing, 530–532
self-healing rings, 521–523, 524t
unidirectional path-switched rings

(UPSRs), 522f, 523–525
susceptibility of transmission medium, 61,

84
switch fabrics, 656, 657f
switched digital video (SDV), 639. See also

fiber to the curb (FTTC)
switched services, 630, 630t, 631
switches, 205–221. See also specific switch

architectures of, 209t
burst switching, 688–689
electronic, large, 220–221
Ethernet, 401, 403–406
optical, large, 207–213
optical, technologies for, 213–220,

214t
switching time, 214t
SWPs. See spatial walk-off polarizers
symbols (groups of bits), 276
symbols, list of, 757–759
symmetric services, 630
Synchrolan testbed, 689t, 693
synchronization, 657, 668–673, 670f

optical phase lock loops, 671–673
tunable delay lines, 669, 670–671,

671f, 680f, 683t
synchronous digital hierarchy (SDH)

networks. See SONET;
SONET/SDH

synchronous optical network. See SONET
synchronous payload envelope (SPE), 374,

376f

synchronous signals, transmission rates for,
371t

synchronous transport signal (STS) signals,
373, 374t, 377

frame structure, 380f, 381f
system design. See network design;

transmission system engineering

Tandem Connection Monitoring bytes,
OTN, 393f, 394

TCM bytes, OTN, 393f, 394
TCP. See transmission control protocol
TDM. See optical time division

multiplexing (OTDM); time
division multiplexing (TDM)

TE modes (waveguides), 69
acousto-optic tunable filters, 150

Telcordia standards, 763–764
telecommunications management network

(TMN), 475
telecommunications network architecture,

2–5, 5f, 707–718, 712–718
next-generation architectures,

712–718
SONET/SDH, 709–712

telecommunications services, 5–9,
629–630, 630t. See also access
networks; service providers

broadcast vs. switched, 630, 630t, 631
changing landscape of, 8–9
policing, 487
protection-based service classes,

548–549
revenues from, 709
transparency. See transparency

telephone networks, 635
plain old telephone service (POTS),

629
public-switched telephone networks

(PSTNs), 6
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telephone networks (continued)
TPONs (telephony passive optical

networks), 633, 633t, 640t,
641–643, 642f

evolution to WRPONs, 648–649
twisted-pair, 633, 634f

telephony industry, deregulation of, 2, 3
telephony passive optical networks

(TPONs), 633, 633t, 640t,
641–643, 642f

evolution to WRPONs, 648–649
temperature coefficients of filters, 123,

125t
fiber Bragg gratings, 133

temperature control, 341
temperature tuning of lasers, 185
10-Gigabit Ethernet, 406–407
10-Gigabit Ethernet PON (10G-EPON),

643
terahertz, 26
terahertz optical asymmetric

demultiplexers (TOADs),
666–667, 666f

TeraLight fiber (Alcatel), 95, 96f
terminal multiplexers (TMs), 386–387
terrestrial networks, 5, 5f
testbeds, PPS networks, 689–695, 689t

AON consortium, 689t, 694, 694f
BT Labs, 689t, 693
CORD, 689t, 694–695, 695f
FRONTIERNET switch, 689t, 691,

692f
KEOPS project, 689t, 690–691, 691f,

692f
Princeton University, 689t, 693

TFFs. See thin-film filters
TFMFs. See thin-film filters
thermal noise, 203–204, 259–260

interchannel crosstalk from, 308–309,
308f

intrachannel crosstalk, 308, 308f
power penalty from, 291

thermalization, 160f
thermoelectric (TE) coolers, 176
thermo-optic switches, 219
thin-film filters. See multilayer dielectric

thin-film multicavity filters
third-order nonlinear susceptibility, 84
3 dB couplers, 114, 118
3D MEMS switching, 214t, 216, 218
3R regeneration, 23, 222, 223f, 227f
three-cavity dielectric thin-film filters, 788
three-ring architectures, 522
three-section DBR lasers, 187–189
threshold current, lasers, 172
threshold power, 331
throughput, 586

defection routing and, 686–687
time division multiplexing (TDM), 11–12,

11f. See also optical time division
multiplexing (OTDM)

transmission layer design, 718–719,
720–721

time-alignment of pulse streams. See
synchronization

timing jitter, 102, 272f, 343
requirements for, 477

timing recovery, 271–272, 272f
TL-1 (Transaction Language-1), 475
TM modes (waveguides), 69

acousto-optic tunable filters, 150
TMN (telecommunications management

network), 475
T-MPLS (Transport MPLS), 420–421

protection in, 539–541
TMs. See terminal multiplexers (TMs)
TOADs (terahertz optical asymmetric

demultiplexers), 666–667, 666f
topologies, 495

Ethernet, 399f
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lightpaths. See lightpath topologies
management of, 495

TOSLINK standard, 106
total internal reflection, 53, 54f
TPONs (telephony passive optical

networks), 633, 633t, 640t,
641–643, 642f

evolution to WRPONs, 648–649
trace information, lightpaths, 374
traceroute messages, 495
traffic delays

maximum, 477
traffic delays, 685–686

traffic engineering, 416
traffic matrix, 597, 598–599
traffic pattern, 686
traffic shapers, RPR, 423, 424f
traffic shaping, STM, 806
Trail Trace Identifier byte, OTN, 393f, 394
Transaction Language-1 (TL-1), 475
transfer functions. See power transfer

functions
transimpedance front-end amplifiers,

203–205, 204f
transmission, basics of, 26–30
transmission control protocol (TCP),

17–18, 411–412
transmission gratings, 125f, 126–128,

128f
diffraction patterns, 128–129

transmission layer design. See optical layer
design

transmission link standards, 373
transmission rates, 371t
transmission system engineering, 289–354

crosstalk, 304–314. See also crosstalk
dispersion, 314–328. See also

dispersion
chromatic, NRZ modulation,

315–317

chromatic, RZ modulation,
317–320

compensation techniques, 320–325
polarization-mode, 325–328, 327f

fiber nonlinearities, 328–340. See also
nonlinear effects in optical fiber

chromatic dispersion management
and, 340

cross-phase modulation (CPM),
338–340

effective length in amplified
systems, 329–331, 330f

four-wave mixing (FWM),
334–338, 335f, 337f

self-phase modulation (SPM),
338–340, 340f

stimulated Brillouin scattering,
331–332

stimulated Raman scattering (SRS),
332–334, 334f

optical amplifiers, 295–304. See also
optical amplifiers

overall design considerations,
347–353. See also network design

all-optical networks, 350–351
chromatic dispersion compensation,

348–349
fiber type, 347–348
interchannel spacing and number of

wavelengths, 349–350
modulation, 349
nonlinearities, 349
transmit power and amplifier

spacing, 348
transparency, 353
wavelength planning, 351–353

power penalty, 290–292, 293t
receivers, 294–295. See also receivers
soliton systems, designing, 342–343
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transmission system engineering
(continued)

soliton systems, designing (continued)
dispersion-managed soliton systems,

343–347, 345f, 346f
system model, 289–290
transmitters, 292–294. See also

transmitters
wavelength stabilization, 341–342.

See also stability, wavelength
transmit power, selecting, 348

dispersion-managed (DM) solitons,
344–345

fiber nonlinearities and, 349
transmitters, 172–197

lasers. See lasers
LEDs. See light-emitting diodes

(LEDs)
pump sources for Raman amplifiers,

196–197
system design considerations,

292–294
transparency, 22–24, 353, 391, 435

adaptation type and, 501
impact of, 481–482

transparent networks. See all-optical
networks

transponders, 221, 436–437, 436f, 500
addressing multivendor

interoperability, 480–481
fixed-wavelength, ROADMs and, 447
1:N protection, 553

transport element management system
(TEMS), 473

transport layer, networks, 17–18
Transport MPLS (T-MPLS), 420–421

protection in, 539–541
transport network design. See optical layer

design
transversal equalization filter, 273, 273f

transverse component, electric field, 65.
See also polarization modes

transverse polarization, 66
traps (alarms), 475
trends with optical fiber transmission,

30–40
TrueWave fiber (Lucent), 95, 96f
TrueWave RS fiber (Lucent), 95–96, 96f,

347–348
TrueWave XL fiber (Lucent), 96
trunk inventory and record keeping system

(TIRKS), 473
trunking efficiency, 602
TTI byte, OTN, 393f, 394
tunable delay lines, 669, 670–671, 671f,

680f, 683t
contention resolution with, 695
feedback delay lines, 675f, 678–679,

679f
feed-forward delay lines, 675, 675f,

679
tunable filters

acousto-optic (AOTFs), 149–153,
149f, 150f

flattening EDFA gain with, 298,
299f

as wavelength crossconnects
(WXCs), 152–153, 153f

Fabry-Perot filters, 139
Mach-Zehnder interferometers as, 143

tunable lasers, 184–192
tunable SC-OADMs, 447, 448f
tunable wavelength converters (TWCs),

656, 657f
contention resolution with, 681–682,

682f
tunneling, 417
TWCs. See tunable wavelength converters
twisted-pair telephone access networks,

633, 634f



Index 891

2-connected topologies, 577
2D MEMS switching, 214t, 215–216, 218
2R regeneration, 23, 223f, 226
two-cavity dielectric thin-film filters, 788
two-section DBR lasers, 187–189
two-stage (de)multiplexing, 154–155, 155f
two-stage interleaver, 155–157, 156f
Type byte, Ethernet, 402
type-length-value (TLV), 497

U-band systems, 37t
ultra-long-haul (ULH) networks, 384,

725–732
undersea, 732–734

unchirped Gaussian pulses. See
return-to-zero (RZ) modulation

undersea networks, 5, 99
transmission layer design, 732–734

UNI (user network interface), 498
unidirectional protection switching,

515–516, 516f
Ethernet, 535–536
unidirectional path-switched rings

(UPSRs), 388, 520t, 522f,
523–525, 547

protection schemes, 520t
self-healing, 524t

unidirectional ring networks, 521
unidirectional WDM systems, 721f,

722–724, 723f
uniform traffic pattern, 686
uniformity of loss, with optical switches,

208
UPSRs. See unidirectional path-switched

rings
usable bandwidth, 48–50, 49f
user datagram protocol (UDP), 411–412
user network interface (UNI), 498
user-network interfaces, 802

vacuum, intrinsic impedance of, 781
valence band (SOAs), 168
value, mathematical program, 588
variable optical attenuator (VOAs), 218
VCAT (virtual concatenation), 377–378,

711
VCGs. See virtual concatenation groups

(VCGs)
VCI byte (ATM), 803
VCs (virtual circuits), 8, 17, 25
VCs (virtual containers), 375
VCSELs. See vertical cavity

surface-emitting lasers
vendors, interoperability between,

479–481, 739
Vernier effect, 236
vertical cavity surface-emitting lasers

(VCSELs), 58, 178–180, 179f,
180f

tunable, 186–187, 186f
vertical grating-assisted coupler filter

(VGF) lasers, 189–190, 190f
vertical partitioning, 471
very-long-haul networks. See

ultra-long-haul (ULH) networks
vestigial sideband (VSB) modulation,

254–255
VGF. See vertical grating-assisted coupler

filter (VGF) lasers
virtual (logical) topology, 575
Virtual Circuit Identifier byte (ATM), 803
virtual circuits (VCs), 8, 17, 25
virtual concatenation groups (VCGs),

377–378
virtual concatenation (VCAT), 377–378,

711
virtual containers (VCs), 375
virtual fibers, 12
virtual local-area networks (VLANs), 401,

403, 535
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Virtual Path Identifier byte (ATM), 803
virtual paths, ATM, 804–805
virtual private networks (VPNs), 401
virtual tributaries (VTs), 375, 376f
VLANs. See virtual local-area networks

(VLANs)
VPI byte (ATM), 803
VSB. See vestigial sideband modulation
VTs. See virtual tributaries (VTs)

WA programs. See RWA (routing and
wavelength assignment)

walk-off phenomenon, 92, 120, 667–668
WAN PHY PCS sublayer, 407
WANs. See wide-area networks (WANs)
wave equations, 59–61, 62–63, 765–767
wave mixing, 228–229, 229f. See also

four-wave mixing (FWM)
wave number, 63–64
wave propagation at dielectric interfaces,

781–785, 782f
wave theory approach to waveguides,

59–63
waveguide dispersion, 70, 76f. See also

chromatic dispersion
waveguide modes, 69
waveguides, 30, 58–69

AWGs. See arrayed waveguide
gratings

couplers fabricated from. See couplers
fiber modes, 63–65
polarization modes, 65–67

dispersion from. See
polarization-mode dispersion
(PMD)

polarization-dependent effects, 67–68
wave theory approach, 59–63

wavelength, 26–28. See also frequencies
channel spacing and. See interchannel

spacing

compliant and noncompliant, 500,
501f

for contention resolution, 680–683
cutoff. See cutoff wavelength
ITU standards. See ITU wavelength

grid
policing (monitoring), 487
resonant wavelengths, 137
RWA (routing and wavelength

assignment), 576, 584, 590–593
online lightpath requests, 610,

615–617, 617t
selection and number of, 178,

349–350, 351–353, 434, 491t.
See also dimensioning
wavelength-routing networks;
filters; multiplexers; multiplexing;
tunable filters; tunable lasers

network design trade-offs
(example), 580–584

optical supervisory channels
(OSCs), 490

pilot tones, 489
standards for, 28–29, 437
zero-dispersion, 71

dispersion-shifted fibers (DSF),
76–77

wavelength blockers, 449, 450f
wavelength conversion, 13, 435, 593–596,

597f
all-optical optical crossconnects

(OXCs), 458
by OXCs, 454

wavelength converters, 221–229
interferometric techniques, 225–228
optical gating, 224, 225f
optoelectronic techniques, 222–224
in switch fabrics, 656, 657f
wave mixing, 228–229

wavelength crossconnects (WXCs),
121–122, 122f
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acousto-optic tunable filters as,
152–153, 153f

wavelength dilation, 311–312, 312f
wavelength dimensioning problem. See

dimensioning wavelength-routing
networks

wavelength division multiplexing (WDM),
11f, 12, 34–37. See also entries at
signal

IP over WDM, 712–718
transmission layer design, 718–719,

720–721
uni- vs. bidirectional systems, 721f,

722–724, 723f
wavelength drift. See wavelength

stabilization
wavelength filters. See filters
wavelength lockers, 341
wavelength multiplexers. See multiplexers
wavelength plane OXCs, 460–461, 460f,

462f
wavelength planes, 460
wavelength planning, band drop

architecture, 446
wavelength reuse, 435
wavelength reuse factor, 601–604, 603f,

604f, 609t
factors governing, 604–607
wavelength assignment algorithms,

608–609
wavelength selective switches (WSSs),

449–452, 450f
wavelength stabilization, 172

system design considerations,
341–342

wavelength-dependent couplers, 115–116
wavelength-independent couplers,

114–115
wavelength-routing networks, 13–14, 14f,

433
dimensioning, 596–599

WRPONs (wavelength-routed passive
optical networks), 633t, 640t,
641–642, 642f

evolution from TPONs, 648–649
RITENET and LARNET

architectures, 644–645, 646–647,
646f

wavelength-specific spare cards, 494
WDM. See wavelength division

multiplexing (WDM)
weakly guided fiber modes, 64
wide-area networks (WANs), 4
wideband digital crossconnects (DCSs),

389, 389f
wide-sense nonblocking switches, 208

crossbar architecture, 209–210
WiMAX standards, 636
wireless access, 635
working paths, 514–515
working traffic, route computation for, 496
WPONs (WDM passive optical networks),

633, 633t, 640t, 643, 644f
wrapping (protection switching)

RPR (Resilient Packet Ring), 533,
534f

T-MPLS (Transport MPLS), 540f
WRPON (wavelength-routed passive

optical network), 633t
WRPONs (wavelength-routed passive

optical networks), 640t,
641–642, 642f

evolution from TPONs, 648–649
RITENET and LARNET

architectures, 644–645, 646–647,
646f

WWAN PHY PCS sublayer, 407

Z0 byte (SONET), 381, 382t
zero-dispersion wavelength, 71

dispersion-shifted fibers (DSF), 76–77
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