
G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

I S S U E SL A T E N C Y

A L O O K A T
LATENCY IN

NETWORKED GAMES
hose of us developing networked games are less conscious

of latency issues than we should be. Often, this is because

common knowledge has already provided us with convenient

excuses for our problems. When a game feels laggy or behaves

unreliably, well, everybody knows that modems are slow, and

everybody knows the Internet is unreliable, so obviously the game

will suffer.

Here, we will look at the major sources of latency in a net-

worked game. We will show that large portions of this latency are

caused by the game itself or by the nature of serial communica-

tion in a way that is heavily influenced by the game’s behavior. In

B Y J O N A T H A N B L O W

TT
Jonathan Blow comes from the West country where the birds sing bass. He does not spell "mipmap" with a hyphen. Contact him
at jon@bolt-action.com.

G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

29

L A T E N C Y I S S U E S

other words, much of the latency is our
own fault — but that fact gives us the
power to find solutions.

The Method

I n order to analyze latency in a sys-
tematic and concrete way, we will

observe the workings of a specific sys-
tem: a client/server architecture, where
the server is authoritative over the state
of the world. The clients act as win-
dows for viewing that world. The server
frequently tells the clients about the
state of entities in the world (their
positions, velocities, and whatever
else); each client tells the server what
actions its player would like to take,
and the server computes the effects of
these actions on the world. Each client
runs asynchronously from the server
and all other clients; its frame rate is
not locked to the network in any way
(perhaps it uses dead reckoning to
extrapolate moving objects).

Many games’ architectures don’t
quite resemble this scheme (for exam-
ple, peer-to-peer games in which
clients can have authority over world
state), but most of the concepts
explored in this article still apply.

Some calculations made in this article
are frame-rate dependent, so we must
pick a typical frame rate for a game
client. We will use 20 frames per second
as our typical frame rate. At the time of
this writing, 20 FPS is considered a rea-
sonable frame rate for a 3D game. With
news of the Voodoo2 running QUAKE at
120 FPS, it’s evident that a year or two
from now, 20 FPS may be considered
poor. However, this is not inevitable
since, in the past, developers of PC
games have chosen to increase a game’s
features and graphical punch to the
detriment of frame rate (QUAKE II is
slower than its predecessor). Also, 3D
games tend to follow the technology
curve very closely, so whereas a game
may run at 30 FPS on high-end hard-
ware, it may run at only 12 FPS on the
machines of half the people actually
playing the game. Lastly, we’ve seen
that the conditions of a multiplayer
game, during the times when the user
desires the most responsiveness (such as
in a heavy firefight during a death
match game) tend to be much more
stressful than the conditions during a
single-player game; therefore, the frame

rates that matter will be substantially
lower than the figures reported in
benchmarks. For now, we will stick with
the 20 FPS figure; however, we will be
careful to spell out all the equations we
use to compute lag so that the computa-
tions can be made for any client speed.

Variance

B esides latency, from time to time
we’ll also look at variance, the

amount by which latencies fluctuate.
Having a lot of variance in the system
is bad for several reasons; it makes dead
reckoning more difficult for the com-
puter to perform, and it tends to con-
fuse human reflexes (it’s not too hard
for a person to adapt to a 200ms lag
between action and consequence, but
it is much harder — and more frustrat-
ing — to deal with latencies that fluc-
tuate between 50ms and 300ms).

The statistical notion of variance is
not very intuitive, so we’ll be looking
at the standard deviation of latency,
which is the square root of its vari-
ance. The standard deviation of a vari-
able is how far away we can expect one
sampling of the variable to be from the
mean. We’ll encounter latencies that
fluctuate between two values, llow and
lhigh, but can adopt any value within
that range with equal probability. In
this case, the mean latency is
0.5*(lhigh + llow). The standard
deviation is

.
So if our system’s latencies fluctuate
between 50ms and 300ms, the mean is
175ms, and the standard deviation is
about 72ms.

Now that we’ve covered the intro-
ductory material, we’ll proceed in our
analysis of networked games by first
looking at the lag suffered during a sin-
gle-player, un-networked game.

A Single-Player Game

H ow can a single-player game suf-
fer lag? If we think only in terms

of modems and networks, then the
idea makes no sense. But in order to get
a comprehensive look at the concept of
lag, we must look carefully at the way a
single-player game operates.

We’re very familiar with the concept
of frame rate: it takes a game some
amount of time to draw its graphics;
the faster it can do this, the higher its
frame rate. Let’s look at frame rate from
a different angle: if a game is running
at 20 frames per second, it takes one
twentieth of a second (50ms) to draw
each frame. When it’s done drawing
the frame, the player can see the new
state of the world. So, at 20 FPS, once
the game decides what the state of the
world should be (as in, where the play-
er is and in what direction he’s look-
ing), it takes 50ms to communicate this
decision to the player. That 50ms is
lag; but it’s not the only kind of lag
we’ll see in a single-player game.

A typical game might have a loop
structure that looks something like
Listing 1. It’s important to note that,
with respect to the client’s cycle time,
the rendering and movement cycles
(move_objects() and draw_scene()) represent
an all-consuming atomic void during
which no input events can be mean-
ingfully processed. If an input event
occurs (the user hits a key, for exam-
ple), then we must wait for movement
and rendering to complete before we
can get back to read_input() and process
the event. (We could do something
tricky and have read_input() occur much
more frequently than once per cycle;
this would change the flavor of the lag,
but wouldn’t reduce its overall magni-
tude. We discuss ideas such as this in
the conclusion to this article.)

Our game’s intended audience, game
players, are individuals with free will
and human spirit and all that stuff.
When a player presses a key, it’s an act

3
6

 −()* l lhigh low

while (1) {

read_input(); // keyboard, joystick or whatever;

// change object movement parameters based on input

move_objects(); // change objects’ positions based on movement parameters

draw_scene(); // all the k-rad graphics, d00dz!

}

L I S T I N G 1 . A typical game loop.

of unpredictable free will; the time of
the keystroke is not related to the inter-
nal operations of the game program. So
if we ask, in which phase of the client
cycle, and when during that phase,
does the keystroke event happen, the
answer is (to a first approximation)
that it can happen at any time with
equal probability.

Now for simplicity, we’ll assume that
the calls to draw_scene() take 100 percent
of the CPU time on the client and that
each call to draw_scene() takes an equal
amount of time. This means that
incoming keystrokes will be evenly dis-
tributed across the execution of
draw_scene(). On average, a keystroke
will occur smack in the middle of
draw_scene(). So when a keystroke
occurs, we have to wait half a cycle
until we can process the keystroke.
Now we need to move our viewpoint
in response to the input and draw the
new frame, which takes a cycle. That’s
a total of 1.5 cycles of lag in the aver-

age case, though the amount varies
between 1 and 2 cycles.

What does this mean in concrete
terms? When we’re playing a single-
player game, strutting down hallways
blasting Stroggs at 20 frames per sec-
ond, that’s 1,000/20 = 50ms per frame,
which means that it takes the game
50*1.5 = 75ms to visually respond to
our keystrokes, fluctuating between
50ms and 100ms, with a standard devi-
ation of about 14ms.

These numbers should already be set-
ting off warning bells in the analyst’s
mind. An “acceptable” 28.8Kbps
modem connection has a ping time of
about 150ms — that’s the round-trip
time for a ping packet to go to the
machine at the other end of the
modem and then come back. But what
we’re seeing is that, at 20 FPS, which is
typically considered a “responsive”
frame rate, we are faced with 75ms of
lag. So why do modem games feel so
much worse than single-player games

that seem to provide instantaneous
feedback? Several factors contribute to
this discrepancy, but a big component
of the answer is that a networked game
running over a modem with 150ms
ping time will suffer a real latency
much higher than 150ms.

Just for kicks we’ll consider the case
of a single-player game running at 12
FPS. Twelve FPS is not “smooth” ani-
mation, but it’s still a high enough
frame rate to feel responsive. Each
frame takes 1,000/12 = 83.3ms, with a
typical latency of 83.3*1.5 = 125ms,
which is getting pretty darn close to
that 150ms of raw ping time.

So what we’re seeing is that a game
runs in discrete cycles, and those cycles
can cause lag in two different ways.
We’ll call that first half-cycle of waiting
an influence lag, because it’s the delay
between our attempt to influence the
world (by pressing a key) and the time
the influence can occur. We will call
the cycle required to draw the scene an

G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

L A T E N C Y I S S U E S

T he diagnoses of latency and variance covered in this article consider the optimal case to be one in which the applications
process information in the most efficient order. However, simple mistakes in the organization of a loop structure can make
the situation much worse than we consider.

There are at least three basic operations the game loop has to perform: it must read input from the user, move objects in the world
(including the viewpoint) based on internal simulation (which is influenced by that input), and draw the current state of the world to
the screen.

The order in which we perform these steps will have an effect on the latency in the system. For simplicity, we will assume that the
drawing step takes almost all of the application’s CPU time; the read and move steps will be negligible in comparison.

The extra lag induced in the “Bad” example is obvious in some cases; many people who write single-player games see the problem
and get it right. However, we present this simple case as an illustration of a phenomenon that can occur in a complex system in ways
that are much subtler.

Loop Structure

while (1) {
 read_input();
 move_objects();
 draw_scene();

draw: m0->d0 read: gen i1

Input occurs

draw: m1->d1 draw: m2->d2move: i1->m1 read: gen i2 move: i2->m2

Good
Total lag: 1.5 cycles

Input processed Result visible on screen

while (1) {
 move_objects();
 read_input();
 draw_scene();

draw: m0->d0 read: gen i2

Input occurs

draw: m1->d1 draw: m2->d2move: i1->m1 read: gen i3move: i2->m2

Bad
Total lag: 2.5 cycles

Input processed Result visible on screen

observation lag, since it’s the delay
between an event’s occurrence and its
display. These two fundamental types
of lag have different effects on game
play; later, we’ll see that we can some-
times trade one kind of lag for another.

Besides the client frame time, some
other factors can introduce lag, such as
the monitor’s refresh time and the time
that it takes the player’s brain to
process the new information. These are
gray and sticky areas however, and
we’ll avoid them. We’ll be content to
say that our computations yield a con-
servative estimate of lag, and that actu-
al experienced values will be higher.

Multiplayer, Ideal Communications

N ow we’ll consider the case of a
client/server game, but one with

“ideal communications”: in other
words, a communications link of infi-

nite speed and perfect accuracy. In
this case, the only latencies intro-
duced will be of the cycle-induced
type that we’ve seen for the single-
player game; however, the problem is
now compounded because of the two
communicating entities.

When a player causes input events,
the client must communicate to the
server in order for that player’s input to
affect the world. The server must com-
municate the resulting changes in
world state (due to that player’s actions,
as well as those of other players) to
other clients for display (Figure 1).

In the simplest version of this
scheme, the client would listen to its
own effects on the world in the same
way it would listen to other players’
effects on the world: by hearing the
results from the server. This requires
the client to wait for a full round-trip
before seeing the results of its actions.

To reduce perceived latency of the
player’s own actions, we can have the
client observe its own state requests
and predict their results on the world
without waiting for the server to
process them (Figure 2). Thus, if we
wish, we can make the client respond
to its own events with the same latency
characteristics as in the single-player
game. However, we should be cautious
about this because, as we will see, all
other events in the game are subject to
higher latencies.

Given this client/server game struc-
ture, we can calculate the amount of
latency induced in the system by first
looking at both the client and the serv-
er as isolated components, figuring out
how much latency there is in each
component, and then adding the two
results together. Let’s assume we have a
client running with a main loop that is
similar to that of the single-player
example. This client is subject to the
same input delay as the single-player
game: half a client cycle (we’ll call the
client cycle c, so the influence lag is
0.5c.) After this half a cycle, the client
is able to read the keystroke event and
send it as a message over the network.
As for incoming messages, these are
subject to the same delays as input
devices: they will arrive in the middle
of a draw cycle. At the end of the draw
cycle, the messages will be processed,
which takes 0.5c. Then they must be
drawn, which takes 1.0c. The player
can see the results of the message after
a total of 1.5c of observation lag.

Now we look at the server end: the
server must receive messages from the
client, which will typically arrive some-

G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

L A T E N C Y I S S U E S

07Blow2.gd

Server

Observation

Observation

Observation

Influence

client C

client B

client A

F I G U R E 1 . A client sends requested
actions to the server; the server com-
putes the results of those actions and
sends out the results for all clients to
observe.

07Blow3.gd

Server

Observation

Observation

Observation

Influence

client C

client B

client A

F I G U R E 2 . Like Figure 1, but the
client predicts the results of its own
influence without hearing from the
server (dotted arrow at client A).

07Blow4.gd

1.0s observation
lag (computation)

0.5s influence lag

0.5c influence lag

1.0c observation lag
0.5c observation lag

KeyboardScreen

Client CPU

Server
CPU

F I G U R E 3 . The stages of lag involved in cycle-inhibited client/server communication. Total lag is 2.0c + 1.5s.

where in the middle of the server cycle
(which we will call s). After 0.5s, the
events can be processed, having an
effect on the world state; therefore the
0.5s is influence lag. It takes 1.0s to
compute the results of the inputs on
world state, after which time the
results are sent to all clients. This 1.0s
is probably observation lag (based on
how the system is constructed).

Let’s sum up this section and put the
events in the proper sequence. On the
client, we first have 0.5c of influence
lag, then 0.5s for the message to get
into the server. Then we have 1.0s of
observation lag, then the response is
sent to the client, which adds an addi-
tional 1.5c of observation lag. The total
is 0.5c + 0.5s of influence lag and 1.0s +
1.5c of observation lag, for a total of
2.0c + 1.5s of general lag. The standard
deviation is 0.29c + 0.14s (Figure 3).

Let’s express this in real-world terms.
Assuming both the client and the serv-
er are running at 20 FPS, that’s 2.0*50 +

1.5*50 = 175ms of lag, deviating by
22ms, easily exceeding the 150ms ping
time we mentioned earlier. Just for
kicks, let’s run these calculations for a
low-end machine running at 12 FPS
(where the server is still running at 20
FPS): 2.0(83) + 1.5(50) = 241ms, deviat-
ing by 31ms. Are we having fun yet?
Next we’ll attach a modem and see
what happens.

Enter the Modem

O ur modem will be an ideal
modem that can transmit bits at a

fixed rate, and aside from that is per-
fect in every way (no line noise, no
overhead in setting up data for trans-
mission, and so on). Our ideal modem
will run at 28.8Kbps. (Yes, modems of
higher speeds such as 33.6Kbps or an
ostensible 56Kbps are common, but
higher speeds are more susceptible to
line noise, causing some serious prob-

lems for real-time games. Rounding
down to 28.8Kbps will also help to
compensate for other interference
effects that this article is not taking
into account.)

So if we’re transmitting data serially
at 28.8Kbps, each bit takes 1/28,800
sec, or 3.47*10-2ms to transmit. We’ll
call this unit of time b. Sending 32 bits
over the modem will take 32*b sec-
onds, or 1.11ms.

A modem is an asynchronous com-
munications device, which means that
some signaling overhead is required to
transmit messages. Typically, the
modem must frame every 8 data bits
transmitted with a start bit and a stop
bit, so that it ends up transmitting 10
bits. So we need to multiply the num-
ber of bits we’re sending from the
application by 10/8 to get the number
the modem is transmitting.

We’ll want to measure our data in
bytes, and a byte is 8 bits. So we’ll
multiply that 10/8 by 8 to convert
from bits to bytes. So every byte we
send takes 8*(10/8)*b seconds = 10b
seconds ≈ 0.35ms.

If we send a 64-byte message over
our ideal modem, it will take 64* 10b =
22.21ms to get across. Assuming the
message is not useful until the whole
thing is received, this gives us about
22ms of extra lag to add to our previ-
ous computations.

Because it takes time to transmit bits,
if we try to send messages too quickly,
they’ll pool up in their rush to get out.
If our application sends two messages
at the same time, the second message
must wait for the first message to com-
plete before it can begin its journey.
Therefore the second message suffers
further delay; the first went through in
20ms, but the second takes 40ms. Of
course this phenomenon worsens with
the number of simultaneous messages.
We’ll call this situation “message stall.”

Message stall causes latency to
change on a per-message basis; there-
fore it induces variance, even if our
communication line is variance-free.
Figure 4 illustrates the point.

In A, we send two messages. The first
gets across the line after 20ms; the sec-
ond gets across after 40ms. The aver-
age latency of our state messages is (20
+ 40)/2 = 30ms, deviating by 10ms. In
B, we send four messages. The average
is (20 + 40 + 60 + 80)/4 = 50ms, deviat-
ing by 22ms.

G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

L A T E N C Y I S S U E S

07Blow5.gd

t = 0 t = 20 t = 40 t = 60 t = 80

A.

B.

F I G U R E 4 . When we attempt to transmit messages in rapid succession, the mes-
sages will queue up. This adds latency and induces variance. In A, we have tried
to send two messages at once; it takes 40ms for both to complete. In B, we send
four; it takes 80ms.

07Blow6.gd

t = 0 t = 20 t = 40 t = 60

A.

B.

F I G U R E 5 . Three messages are sent simultaneously. In A, we send them as sepa-
rate messages. The average latency is 40ms, deviating by 16ms. In B, we package
the messages into a larger unit; the latency is now higher, at 60ms, but the devia-
tion is 0.

This is an important issue. Many opti-
mized networking schemes would like
to send a variable number of messages
each frame, based on what is currently
considered important to the game state.
Nonetheless, varying the number of
messages per frame isn’t a good idea
unless care is taken to compensate for
the consequent extra variance.

When sending several messages to a
client at once, we might choose to pack
them all together into one message and
send them as a unit. In the perfect case
that we’re studying here, this would be
worse than sending them separately.
Because the submessages are processed
as a unit, none of them can be handled
until the entire compound message has
been received. This increases the aver-
age latency. The variance problem may
still exist as well, because compound
messages of different lengths will be
lagged by different amounts (Figure 5).

Modem Guts

O f course, nobody who plays our
game is going to have an angelic

modem. Real modems and real com-
munications lines introduce real prob-
lems. Telephone switches (the routers
of telecommunications land), and all
the other equipment involved in trans-
porting and reproducing a telephone
signal, will induce latency. Line noise
can corrupt messages that we transmit.
Sometimes, even on good phone lines,
noise can come in bursts, causing
blackouts of several hundred millisec-
onds, during which no messages suc-
cessfully get through. Wacky changes
in telephone line voltage can cause
modem byte framing errors, requiring
bytes to be retransmitted.

Error correction and compression
schemes (such as those included in
CCITT v.42bis) can be employed to
combat line noise and increase band-
width. Many of them introduce syn-
chronous communication modes to
eliminate the overhead of start and
stop bits. However, such schemes
introduce problems for real-time
games. They usually packetize data into
multibyte chunks, which increases
latency because a message that ends in
the middle of a modem-generated
packet cannot be processed until the
entire packet is received. Compressing
and uncompressing data requires extra

computation, and much of the other
maneuvering that the modem must
perform also increases latency. An error
correction scheme can resend data in
the case of line noise, but this is usual-
ly not what we want because we aren’t
transmitting stream data (see the dis-
cussion of TCP in the next section);
this retransmission will delay the trans-
mission of further data. We have found
that for the sort of game we are dis-
cussing, in most cases it’s best to turn
off error correction and compression.

In this section, we haven’t done much
to quantify the influence of these effects
on latency; this would be difficult
because the effects vary so much from
situation to situation. For now, we’ll
make ourselves content simply being
aware of these issues and move on.

Protocol Overhead

N ow the excitement really begins!
Any message that wants to travel

on the Internet has to ride inside an
Internet Protocol (IP) packet. In this
section, we’ll talk about the overhead
involved in using IP over modem lines,
as well as the higher-level protocols in
the IP family, TCP and UDP.

The IP packet header contains infor-
mation on the packet size, the source
and destination addresses, and other
transportation and maintenance infor-
mation. The IP header is 20 bytes long
— that’s 20 extra bytes concatenated to
any message we send.

The IP header alone doesn’t provide
enough information, however; it is
only sufficient to describe the source
and destination hosts of a packet, but
not what to do with the packet when it

reaches the destination. For that you
need to use a higher-level protocol
such as TCP or UDP, and if you’re
smart, you won’t use TCP. (Many rea-
sons have been given for why TCP is
not appropriate for real-time applica-
tions. Often, people cite issues such as
the exponential backoff that can cause
excessive retransmission delay. But
there is a much more fundamental rea-
son that is easy to understand. TCP is
an order-preserving, guaranteed-deliv-
ery protocol, meaning all data is deliv-
ered to your application in sequence. If
one small part of the stream gets lost
on the network — say, one byte — all
further incoming data is withheld from
your application until the data loss is
discovered and the missing data is suc-
cessfully retransmitted. This is silly and
harmful if the data is logically indepen-
dent from other information in the
stream. To improve TCP’s real-time
properties, its designers built in facili-
ties such as urgent mode, but that
doesn’t really aid our case.)

So for Internet communication,
unless you want to write your own IP-
family protocol (I definitely don’t — I
have a game to write), UDP is the only
reasonable choice. For the record,
though, TCP packets induce 20 bytes of
overhead in addition to the IP header.

The UDP header is smaller, only 8
additional bytes on top of the IP head-
er, for a grand total of 28 bytes. So if
you transmit 16-byte messages in your
application (small messages to keep
latency down), you’re really transmit-
ting 44-byte UDP packets, or 64 per-
cent overhead.

Under oppressive conditions such as
this, one might decide to pack multiple
state updates into one UDP packet to

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 8 G A M E D E V E L O P E R

37

07Blow7.gd

t = 0 t = 20 t = 40

A.

B.

header M1

header M1 M2

M2header

F I G U R E 6 . Instead of transmitting two messages as two separate UDP packets,
as in A, we can bundle them in one packet, as in B. In B, the message M1 arrives at
its destination later than it did in A, but message M2 arrives earlier.

mitigate the overhead of the UDP/IP
header (Figure 6). But this causes differ-
ent problems. As we’ve already deter-
mined, latency and variance will go up
because none of the state messages can
be processed until the entire packed-up
message has been received (because the
operating system won’t give the mes-
sage to our application). Of course, if
our state messages are very small and
we send them in separate packets, we
end up sending mostly IP headers, and
that does even worse things to our
latency. Clearly, a balance must be
struck between message size and the
number of headers we wish to tolerate.

So now, when computing the laten-
cy of our messages, we’ll add those 28
bytes of UDP and IP overhead. This
overhead is starting to get nontrivial,
so we’ll phrase it as the lag function
ModemLag(n), where n is a quantity of
bytes. Previously, we had
ModemLag(n) = n*10b; now we have
ModemLag(n) = (n + 28)*10b. That’s an
annoying amount of overhead, but
unfortunately, there’s more.

IP is a device-independent protocol
— it tells Internet routers what to do
with a packet once the packet reaches
them. But to transport a packet from
one router to another, you also need a
protocol that lets IP run on the physical
communications layer. For modems,
this is usually PPP (Point-to-Point
Protocol), which maintains the Internet

connection over a modem. As you’d
guess, PPP message frames induce addi-
tional overhead; the overhead would be
8 bytes, except that it’s usually negoti-
ated down to 5 once a consistent con-
nection is established (PPP is all about
the machines on each end of the line
negotiating connection parameters).

For starters, we’ll need to add 5 more
bytes to our previous 28, for a total of
33 (Figure 7). Besides that, PPP uses
ASCII characters 0x7d and 0x7e as sig-
nals of its control protocol, so they
must be escaped whenever they appear
in application data; this is done by pre-
fixing them with 0x7d, effectively dou-
bling those bytes. Furthermore, to pre-
vent problems with communications
middlemen that might misinterpret
ASCII codes 0x00-0x1f as nondata (for
example, as flow-control signals), PPP
can be configured to escape any or all
of those 32 characters, the default
being to escape them all. This configu-
ration is decided during another one of
PPP’s frisky connect-time maneuvers,
the ACCM negotiation.

The upshot is that if your message
content is evenly distributed across
ASCII (for example, random binary
data), you will suffer anywhere from
(2/256)*n to (34/256)*n in extra bytes
transmitted, depending on the ACCM.
(If your data contains a lot of 0s, and
that byte is being escaped, performance
could be a lot worse.)

Carrying on in our tradition of opti-
mism, we will assume that the PPP
ACCM negotiation has turned off
escaping of all bytes but 0x7d and
0x7e. Then we have
ModemLag(n) = (n + 33)*258/256*10b.
(This isn’t quite right because parts of
the PPP header won’t ever be quoted,
but it’s close enough for hand
grenades.) That factor of 258/256 is
pretty negligible, but we leave it in to
remind ourselves that it could end up
being much higher, especially if we’re
not in control of the circumstances sur-
rounding the dial-up connection. If we
were pessimistic about the ACCM nego-
tiation results, our equation would be
ModemLag(n) = (n + 33)*290/256*10b.

In other words, the PPP escaping will
cause somewhere between 0.8 percent
and 13.3 percent overhead, depending
on configuration.

Let’s try to get our bearings again by
plugging some real numbers into these
equations. For instance, how long does
it take to send a 64-byte message with
all these overheads?
ModemLag(64) = (97) * 258/256 *10b

= 33.9ms
And what is the fastest that we could

possibly get a message from one end to
another (a 0-byte message)?
ModemLag(0) = (33) * 258/256 * 10b

= 11.5ms
For what it’s worth, PPP provides a

header compression scheme that
compresses the IP and TCP headers of
TCP stream packets to become very
small, eliminating much overhead.
But that only works for TCP. There’s
no good reason why it doesn’t work
for UDP, except that nobody ever
cared enough to do it. So we’re stuck
with this for now.

Second-Order Effects

A side from the major lag-induc-
ing effects that we’ve examined,

there are billions and billions of
weaker effects inhabiting the galaxy.

G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

L A T E N C Y I S S U E S

07Blow8.gd

USER DATAUDP header
8 bytes

IP header
20 bytes

PPP
footer
3 bytes

PPP
header
2 bytes

F I G U R E 7. How many licks does it take to get to the center of a datagram?

I t’s common to use the ping utility
to measure round-trip time
between two sites on the Internet.
This utility sends an “echo

request” ICMP packet; ICMP is the
Internet Control Message Protocol, and
its header size (in the case of an echo
request or reply) is 8 bytes. Ping is usual-
ly set to transmit 56 bytes of random data
by default; so, with all the headers includ-

ed (5 bytes PPP, 20 bytes IP, 8 bytes
ICMP), we are transmitting 89 bytes per
ping. PingLag(89) = 89*258/256*10b =
31.1ms. Because the ping is making a
round trip, we multiply this number by
two, getting 62.2ms, which is the time a
ping would take under ideal conditions
over a 28.8Kbps modem. The veteran
Internet user knows that measured num-
bers are usually much higher.

Ping

Sending and receiving data over net-
works involves the operating system
handling the data, which may require
context switches. We may be con-
fronted with bus contention or net-
work-device-instigated delays. If
we’ve got an external modem, our ser-
ial port might have some issues.
Maybe routers on the other end of the
line feel a little bit congested, so they
decide to hold onto our packets for an
extra 25ms, on top of the time it takes
them to process packets normally.
Perhaps some rare interdimensional
phenomenon slows down the speed
of light in a zone near the middle of
the telephone line (maybe they’re
filming a Star Trek episode there or
something).

All these things and many more will
increase our suffering. Analyzing them
closely is beyond the scope of this arti-
cle because they are so diverse and
unpredictable. However, we may take
comfort in the knowledge that, gener-
ally, their effects will be less drastic
than the phenomena that we’ve
already looked at.

Solutions?

W e’ve looked at delays caused by
the atomic nature of operations

such as rendering, and we’ve looked at
delays caused by serial communication
over a modem. We’ve seen that both
these types of delays are influenced by
the behavior of the game software.

The amount of lag caused by atomic
software operations is high. However,
it’s also dependent on frame time, so if
we can get our clients and servers run-
ning at a very high frame rate, the
problem will go away. However, there
are economic pressures that drive
frame rate down (the need to have
graphics that are more impressive than
those of other games and the need to
pack as many people as possible onto
each server machine). So it will be con-
structive to think of other ways of
eliminating this software-induced
latency. Here, we will present some
ideas and shoot most of them down.

Q:Can we have the client read play-
er inputs more than once per

game cycle? That way, we could detect
input earlier and reduce latency, right?

A:Yes, but no, but yes. Looking at
the simple case of a single-player

game, if we poll for events more often
and update our motion simulator after
each poll, the client can respond to
inputs sooner, thus reducing influence
lag. However, observation lag increases
to pick up the slack, and the total
amount of lag remains the same. There
is a trick that can be exploited, however.
In a client/server architecture, the server
acts as a parallel processor that the
client can farm events off onto while it’s
waiting on its own observation lag. In
an ideal world, an input event such as a
keystroke would cause an interrupt,
immediately stopping our client long
enough for it to put together a packet,
which is sent to the server without
delay. Then the client resumes its nor-
mal processing. This way, we’d elimi-
nate an entire 0.5c of influence lag. On
many platforms, we can’t use an inter-
rupt, so we’d settle for polling several
times per update. Last we checked,
though, reading the joystick on a PC
was so painfully slow that it was a bad
idea to do it even once per cycle.

Q:What if we had a multiprocessing
machine for the client? Could we

use two processors to render scenes in
parallel, issuing them at alternating
intervals and reducing observation lag?

A:Yes, we can reduce lag this way,
but not as much as we might

hope. If we set up two processors ren-
dering frames that are phase shifted
from each other by 50 percent of the
frame time (Figure 8), we can reduce
the amount of time for which an event
has to stall before it can enter a render-
ing cycle. In fact, if the time that it
takes for one processor to render one
frame is c (and therefore, the client’s
display frame time is 0.5c), then we’ve
reduced the expected stall time to han-
dle an event from our original 0.5c
down to 0.25c. However, once the
event enters the rendering process, it
still takes 1.0c to be drawn. Since a
new frame is being issued every 0.5c, it
now takes two frames for each
processed event to become visible, so
observation lag remains the same.
That seems weird, but that’s how this
pipelined stuff goes.

Using this technique, we can elimi-
nate 0.25c of the observation lag
induced on incoming messages (I’m
assuming that we already used the pre-
vious trick to reduce the influence lag
on keyboard messages, so this tech-
nique has no effect on that). However,
alternating the rendering job between

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 8 G A M E D E V E L O P E R

39

T hroughout this article, we
have assumed a networking
model in which clients and
servers operate independent-

ly in an unsynchronized fashion, without
any network entity waiting on another to
proceed. As we have seen, this assump-
tion leads to added latency, because
messages are received by the clients and
servers at inopportune times.

But there is a more primitive form of
networking known as lockstep. This is
the type of networking used by DOOM and
other early commercial Internet games.
These games typically use no server;
instead each client communicates to all
the others peer-to-peer, and each client
simulates the state of the entire world
privately.

Once per cycle, each client sends a
message to all other clients describing

events that have occurred that cycle.
Each client will pause until it has
received up-to-date messages from all
other clients, at which point it will update
its world state, draw the next frame, and
repeat the cycle.

Under this scheme, each client’s frame
rate is locked to that of the slowest
machine in the game (plus network lag).
But the clients run in a synchronized man-
ner, which means that much of the cycle-
induced lag that we’ve discussed through-
out the article just magically disappears.

In reality, this isn’t appropriate for
most games because first, the player
with the slowest computer makes every-
one else in the game suffer, and second,
real-world communications problems
make everyone in the game use words
such as “suck.” But it’s amusing to think
about.

Lockstep:
The Ultimate Networking Scheme?

multiple processors may be a tricky
task because many graphics libraries
and device drivers are not threadsafe.
Even if they were, we might end up try-
ing to render two different scenes on
the same accelerator hardware at the
same time, which isn’t going to be a
possibility anytime soon. So if our ren-
dering is fill-limited, this whole idea is
probably a wash.

If we had a rendering cycle that
required some intense scene setup
computation before any polygons were
ever output, we could have one proces-
sor doing the scene setup stuff, then
pass the result to the other processor,
which would do the polygon outputs.
Thus, each processor would always be
doing the same job.

Q:Can we reduce lag on the server
end by sending messages to

clients about events as soon as they
happen? For example, if a rock bounces
off a wall in the middle of our simula-
tion, might we interrupt the simula-
tion to tell clients about the event,
then continue? (This is analogous to
sending out keystrokes immediately
from the client.)

A:This is unlikely because of the
limited bandwidth available for

communicating to the client. With
worlds of any complexity, there will be
too much going on for us to inform
each client of all events. A bandwidth-
optimizing network scheme will look
at events that have just occurred and
decide which are most important for
each client to know about. In order to
compare events to see which are more
important, we need a suitable selection
of events to choose from, which means
we need to wait for those events to
occur. This implies the sort of per-cycle

batch processing that we’ve already
been assuming.

Q:Can’t we reduce all that protocol
overhead that slimes up our

messages?

A:As individual game program-
mers, there’s not much we can

do. One big step would be an extension
to PPP that allows compression of
UDP/IP headers. There is no reason
why PPP can’t just see that we’re
throwing a bunch of UDP packets at
the same destination, then negotiate
away most of the headers as constant.
It looks like we could cut the headers
from 28 bytes to 5 bytes, if we’re will-
ing to play some checksum and length
counter tricks. So if you’re in the posi-
tion to harangue someone working on
PPP standards, bug them about this.

Recommendations

N ow let’s recap the basic ideas that
we’ve looked at in the form of

recommendations for future work:

1.WE SHOULD DESIGN GAMES WITH FRAME

RATES AS HIGH AS POSSIBLE. Even bet-
ter, we should discover brilliant new
computing paradigms that allow us to
write software that isn’t cycle-based.
Polling is bad; event-drivenness is
good!

2.WE SHOULD TAKE PAINS TO HANDLE

EVENTS AS SOON AS THEY OCCUR,
RATHER THAN WAITING FOR CONVENIENT PRO-
CESSING TIMES. If we’re locked into a sys-
tem of cycles and polling, then we
should poll many times per cycle for
important inputs, handling them as
soon as we see them, if possible.

3.WE SHOULD MAKE OUR NETWORK MES-
SAGES SMALL, BUT NOT TOO SMALL.

4.WE SHOULD ATTEMPT TO TRANSMIT

MESSAGES EVENLY OVER TIME. As a
random example, it may be better to
send two updates to a client every serv-
er cycle, instead of four every two serv-
er cycles. Even though the former takes
more bandwidth, latency and variance
will probably be lower.

5.LET’S EXERCISE CARE WHEN DESIGNING

THE FORM OF MESSAGES THAT OUR GAME

WILL SEND MOST OFTEN, THUS ENSURING THAT

THEY WON’T BE TROUBLESOME TO LOWER-LEVEL

PROTOCOLS. Let’s not design messages
that contain bytes such as 0x7d all over
the place, causing PPP to have a fit. ■

G A M E D E V E L O P E R J U L Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

L A T E N C Y I S S U E S

07Blow9.gd

t = 0 t = 20 t = 40 t = 60 t = 80 t = 100 t = 120 t = 140

Processor 1

Processor 2

frame 3 frame 5

frame 2 frame 4 frame 6

frame 1

F I G U R E 8 . A two-processor machine runs the client program, with the job of ren-
dering split between the two processors. This allows us to handle incoming mes-
sages a little bit sooner.

For more Internet protocol informa-
tion than you can shake a stick at, see
TCP/IP Illustrated, Volume 1 by W.
Richard Stevens (Addison-Wesley,
1994).

For a plate full of warm statistics
goodness (and some clues about where
that damn

comes from) see
Applied Statistics for Engineers and
Physical Scientists, Robert V. Hogg and
Johannes Ledolter (Macmillan, 1992).

For a simple explanation of modem
start and stop bits, partake thee of Dr.
Joseph Williams’ tasty slides at
http://lamar.colostate.edu/~drj/Async
hronous_Communication.

Thorough documents describing
telecommunications standards can be
obtained, for proper amounts of filthy
lucre, at www.eia.org and www.itu.ch.

3
6

F O R F U R T H E R I N F O

